1
|
Fernie AR, Liu F, Zhang Y. Post-genomic illumination of paclitaxel biosynthesis. NATURE PLANTS 2024; 10:1875-1885. [PMID: 39604636 DOI: 10.1038/s41477-024-01869-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Paclitaxel rapidly became one of the most effective anticancer drugs. However, the production of paclitaxel is hindered by substantial challenges, particularly considering the significant quantities of drug required and the inherently low concentration of paclitaxel and its intermediates in plants. Paclitaxel is currently produced in a so-called semi-synthesis in which baccatin III is extracted from Taxus species and chemically converted to paclitaxel. Despite the fact that many of the intermediates of paclitaxel biosynthesis are yet to be experimentally determined, a set of recent papers-facilitated by the sequencing and assembly of three Taxus genomes-has uncovered the minimal gene sets for both baccatin III and paclitaxel biosynthesis. Here we summarize the key milestones towards our understanding of paclitaxel biosynthesis and highlight recent advancements made possible by genome-level analysis of potential key genes involved. We argue that these studies will ultimately pave the way towards the elucidation of the entire paclitaxel biosynthetic pathway and facilitate the industrial production of paclitaxel via synthetic biology approaches. However, several major challenges lie ahead before we can fully tap into the amazing curative potential that taxanes provide.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | - Fang Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Youjun Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Zerbe P. Plants against cancer: towards green Taxol production through pathway discovery and metabolic engineering. ABIOTECH 2024; 5:394-402. [PMID: 39279861 PMCID: PMC11399496 DOI: 10.1007/s42994-024-00170-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/08/2024] [Indexed: 09/18/2024]
Abstract
The diversity of plant natural products presents a rich resource for accelerating drug discovery and addressing pressing human health issues. However, the challenges in accessing and cultivating source species, as well as metabolite structural complexity, and general low abundance present considerable hurdles in developing plant-derived therapeutics. Advances in high-throughput sequencing, genome assembly, gene synthesis, analytical technologies, and synthetic biology approaches, now enable us to efficiently identify and engineer enzymes and metabolic pathways for producing natural and new-to-nature therapeutics and drug candidates. This review highlights challenges and progress in plant natural product discovery and engineering by example of recent breakthroughs in identifying the missing enzymes involved in the biosynthesis of the anti-cancer agent Taxol®. These enzyme resources offer new avenues for the bio-manufacture and semi-synthesis of an old blockbuster drug.
Collapse
Affiliation(s)
- Philipp Zerbe
- Department of Plant Biology, University of California Davis, Davis, CA 95616 USA
| |
Collapse
|
3
|
Escrich A, Jonguitud-Borrego N, Malcı K, Sanchez-Muñoz R, Palazon J, Rios-Solis L, Moyano E. A novel step towards the heterologous biosynthesis of paclitaxel: Characterization of T1βOH taxane hydroxylase. Metab Eng 2024; 85:201-212. [PMID: 39197725 DOI: 10.1016/j.ymben.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/25/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
In the quest for innovative cancer therapeutics, paclitaxel remains a cornerstone in clinical oncology. However, its complex biosynthetic pathway, particularly the intricate oxygenation steps, has remained a puzzle in the decades following the characterization of the last taxane hydroxylase. The high divergence and promiscuity of enzymes involved have posed significant challenges. In this study, we adopted an innovative approach, combining in silico methods and functional gene analysis, to shed light on this elusive pathway. Our molecular docking investigations using a library of potential ligands uncovered TB574 as a potential missing enzyme in the paclitaxel biosynthetic pathway, demonstrating auspicious interactions. Complementary in vivo assays utilizing engineered S. cerevisiae strains as novel microbial cell factory consortia not only validated TB574's critical role in forging the elusive paclitaxel intermediate, T5αAc-1β,10β-diol, but also achieved the biosynthesis of paclitaxel precursors at an unprecedented yield including T5αAc-1β,10β-diol with approximately 40 mg/L. This achievement is highly promising, offering a new direction for further exploration of a novel metabolic engineering approaches using microbial consortia. In conclusion, our study not only furthers study the roles of previously uncharacterized enzymes in paclitaxel biosynthesis but also forges a path for pioneering advancements in the complete understanding of paclitaxel biosynthesis and its heterologous production. The characterization of T1βOH underscores a significant leap forward for future advancements in paclitaxel production using heterologous systems to improve cancer treatment and pharmaceutical production, thereby holding immense promise for enhancing the efficacy of cancer therapies and the efficiency of pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Ainoa Escrich
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nestor Jonguitud-Borrego
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - Koray Malcı
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - Raul Sanchez-Muñoz
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Javier Palazon
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom; Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, London, WC1E 6EB, United Kingdom.
| | - Elisabeth Moyano
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
4
|
Li C, Yin X, Wang S, Sui S, Liu J, Sun X, Di J, Chen R, Chen D, Han Y, Xie K, Dai J. A Cytochrome P450 Enzyme Catalyses Oxetane Ring Formation in Paclitaxel Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202407070. [PMID: 38712793 DOI: 10.1002/anie.202407070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/08/2024]
Abstract
Oxetane synthase (TmCYP1), a novel cytochrome P450 enzyme from Taxus×media cell cultures, has been functionally characterized to efficiently catalyse the formation of the oxetane ring in tetracyclic taxoids. Transient expression of TmCYP1 in Nicotiana benthamiana using 2α,5α,7β,9α,10β,13α-hexaacetoxytaxa-4(20),11(12)-diene (1) as a substrate led to the production of a major oxetane derivative, 1β-dehydroxybaccatin IV (1 a), and a minor 4β,20-epoxide derivative, baccatin I (1 b). However, feeding the substrate decinnamoyltaxinine J (2), a 5-deacetylated derivative of 1, yielded only 5α-deacetylbaccatin I (2 b), a 4β,20-epoxide. A possible reaction mechanism was proposed on the basis of substrate-feeding, 2H and 18O isotope labelling experiments, and density functional theory calculations. This reaction could be an intramolecular oxidation-acetoxyl rearrangement and the construction of the oxetane ring may occur through a concerted process; however, the 4β,20-epoxide might be a shunt product. In this process, the C5-O-acetyl group in substrate is crucial for the oxetane ring formation but not for the 4(20)-epoxy ring formation by TmCYP1. These findings provide a better understanding of the enzymatic formation of the oxetane ring in paclitaxel biosynthesis.
