1
|
Hammarlund-Udenaes M, Loryan I. Assessing central nervous system drug delivery. Expert Opin Drug Deliv 2025. [PMID: 39895003 DOI: 10.1080/17425247.2025.2462767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/15/2025] [Accepted: 01/31/2025] [Indexed: 02/04/2025]
Abstract
INTRODUCTION Delivering drugs to the central nervous system (CNS) remains a major challenge due to the blood-brain barrier, restricting the entry of drugs into the brain. This limitation contributes to the ongoing lack of effective treatments for CNS diseases. To improve the process of drug discovery and development, it is crucial to streamline methods that measure clinically relevant parameters, allowing for good selection of drug candidates. AREA COVERED In this paper, we discuss the essential prerequisites for successful CNS drug delivery and review relevant methods. We emphasize the need for closer collaboration between in vitro and in vivo scientists to improve the relevance of these methods and increase the success rate of developing effective CNS therapies. While our focus is on small molecule drugs, we also touch on some aspects of larger molecules. EXPERT OPINION Significant progress has been made in recent years in method development and their application. However, there is still work to be done before the use of in silico models, in vitro cell systems, and AI can consistently offer meaningful correlations and relationships to clinical data. This gap is partly due to limited patient data, but a lot can be achieved through in vivo research in animal models.
Collapse
Affiliation(s)
| | - Irena Loryan
- Translational PKPD Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Kim J, Shin SA, Lee CS, Chung HJ. An Improved In Vitro Blood-Brain Barrier Model for the Evaluation of Drug Permeability Using Transwell with Shear Stress. Pharmaceutics 2023; 16:48. [PMID: 38258059 PMCID: PMC10820479 DOI: 10.3390/pharmaceutics16010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
The development of drugs targeting the central nervous system (CNS) is challenging because of the presence of the Blood-Brain barrier (BBB). Developing physiologically relevant in vitro BBB models for evaluating drug permeability and predicting the activity of drug candidates is crucial. The transwell model is one of the most widely used in vitro BBB models. However, this model has limitations in mimicking in vivo conditions, particularly in the absence of shear stress. This study aimed to overcome the limitations of the transwell model using immortalized human endothelial cells (hCMEC/D3) by developing a novel dish design for an orbital shaker, providing shear stress. During optimization, we assessed cell layer integrity using trans-endothelial electrical resistance measurements and the % diffusion of lucifer yellow. The efflux transporter activity and mRNA expression of junctional proteins (claudin-5, occludin, and VE-cadherin) in the newly optimized model were verified. Additionally, the permeability of 14 compounds was evaluated and compared with published in vivo data. The cell-layer integrity was substantially increased using the newly designed annular shaking-dish model. The results demonstrate that our model provided robust conditions for evaluating the permeability of CNS drug candidates, potentially improving the reliability of in vitro BBB models in drug development.
Collapse
Affiliation(s)
- Junhyeong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.K.); (S.-A.S.); (C.S.L.)
- Anti-Aging Bio Cell factory Regional Leading Research Center (ABC-RLRC), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seong-Ah Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.K.); (S.-A.S.); (C.S.L.)
| | - Chang Sup Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.K.); (S.-A.S.); (C.S.L.)
| | - Hye Jin Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.K.); (S.-A.S.); (C.S.L.)
| |
Collapse
|
3
|
Nakayama-Kitamura K, Shigemoto-Mogami Y, Toyoda H, Mihara I, Moriguchi H, Naraoka H, Furihata T, Ishida S, Sato K. Usefulness of a humanized tricellular static transwell blood-brain barrier model as a microphysiological system for drug development applications. - A case study based on the benchmark evaluations of blood-brain barrier microphysiological system. Regen Ther 2023; 22:192-202. [PMID: 36891355 PMCID: PMC9988422 DOI: 10.1016/j.reth.2023.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
Microphysiological system (MPS), a new technology for in vitro testing platforms, have been acknowledged as a strong tool for drug development. In the central nervous system (CNS), the blood‒brain barrier (BBB) limits the permeation of circulating substances from the blood vessels to the brain, thereby protecting the CNS from circulating xenobiotic compounds. At the same time, the BBB hinders drug development by introducing challenges at various stages, such as pharmacokinetics/pharmacodynamics (PK/PD), safety assessment, and efficacy assessment. To solve these problems, efforts are being made to develop a BBB MPS, particularly of a humanized type. In this study, we suggested minimal essential benchmark items to establish the BBB-likeness of a BBB MPS; these criteria support end users in determining the appropriate range of applications for a candidate BBB MPS. Furthermore, we examined these benchmark items in a two-dimensional (2D) humanized tricellular static transwell BBB MPS, the most conventional design of BBB MPS with human cell lines. Among the benchmark items, the efflux ratios of P-gp and BCRP showed high reproducibility in two independent facilities, while the directional transports meditated through Glut1 or TfR were not confirmed. We have organized the protocols of the experiments described above as standard operating procedures (SOPs). We here provide the SOPs with the flow chart including entire procedure and how to apply each SOP. Our study is important developmental step of BBB MPS towards the social acceptance, which enable end users to check and compare the performance the BBB MPSs.
Collapse
Key Words
- BBB, blood-brain barrier
- BCRP
- BCRP, Breast cancer resistance protein
- Blood‒brain barrier (BBB)
- CNS, central nervous system
- Glut1, Glucose transporter 1
- HASTR, Human astrocytes
- HBMEC, Human brain microvascular endothelial cells
- HBPC, Human brain pericyte
- LC-MS/MS, Liquid chromatography with tandem mass spectrometry
- LY, Lucifer yellow
- MPS, Microphysiological system
- Microphysiological system (MPS)
- P-gp
- P-gp, P-glycoprotein
- TEER, Trans-endothelial electrical resistance
- TfR, Transferrin receptor
Collapse
Affiliation(s)
- Kimiko Nakayama-Kitamura
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Science, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa, Japan
| | - Yukari Shigemoto-Mogami
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Science, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa, Japan
| | - Hiroko Toyoda
- Stem Cell Evaluation Technology Research Association, Grande Building 8F, 2-26-9 Hatchobori, Chuo-ku, Tokyo 104-0032, Japan
| | - Ikue Mihara
- Stem Cell Evaluation Technology Research Association, Grande Building 8F, 2-26-9 Hatchobori, Chuo-ku, Tokyo 104-0032, Japan
| | - Hiroyuki Moriguchi
- Stem Cell Evaluation Technology Research Association, Grande Building 8F, 2-26-9 Hatchobori, Chuo-ku, Tokyo 104-0032, Japan
| | - Hitoshi Naraoka
- Stem Cell Evaluation Technology Research Association, Grande Building 8F, 2-26-9 Hatchobori, Chuo-ku, Tokyo 104-0032, Japan
| | - Tomomi Furihata
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 Japan
| | - Seiichi Ishida
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Science, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa, Japan.,Division of Applied Life Science, Graduate School of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto City, Kumamoto, Japan
| | - Kaoru Sato
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Science, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa, Japan
| |
Collapse
|