1
|
Alrawashdeh L, Kulaib BF, Assaf KI, El-Barghouthi MI, Bodoor K, Abuhasan OM, Abdoh AA. Cucurbit[7]uril complexes with gabapentin: Effect on lactamization. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
2
|
Li W, Zhou L, Tian B, Chen K, Feng Y, Wang T, Wang N, Huang X, Hao H. Polymorphism of Pradofloxacin: Crystal Structure Analysis, Stability Study, and Phase Transformation Behavior. Pharm Res 2023; 40:999-1012. [PMID: 37029294 DOI: 10.1007/s11095-023-03509-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/26/2023] [Indexed: 04/09/2023]
Abstract
PURPOSE Pradofloxacin is an important antibiotic with poor physical stability. At present, there is no systematic study on its polymorphic form. The purpose of this study is to develop new crystal forms to improve the stability of Pradofloxacin and systematically study the crystal transformation relationships to guide industrial production. METHOD In this work, three solvent-free forms (Form A, Form B and Form C), a new dimethyl sulfoxide solvate (Form PL-DMSO) and a new hydrate (Form PL-H) were successfully obtained and the single crystal data of Form A, Form B and Form PL-DMSO were solved for the first time. Various solid state analysis techniques and slurry experiments have been used to evaluate the stability and determine phase transformation relationships of five crystal forms, the analysis of crystal structure provided theoretical support for the results. RESULT The water vapor adsorption and desorption experiences of Forms A, B, C and Form PL-H were studied, and the results show that the new hydrate has good hygroscopic stability and certain development potential. The thermal stability of different forms was determined by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) and the crystal structure shows that there are more hydrogen bonds and C - H···π interactions in form B, which is the reason why Form B is more stable than form A. Finally, the phase transformation relationships of the five crystal forms were systematically studied and discussed. CONCLUSION These results are helpful to provide guiding methods in the production and storage of pradofloxacin.
Collapse
Affiliation(s)
- Wenlei Li
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Lina Zhou
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Beiqian Tian
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Kui Chen
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yaoguang Feng
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 30072, China
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 30072, China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 30072, China.
- Zhejiang Institute of Tianjin University, Ningbo, 315200, China.
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 30072, China.
- School of Chemical Engineering and Technology, Hainan University, Haikou, 570208, China.
| |
Collapse
|
3
|
Shi Q, Moinuddin SM, Wang Y, Ahsan F, Li F. Physical stability and dissolution behaviors of amorphous pharmaceutical solids: Role of surface and interface effects. Int J Pharm 2022; 625:122098. [PMID: 35961416 DOI: 10.1016/j.ijpharm.2022.122098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Amorphous pharmaceutical solids (APS) are single- or multi-component systems in which drugs exist in high-energy states with long-range disordered molecular packing. APSs have become one of the most effective and widely used pharmaceutical delivery approaches for poorly water-soluble drugs in the last several decades. Considerable efforts have been made to investigate the physical stability and dissolution behaviors of APSs, however, the underlying mechanisms remain imperfectly understood. Recent studies reveal that surface and interface properties of APSs could strongly affect the physical stability and dissolution behaviors. This paper provides a comprehensive overview of recent studies focusing on the physical stability and dissolution behaviors of APSs from both surface and interface perspectives. We highlight the role of surface or interface properties in nucleation, crystal growth, phase separation, dissolution, and supersaturation. Meanwhile, the challenges and scope of research on surface and interface properties in the future are also briefly discussed. This review contributes to a better understanding of the surface- and interface-facilitated processes, which will provide more efficient and rational guidance for the design of APSs.
Collapse
Affiliation(s)
- Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China.
| | - Sakib M Moinuddin
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, Elk Grove, CA 95757, USA; East Bay Institute For Research & Education (EBIRE), 10535 Hospital Way, Bldg. 650 2nd Floor, Rm. 2B121A, Mather, CA 95655, USA
| | - Yanan Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Fakhrul Ahsan
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, Elk Grove, CA 95757, USA; East Bay Institute For Research & Education (EBIRE), 10535 Hospital Way, Bldg. 650 2nd Floor, Rm. 2B121A, Mather, CA 95655, USA.
| | - Fang Li
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China.
| |
Collapse
|