Collapse
Affiliation(s)
- Changkang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xinxin Yin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, 252000, Shandong, China
| | - Songyang Sui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jimei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xincheng Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jinming Di
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ridao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Dawei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yaotian Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kebo Xie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
5
|
Rezazadeh H, Ghanati F, Bonfill M, Nasibi F, Tabarsa M. Optimization of the fermentation media, mathematical modeling, and enhancement of paclitaxel production by Alternaria alternata after elicitation with pectin. Sci Rep 2024; 14:12980. [PMID: 38839906 PMCID: PMC11153502 DOI: 10.1038/s41598-024-63681-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024] Open
Abstract
Alternaria alternata fungus is a potent paclitaxel producer isolated from Corylus avellana. The major challenge is the lack of optimized media for endophytic fungi productivity. In the effort to maximize the production of taxoids by A. alternata, several fermentation conditions, including pH (pH 4.0-7.0), different types and concentrations of carbon (fructose, glucose, sucrose, mannitol, sorbitol, and malt extract), and nitrogen (urea, ammonium nitrate, potassium nitrate, ammonium phosphate, and ammonium sulfate) were applied step by step. Based on the results, A. alternata in a medium containing sucrose 5% (w/v) and ammonium phosphate 2.5 mM at pH 6.0 showed a rapid and sustainable growth rate, the highest paclitaxel yield (94.8 µg gFW-1 vs 2.8 µg gFW-1 in controls), and the maximum content of amino acids. Additionally, the effect of pectin was evaluated on fungus, and mycelia harvested. Pectin significantly enhanced the growth and taxoid yield on day 21 (respectively 171% and 116% of their corresponding on day 7). The results were checked out by mathematical modeling as well. Accordingly, these findings suggest a low-cost, eco-friendly, and easy-to-produce approach with excellent biotechnological potential for the industrial manufacture of taxoids.
Collapse
Affiliation(s)
- Hamzeh Rezazadeh
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University (TMU), POB 14115-154, Tehran, Iran
| | - Faezeh Ghanati
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University (TMU), POB 14115-154, Tehran, Iran.
| | - Mercedes Bonfill
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Fatemeh Nasibi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Tabarsa
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Iran
| |
Collapse
|
6
|
Sun MS, Jia Y, Chen XY, Chen JS, Guo Y, Fu FF, Xue LJ. Regulatory microRNAs and phasiRNAs of paclitaxel biosynthesis in Taxus chinensis. FRONTIERS IN PLANT SCIENCE 2024; 15:1403060. [PMID: 38779066 PMCID: PMC11109412 DOI: 10.3389/fpls.2024.1403060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Paclitaxel (trade name Taxol) is a rare diterpenoid with anticancer activity isolated from Taxus. At present, paclitaxel is mainly produced by the semi-synthetic method using extract of Taxus tissues as raw materials. The studies of regulatory mechanisms in paclitaxel biosynthesis would promote the production of paclitaxel through tissue/cell culture approaches. Here, we systematically identified 990 transcription factors (TFs), 460 microRNAs (miRNAs), and 160 phased small interfering RNAs (phasiRNAs) in Taxus chinensis to explore their interactions and potential roles in regulation of paclitaxel synthesis. The expression levels of enzyme genes in cone and root were higher than those in leaf and bark. Nearly all enzyme genes in the paclitaxel synthesis pathway were significantly up-regulated after jasmonate treatment, except for GGPPS and CoA Ligase. The expression level of enzyme genes located in the latter steps of the synthesis pathway was significantly higher in female barks than in male. Regulatory TFs were inferred through co-expression network analysis, resulting in the identification of TFs from diverse families including MYB and AP2. Genes with ADP binding and copper ion binding functions were overrepresented in targets of miRNA genes. The miRNA targets were mainly enriched with genes in plant hormone signal transduction, mRNA surveillance pathway, cell cycle and DNA replication. Genes in oxidoreductase activity, protein-disulfide reductase activity were enriched in targets of phasiRNAs. Regulatory networks were further constructed including components of enzyme genes, TFs, miRNAs, and phasiRNAs. The hierarchical regulation of paclitaxel production by miRNAs and phasiRNAs indicates a robust regulation at post-transcriptional level. Our study on transcriptional and posttranscriptional regulation of paclitaxel synthesis provides clues for enhancing paclitaxel production using synthetic biology technology.
Collapse
Affiliation(s)
| | | | | | | | | | - Fang-Fang Fu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Nanjing Forestry University, Nanjing, China
| | - Liang-Jiao Xue
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
7
|
Liu JCT, De La Peña R, Tocol C, Sattely ES. Reconstitution of early paclitaxel biosynthetic network. Nat Commun 2024; 15:1419. [PMID: 38360800 PMCID: PMC10869802 DOI: 10.1038/s41467-024-45574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024] Open
Abstract
Paclitaxel is an anticancer therapeutic produced by the yew tree. Over the last two decades, a significant bottleneck in the reconstitution of early paclitaxel biosynthesis has been the propensity of heterologously expressed pathway cytochromes P450, including taxadiene 5α-hydroxylase (T5αH), to form multiple products. Here, we structurally characterize four new products of T5αH, many of which appear to be over-oxidation of the primary mono-oxidized products. By tuning the promoter strength for T5αH expression in Nicotiana plants, we observe decreased levels of these proposed byproducts with a concomitant increase in the accumulation of taxadien-5α-ol, the paclitaxel precursor, by three-fold. This enables the reconstitution of a six step biosynthetic pathway, which we further show may function as a metabolic network. Our result demonstrates that six previously characterized Taxus genes can coordinatively produce key paclitaxel intermediates and serves as a crucial platform for the discovery of the remaining biosynthetic genes.
Collapse
Affiliation(s)
| | - Ricardo De La Peña
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Christian Tocol
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Elizabeth S Sattely
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Chun-Ting Liu J, De La Pena R, Tocol C, Sattely ES. Reconstitution of Early Paclitaxel Biosynthetic Network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559859. [PMID: 37808792 PMCID: PMC10557666 DOI: 10.1101/2023.09.27.559859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Paclitaxel is an anticancer therapeutic produced by the yew tree. Over the last two decades, a significant bottleneck in the reconstitution of early paclitaxel biosynthesis has been the propensity of heterologously expressed pathway cytochromes P450, including taxadiene 5α-hydroxylase (T5αH), to form multiple products. This diverts metabolic flux away from the paclitaxel precursor, taxadien-5α-ol, thus previous attempts of reconstitution have not yielded sufficient material for characterization, regardless of the heterologous host. Here, we structurally characterized four new products of T5αH, many of which appear to be over-oxidation of the primary mono-oxidized products. By tuning the promoter strength for T5αH expression, levels of these proposed byproducts decrease with a concomitant increase in the accumulation of taxadien-5α-ol by four-fold. This engineered system enabled the reconstitution of a six step biosynthetic pathway to produce isolatable 5α,10β-diacetoxy-taxadien-13α-ol. Furthermore, we showed that this pathway may function as a metabolic network rather than a linear pathway. The engineering of the paclitaxel biosynthetic network demonstrates that Taxus genes can coordinatively function for the biosynthetic production of key early stage paclitaxel intermediates and serves as a crucial platform for the discovery of the remaining biosynthetic genes.
Collapse
Affiliation(s)
- Jack Chun-Ting Liu
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ricardo De La Pena
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Christian Tocol
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Elizabeth S Sattely
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
9
|
Zhan X, Qiu T, Zhang H, Hou K, Liang X, Chen C, Wang Z, Wu Q, Wang X, Li XL, Wang M, Feng S, Zeng H, Yu C, Wang H, Shen C. Mass spectrometry imaging and single-cell transcriptional profiling reveal the tissue-specific regulation of bioactive ingredient biosynthesis in Taxus leaves. PLANT COMMUNICATIONS 2023; 4:100630. [PMID: 37231648 PMCID: PMC10504593 DOI: 10.1016/j.xplc.2023.100630] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/31/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Taxus leaves provide the raw industrial materials for taxol, a natural antineoplastic drug widely used in the treatment of various cancers. However, the precise distribution, biosynthesis, and transcriptional regulation of taxoids and other active components in Taxus leaves remain unknown. Matrix-assisted laser desorption/ionization-mass spectrometry imaging analysis was used to visualize various secondary metabolites in leaf sections of Taxus mairei, confirming the tissue-specific accumulation of different active metabolites. Single-cell sequencing was used to produce expression profiles of 8846 cells, with a median of 2352 genes per cell. Based on a series of cluster-specific markers, cells were grouped into 15 clusters, suggesting a high degree of cell heterogeneity in T. mairei leaves. Our data were used to create the first Taxus leaf metabolic single-cell atlas and to reveal spatial and temporal expression patterns of several secondary metabolic pathways. According to the cell-type annotation, most taxol biosynthesis genes are expressed mainly in leaf mesophyll cells; phenolic acid and flavonoid biosynthesis genes are highly expressed in leaf epidermal cells (including the stomatal complex and guard cells); and terpenoid and steroid biosynthesis genes are expressed specifically in leaf mesophyll cells. A number of novel and cell-specific transcription factors involved in secondary metabolite biosynthesis were identified, including MYB17, WRKY12, WRKY31, ERF13, GT_2, and bHLH46. Our research establishes the transcriptional landscape of major cell types in T. mairei leaves at a single-cell resolution and provides valuable resources for studying the basic principles of cell-type-specific regulation of secondary metabolism.
Collapse
Affiliation(s)
- Xiaori Zhan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Tian Qiu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Hongshan Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China; Kharkiv Institute, Hangzhou Normal University, Hangzhou 311121, China
| | - Kailin Hou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Xueshuang Liang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Cheng Chen
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhijing Wang
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Qicong Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaojia Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiao-Lin Li
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mingshuang Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Shangguo Feng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Kharkiv Institute, Hangzhou Normal University, Hangzhou 311121, China
| | - Chunna Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China.
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China; Kharkiv Institute, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
10
|
Yu C, Hou K, Zhang H, Liang X, Chen C, Wang Z, Wu Q, Chen G, He J, Bai E, Li X, Du T, Wang Y, Wang M, Feng S, Wang H, Shen C. Integrated mass spectrometry imaging and single-cell transcriptome atlas strategies provide novel insights into taxoid biosynthesis and transport in Taxus mairei stems. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1243-1260. [PMID: 37219365 DOI: 10.1111/tpj.16315] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/30/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
Taxol, which is a widely used important chemotherapeutic agent, was originally isolated from Taxus stem barks. However, little is known about the precise distribution of taxoids and the transcriptional regulation of taxoid biosynthesis across Taxus stems. Here, we used MALDI-IMS analysis to visualize the taxoid distribution across Taxus mairei stems and single-cell RNA sequencing to generate expression profiles. A single-cell T. mairei stem atlas was created, providing a spatial distribution pattern of Taxus stem cells. Cells were reordered using a main developmental pseudotime trajectory which provided temporal distribution patterns in Taxus stem cells. Most known taxol biosynthesis-related genes were primarily expressed in epidermal, endodermal, and xylem parenchyma cells, which caused an uneven taxoid distribution across T. mairei stems. We developed a single-cell strategy to screen novel transcription factors (TFs) involved in taxol biosynthesis regulation. Several TF genes, such as endodermal cell-specific MYB47 and xylem parenchyma cell-specific NAC2 and bHLH68, were implicated as potential regulators of taxol biosynthesis. Furthermore, an ATP-binding cassette family transporter gene, ABCG2, was proposed as a potential taxoid transporter candidate. In summary, we generated a single-cell Taxus stem metabolic atlas and identified molecular mechanisms underpinning the cell-specific transcriptional regulation of the taxol biosynthesis pathway.
Collapse
Affiliation(s)
- Chunna Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Kailin Hou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Hongshan Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
- Kharkiv Institute, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xueshuang Liang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Cheng Chen
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhijing Wang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qicong Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ganlin Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jiaxu He
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Enhui Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xinfen Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Tingrui Du
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yifan Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Mingshuang Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shangguo Feng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
- Kharkiv Institute, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
11
|
Habib MA, Islam MM, Islam MM, Hasan MM, Baek KH. Current Status and De Novo Synthesis of Anti-Tumor Alkaloids in Nicotiana. Metabolites 2023; 13:metabo13050623. [PMID: 37233664 DOI: 10.3390/metabo13050623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Alkaloids are the most diversified nitrogen-containing secondary metabolites, having antioxidant and antimicrobial properties, and are extensively used in pharmaceuticals to treat different types of cancer. Nicotiana serves as a reservoir of anti-cancer alkaloids and is also used as a model plant for the de novo synthesis of various anti-cancer molecules through genetic engineering. Up to 4% of the total dry weight of Nicotiana was found to be composed of alkaloids, where nicotine, nornicotine, anatabine, and anabasine are reported as the dominant alkaloids. Additionally, among the alkaloids present in Nicotiana, β-carboline (Harmane and Norharmane) and Kynurenines are found to show anti-tumor effects, especially in the cases of colon and breast cancers. Creating new or shunting of existing biosynthesis pathways in different species of Nicotiana resulted in de novo or increased synthesis of different anti-tumor molecules or their derivatives or precursors including Taxadiane (~22.5 µg/g), Artemisinin (~120 μg/g), Parthenolide (~2.05 ng/g), Costunolide (~60 ng/g), Etoposide (~1 mg/g), Crocin (~400 µg/g), Catharanthine (~60 ng/g), Tabersonine (~10 ng/g), Strictosidine (~0.23 mg/g), etc. Enriching the precursor pool, especially Dimethylallyl Diphosphate (DMAPP), down-regulating other bi-product pathways, compartmentalization or metabolic shunting, or organelle-specific reconstitution of the precursor pool, might trigger the enhanced accumulation of the targeted anti-cancer alkaloid in Nicotiana.
Collapse
Affiliation(s)
- Md Ahsan Habib
- Department of Plant Pathology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md Mobinul Islam
- Department of Plant Pathology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md Mukul Islam
- Department of Plant Pathology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md Mohidul Hasan
- Department of Plant Pathology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
12
|
Mohamed NZ, Shaban L, Safan S, El-Sayed ASA. Physiological and metabolic traits of Taxol biosynthesis of endophytic fungi inhabiting plants: Plant-microbial crosstalk, and epigenetic regulators. Microbiol Res 2023; 272:127385. [PMID: 37141853 DOI: 10.1016/j.micres.2023.127385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 05/06/2023]
Abstract
Attenuating the Taxol productivity of fungi with the subculturing and storage under axenic conditions is the challenge that halts the feasibility of fungi to be an industrial platform for Taxol production. This successive weakening of Taxol productivity by fungi could be attributed to the epigenetic down-regulation and molecular silencing of most of the gene clusters encoding Taxol biosynthetic enzymes. Thus, exploring the epigenetic regulating mechanisms controlling the molecular machinery of Taxol biosynthesis could be an alternative prospective technology to conquer the lower accessibility of Taxol by the potent fungi. The current review focuses on discussing the different molecular approaches, epigenetic regulators, transcriptional factors, metabolic manipulators, microbial communications and microbial cross-talking approaches on restoring and enhancing the Taxol biosynthetic potency of fungi to be industrial platform for Taxol production.
Collapse
Affiliation(s)
- Nabil Z Mohamed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Lamis Shaban
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Samia Safan
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
13
|
Drugs That Changed Society: Microtubule-Targeting Agents Belonging to Taxanoids, Macrolides and Non-Ribosomal Peptides. Molecules 2022; 27:molecules27175648. [PMID: 36080414 PMCID: PMC9457747 DOI: 10.3390/molecules27175648] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 02/05/2023] Open
Abstract
During a screening performed by the National Cancer Institute in the 1960s, the terpenoid paclitaxel was discovered. Paclitaxel expanded the treatment options for breast, lung, prostate and ovarian cancer. Paclitaxel is only present in minute amounts in the bark of Taxia brevifolia. A sustainable supply was ensured with a culture developed from Taxus chinensis, or with semi-synthesis from other taxanes. Paclitaxel is marketed under the name Taxol. An intermediate from the semi-synthesis docetaxel is also used as a drug and marketed as Taxotere. O-Methylated docetaxel is used for treatment of some paclitaxel-resistant cancer forms as cabazitaxel. The solubility problems of paclitaxel have been overcome by formulation of a nanoparticle albumin-bound paclitaxel (NAB-paclitaxel, Abraxane). The mechanism of action is affinity towards microtubules, which prevents proliferation and consequently the drug would be expected primarily to be active towards cancer cells proliferating faster than benign cells. The activity against slowly growing tumors such as solid tumors suggests that other effects such as oncogenic signaling or cellular trafficking are involved. In addition to terpenoids, recently discovered microtubule-targeting polyketide macrolides and non-ribosomal peptides have been discovered and marketed as drugs. The revolutionary improvements for treatment of cancer diseases targeting microtubules have led to an intensive search for other compounds with the same target. Several polyketide macrolides, terpenoids and non-ribosomal peptides have been investigated and a few marketed.
Collapse
|
14
|
Perez-Matas E, Hanano A, Moyano E, Bonfill M, Cusido RM, Palazon J. Insights into the control of taxane metabolism: Molecular, cellular, and metabolic changes induced by elicitation in Taxus baccata cell suspensions. FRONTIERS IN PLANT SCIENCE 2022; 13:942433. [PMID: 35968149 PMCID: PMC9372332 DOI: 10.3389/fpls.2022.942433] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
More knowledge is needed about the molecular/cellular control of paclitaxel (PTX) production in Taxus spp. cell cultures. In this study, the yield of this anticancer agent in Taxus baccata cell suspensions was improved 11-fold after elicitation with coronatine (COR) compared to the untreated cells, and 18-fold when co-supplemented with methyl-β-cyclodextrins (β-CDs). In the dual treatment, the release of taxanes from the producer cells was greatly enhanced, with 81.6% of the total taxane content being found in the medium at the end of the experiment. The experimental conditions that caused the highest PTX production also induced its maximum excretion, and increased the expression of taxane biosynthetic genes, especially the flux-limiting BAPT and DBTNBT. The application of COR, which activates PTX biosynthesis, together with β - CDs, which form inclusion complexes with PTX and related taxanes, is evidently an efficient strategy for enhancing PTX production and release to the culture medium. Due to the recently described role of lipid droplets (LDs) in the trafficking and accumulation of hydrophobic taxanes in Taxus spp. cell cultures, the structure, number and taxane storage capacity of these organelles was also studied. In elicited cultures, the number of LDs increased and they mainly accumulated taxanes with a side chain, especially PTX. Thus, PTX constituted up to 50-70% of the total taxanes found in LDs throughout the experiment in the COR + β - CD-treated cultures. These results confirm that LDs can store taxanes and distribute them inside and outside cells.
Collapse
Affiliation(s)
- Edgar Perez-Matas
- Secció de Fisiologia Vegetal, Facultat de Farmacia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria
| | - Elisabeth Moyano
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mercedes Bonfill
- Secció de Fisiologia Vegetal, Facultat de Farmacia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Rosa M. Cusido
- Secció de Fisiologia Vegetal, Facultat de Farmacia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Javier Palazon
- Secció de Fisiologia Vegetal, Facultat de Farmacia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
Santoyo-Garcia JH, Walls LE, Nowrouzi B, Galindo-Rodriguez GR, Ochoa-Villarreal M, Loake GJ, Dimartino S, Rios-Solis L. In situ solid-liquid extraction enhances recovery of taxadiene from engineered Saccharomyces cerevisiae cell factories. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Kapelemera AM, Uang YS, Wang LH, Wu TY, Lee FY, Tai L, Wang CC, Lee CJ. Pharmacokinetic Herb-Drug Interactions of Xiang-Sha-Liu-Jun-Zi-Tang and Paclitaxel in Male Sprague Dawley Rats and Its Influence on Enzyme Kinetics in Human Liver Microsomes. Front Pharmacol 2022; 13:858007. [PMID: 35450043 PMCID: PMC9016196 DOI: 10.3389/fphar.2022.858007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Paclitaxel is a prescribed anticancer drug used to treat various cancers. It is a substrate of cytochrome P-450 (CYP-450) enzymes. Despite its efficacy, paclitaxel has severe side effects. Herbal medicines are commonly used to treat the side effects of chemotherapy. They can be administered before, during, and after chemotherapy. Xiang-Sha-Liu-Jun-Zi Tang (XSLJZT) is a herbal formula commonly used in breast cancer patients. The main purpose of this study was to assess the pharmacokinetic (PK) influence of XSLJZT on paclitaxel PK parameters, determine its effect on CYP-450 enzyme expression, and evaluate its effect on enzyme activity. Sprague Dawley rats were classified into pretreatment and co-treatment groups, where XSLJZT was pre-administered for 3, 5, and 7 days and co-administered 2 h before paclitaxel administration. The rat liver tissues and Hep-G2 cells were used to determine the effects of XSLJZT on CYP3A1/2 and CYP3A4 enzymes respectively. Western blot analysis was used to detect changes in the CYP3A1/2 and CYP3A4 enzymes expression. The influence of XSLJZT on enzyme activity was evaluated using human liver microsomes, and a liquid chromatography-tandem mass spectrometric system was developed to monitor paclitaxel levels in rat plasma. Results demonstrated that XSLJZT increased the area under the concentration versus time curve (AUC) for paclitaxel in pretreatment groups by 2-, 3-, and 4-fold after 3, 5, and 7 days, respectively. In contrast, no significant change in the AUC was observed in the co-treatment group. However, the half-life was prolonged in all groups from 17.11 min to a maximum of 37.56 min. XSLJZT inhibited CYP3A1/2 expression in the rat liver tissues and CYP3A4 enzymes in Hep-G2 cells in a time-dependent manner, with the highest inhibition observed after 7 days of pretreatment in rat liver tissues. In the enzyme kinetics study, XSLJZT inhibited enzyme activity in a competitive dose-dependent manner. In conclusion, there is a potential interaction between XSLJZT and paclitaxel at different co-treatment and pretreatment time points.
Collapse
Affiliation(s)
- Alinafe Magret Kapelemera
- PhD Program in Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yow-Shieng Uang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan.,Rosetta Pharmamate Co., Ltd, New Taipei City, Taiwan
| | - Li-Hsuan Wang
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Tien-Yuan Wu
- Department of Pharmacology, School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Fang-Yu Lee
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Li Tai
- Rosetta Pharmamate Co., Ltd, New Taipei City, Taiwan
| | - Ching-Chiung Wang
- PhD Program in Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan.,School of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chia-Jung Lee
- PhD Program in Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan.,Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
17
|
Liu Z, Huang J, Gu Y, Clark DS, Mukhopadhyay A, Keasling JD, Hartwig JF. Assembly and Evolution of Artificial Metalloenzymes within E. coli Nissle 1917 for Enantioselective and Site-Selective Functionalization of C─H and C═C Bonds. J Am Chem Soc 2022; 144:883-890. [PMID: 34985270 PMCID: PMC11620735 DOI: 10.1021/jacs.1c10975] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The potential applications afforded by the generation and reactivity of artificial metalloenzymes (ArMs) in microorganisms are vast. We show that a non-pathogenic E. coli strain, Nissle 1917 (EcN), is a suitable host for the creation of ArMs from cytochrome P450s and artificial heme cofactors. An outer-membrane receptor in EcN transports an iridium porphyrin into the cell, and the Ir-CYP119 (CYP119 containing iridium porphyrin) assembled in vivo catalyzes carbene insertions into benzylic C-H bonds enantioselectively and site-selectively. The application of EcN as a whole-cell screening platform eliminates the need for laborious processing procedures, drastically increases the ease and throughput of screening, and accelerates the development of Ir-CYP119 with improved catalytic properties. Studies to identify the transport machinery suggest that a transporter different from the previously assumed ChuA receptor serves to usher the iridium porphyrin into the cytoplasm.
Collapse
Affiliation(s)
- Zhennan Liu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jing Huang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
| | - Yang Gu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Douglas S Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Aindrila Mukhopadhyay
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jay D Keasling
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Synthetic Biochemistry Center, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen 518055, China
- Center for Biosustainability, Danish Technical University, Lyngby 2800 Kgs, Denmark
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
18
|
Cao X, Xu L, Wang J, Dong M, Xu C, Kai G, Wan W, Jiang J. Endophytic fungus Pseudodidymocyrtis lobariellae KL27 promotes taxol biosynthesis and accumulation in Taxus chinensis. BMC PLANT BIOLOGY 2022; 22:12. [PMID: 34979929 PMCID: PMC8722197 DOI: 10.1186/s12870-021-03396-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/04/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Taxol from Taxus species is a precious drug used for the treatment of cancer and can effectively inhibit the proliferation of cancer cells. However, the growth of Taxus plants is very slow and the content of taxol is quite low. Therefore, it is of great significance to improve the yield of taxol by modern biotechnology without destroying the wild forest resources. Endophytic fungus which symbiosis with their host plants can promote the growth and secondary metabolism of medicinal plants. RESULTS Here, an endophytic fungus KL27 was isolated from T. chinensis, and identified as Pseudodidymocyrtis lobariellae. The fermentation broth of KL27 (KL27-FB) could significantly promote the accumulation of taxol in needles of T. chinensis, reaching 0.361 ± 0.082 mg/g·DW (dry weight) at 7 days after KL27-FB treatment, which is 3.26-fold increase as compared to the control. The RNA-seq and qRT-PCR showed that KL27-FB could significantly increase the expression of key genes involved in the upstream pathway of terpene synthesis (such as DXS and DXR) and those in the taxol biosynthesis pathway (such as GGPPS, TS, T5OH, TAT, T10OH, T14OH, T2OH, TBT, DBAT and PAM), especially at the early stage of the stimulation. Moreover, the activation of jasmonic acid (JA) biosynthesis and JA signal transduction, and its crosstalk with other hormones, such as gibberellin acid (GA), ethylene (ET) and salicylic acid (SA), explained the elevation of most of the differential expressed genes related to taxol biosynthesis pathway. Moreover, TF (transcriptional factor)-encoding genes, including MYBs, ethylene-responsive transcription factors (ERFs) and basic/helix-loop-helix (bHLH), were detected as differential expressed genes after KL27-FB treatment, further suggested that the regulation of hormone signaling on genes of taxol biosynthesis was mediated by TFs. CONCLUSIONS Our results indicated that fermentation broth of endophytic fungus KL27-FB could effectively enhance the accumulation of taxol in T. chinensis needles by regulating the phytohormone metabolism and signal transduction and further up-regulating the expression of multiple key genes involved in taxol biosynthesis. This study provides new insight into the regulatory mechanism of how endophytic fungus promotes the production and accumulation of taxol in Taxus sp.
Collapse
Affiliation(s)
- Xiaoying Cao
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Lingxia Xu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Jingyi Wang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Mengmeng Dong
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Chunyan Xu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Wen Wan
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, People's Republic of China.
| | - Jihong Jiang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, People's Republic of China.
| |
Collapse
|
19
|
Yu C, Huang J, Wu Q, Zhang C, Li XL, Xu X, Feng S, Zhan X, Chen Z, Wang H, Shen C. Role of female-predominant MYB39-bHLH13 complex in sexually dimorphic accumulation of taxol in Taxus media. HORTICULTURE RESEARCH 2022; 9:uhac062. [PMID: 35769613 PMCID: PMC9233167 DOI: 10.1093/hr/uhac062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 02/28/2022] [Indexed: 05/19/2023]
Abstract
Taxus trees are major natural sources for the extraction of taxol, an anti-cancer agent used worldwide. Taxus media is a dioecious woody tree with high taxol yield. However, the sexually dimorphic accumulation of taxoids in T. media is largely unknown. Our study revealed high accumulation of taxoids in female T. media trees using a UPLC-MS/MS method. Thereafter, many differential metabolites and genes between female and male T. media trees were identified using metabolomic and transcriptomic analyses, respectively. Most of the taxol-related genes were predominantly expressed in female trees. A female-specific R2R3-MYB transcription factor gene, TmMYB39, was identified. Furthermore, bimolecular fluorescence complementation and yeast two-hybrid assays suggested the potential interaction between TmMYB39 and TmbHLH13. Several taxol biosynthesis-related promoter sequences were isolated and used for the screening of MYB recognition elements. The electrophoretic mobility shift assay indicated that TmMYB39 could bind to the promoters of the GGPPS, T10OH, T13OH, and TBT genes. Interaction between TmMYB39 and TmbHLH13 transactivated the expression of the GGPPS and T10OH genes. TmMYB39 might function in the transcriptional regulation of taxol biosynthesis through an MYB-bHLH module. Our results give a potential explanation for the sexually dimorphic biosynthesis of taxol in T. media.
Collapse
Affiliation(s)
- Chunna Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Jiefang Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Qicong Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Chengchao Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Xiao-lin Li
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xinyun Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Shangguo Feng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Xiaori Zhan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Zhehao Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | | | | |
Collapse
|
20
|
Escrich A, Almagro L, Moyano E, Cusido RM, Bonfill M, Hosseini B, Palazon J. Improved biotechnological production of paclitaxel in Taxus media cell cultures by the combined action of coronatine and calix[8]arenes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:68-75. [PMID: 33819716 DOI: 10.1016/j.plaphy.2021.03.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Paclitaxel (PTX), a widely used anticancer agent, is found in the inner bark of several Taxus species, although at such low levels that its extraction is ecologically unsustainable. Biotechnological platforms based on Taxus sp. cell cultures offer an eco-friendlier approach to PTX production, with yields that can be improved by elicitation. However, the also limited excretion of target compounds from the producer cells to the medium hampers their extraction and purification. In this context, we studied the effect of treating T. media cell cultures with the elicitor coronatine (COR) and calix[8]arenes (CAL), nanoparticles that can host lipophilic compounds within their macrocyclic scaffold. The highest taxane production (103.5 mg.L-1), achieved after treatment with COR (1 μM) and CAL (10 mg.L-1), was 15-fold greater than in the control, and PTX represented 82% of the total taxanes analyzed. Expression levels of the flux-limiting PTX biosynthetic genes, BAPT and DBTNBT, increased after the addition of COR, confirming its elicitor action, but not CAL. The CAL treatment significantly enhanced taxane excretion, especially when production levels were increased by COR; 98% of the total taxanes were found in the culture medium after COR + CAL treatment. By forming complexes with PTX, the nanoparticles facilitated its excretion to the medium, and by protecting cells from PTX toxicity, its intra-and extra-cellular degradation may have been avoided. The addition of COR and CAL to T. media cell cultures is therefore a bio-sustainable and economically viable system to improve the yield of this important anticancer compound.
Collapse
Affiliation(s)
- Ainoa Escrich
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Lorena Almagro
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, Murcia, Spain.
| | - Elisabeth Moyano
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Rosa M Cusido
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain.
| | - Mercedes Bonfill
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain.
| | - Bahman Hosseini
- Department of Horticulture, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Javier Palazon
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
21
|
Yu C, Zhang C, Xu X, Huang J, Chen Y, Luo X, Wang H, Shen C. Omic analysis of the endangered Taxaceae species Pseudotaxus chienii revealed the differences in taxol biosynthesis pathway between Pseudotaxus and Taxus yunnanensis trees. BMC PLANT BIOLOGY 2021; 21:104. [PMID: 33622251 PMCID: PMC7903646 DOI: 10.1186/s12870-021-02883-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/09/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Taxol is an efficient anticancer drug accumulated in Taxus species. Pseudotaxus chienii is an important member of Taxaceae, however, the level of six taxoids in P. chienii is largely unknown. RESULTS High accumulation of 10-DAB, taxol, and 7-E-PTX suggested that P. chienii is a good taxol-yielding species for large-scale cultivation. By the omics approaches, a total of 3,387 metabolites and 61,146 unigenes were detected and annotated. Compared with a representative Taxus tree (Taxus yunnanensis), most of the differentially accumulated metabolites and differential expressed genes were assigned into 10 primary and secondary metabolism pathways. Comparative analyses revealed the variations in the precursors and intermediate products of taxol biosynthesis between P. chienii and T. yunnanensis. Taxusin-like metabolites highly accumulated in P. chienii, suggesting a wider value of P. chienii in pharmaceutical industry. CONCLUSIONS In our study, the occurrence of taxoids in P. chienii was determined. The differential expression of key genes involved in the taxol biosynthesis pathway is the major cause of the differential accumulation of taxoids. Moreover, identification of a number of differentially expressed transcription factors provided more candidate regulators of taxol biosynthesis. Our study may help to reveal the differences between Pseudotaxus and Taxus trees, and promote resource utilization of the endangered and rarely studied P. chienii.
Collapse
Affiliation(s)
- Chunna Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Chengchao Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Xinyun Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Jiefang Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Yueyue Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Xiujun Luo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| |
Collapse
|
22
|
Mutanda I, Li J, Xu F, Wang Y. Recent Advances in Metabolic Engineering, Protein Engineering, and Transcriptome-Guided Insights Toward Synthetic Production of Taxol. Front Bioeng Biotechnol 2021; 9:632269. [PMID: 33614616 PMCID: PMC7892896 DOI: 10.3389/fbioe.2021.632269] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/11/2021] [Indexed: 01/02/2023] Open
Abstract
The diterpenoid paclitaxel (Taxol®) is a blockbuster anticancer agent that was originally isolated from the Pacific yew (Taxus brevifolia) five decades ago. Despite the wealth of information gained over the years on Taxol research, there still remains supply issues to meet increasing clinical demand. Although alternative Taxol production methods have been developed, they still face several drawbacks that cause supply shortages and high production costs. It is highly desired to develop biotechnological production platforms for Taxol, however, there are still gaps in our understanding of the biosynthetic pathway, catalytic enzymes, regulatory and control mechanisms that hamper production of this critical drug by synthetic biology approaches. Over the past 5 years, significant advances were made in metabolic engineering and optimization of the Taxol pathway in different hosts, leading to accumulation of taxane intermediates. Computational and experimental approaches were leveraged to gain mechanistic insights into the catalytic cycle of pathway enzymes and guide rational protein engineering efforts to improve catalytic fitness and substrate/product specificity, especially of the cytochrome P450s (CYP450s). Notable breakthroughs were also realized in engineering the pathway in plant hosts that are more promising in addressing the challenging CYP450 chemistry. Here, we review these recent advances and in addition, we summarize recent transcriptomic data sets of Taxus species and elicited culture cells, and give a bird's-eye view of the information that can be gleaned from these publicly available resources. Recent mining of transcriptome data sets led to discovery of two putative pathway enzymes, provided many lead candidates for the missing steps and provided new insights on the regulatory mechanisms governing Taxol biosynthesis. All these inferences are relevant to future biotechnological production of Taxol.
Collapse
Affiliation(s)
- Ishmael Mutanda
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jianhua Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Fanglin Xu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, He’nan University, Kaifeng, China
| | - Yong Wang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
23
|
A Compressive Review about Taxol ®: History and Future Challenges. Molecules 2020; 25:molecules25245986. [PMID: 33348838 PMCID: PMC7767101 DOI: 10.3390/molecules25245986] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Taxol®, which is also known as paclitaxel, is a chemotherapeutic agent widely used to treat different cancers. Since the discovery of its antitumoral activity, Taxol® has been used to treat over one million patients, making it one of the most widely employed antitumoral drugs. Taxol® was the first microtubule targeting agent described in the literature, with its main mechanism of action consisting of the disruption of microtubule dynamics, thus inducing mitotic arrest and cell death. However, secondary mechanisms for achieving apoptosis have also been demonstrated. Despite its wide use, Taxol® has certain disadvantages. The main challenges facing Taxol® are the need to find an environmentally sustainable production method based on the use of microorganisms, increase its bioavailability without exerting adverse effects on the health of patients and minimize the resistance presented by a high percentage of cells treated with paclitaxel. This review details, in a succinct manner, the main aspects of this important drug, from its discovery to the present day. We highlight the main challenges that must be faced in the coming years, in order to increase the effectiveness of Taxol® as an anticancer agent.
Collapse
|
24
|
Abdel-Salam EM, Faisal M, Alatar AA, Qahtan AA, Alam P. Genome-wide transcriptome variation landscape in Ruta chalepensis organs revealed potential genes responsible for rutin biosynthesis. J Biotechnol 2020; 325:43-56. [PMID: 33271156 DOI: 10.1016/j.jbiotec.2020.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/15/2020] [Accepted: 11/28/2020] [Indexed: 12/17/2022]
Abstract
Ruta chalepensis L., most commonly known as 'fringed rue,' is an excellent and valuable bioactive plant that produces a range of complex flavonoids, of which rutin is the major compound present in this plant of great pharmaceutical and medicinal significance. The present study is a pioneering attempt to examine the changes in the transcriptomic landscape of leaf, stem, and root tissues and correlate this with rutin quantity in each tissue in order to identify the candidate genes responsible for rutin biosynthesis and to increase genomic resources in fringed rue. Comparative transcriptome sequencing of leaves, stems and roots were performed using the NovaSeq 6000 platform. The de novo transcriptome assembly generated 254,685 transcripts representing 154,018 genes with GC content of 42.60 % and N50 of 2280 bp. Searching assembled transcripts against UniRef90 and SwissProt databases annotated 79.7 % of them as protein coding. The leaf tissues had the highest rutin content followed by stems and roots. Several differentially expressed genes and transcripts relating to rutin biosynthesis were identified in leaves comparing with roots or stems comparing with roots. All the genes known to be involved in rutin biosynthesis showed up-regulation in leaves as compared with roots. These results were confirmed by gene ontology (GO) and pathway enrichment analyses. Up-regulated genes in leaves as compared with roots enriched GO terms with relation to rutin biosynthesis e.g. action of flavonol synthase, biosynthetic mechanism of malonyl-CoA, and action of monooxygenase. Phylogenetic analysis of the rhamnosyltransferase (RT) gene showed that it was highly homologues with RT sequence from Citrus species and all were located in the same clade. This transcriptomic dataset will serve as an important public resource for future genomics and transcriptomic studies in R. chalepensis and will act as a benchmark for the identification and genetic modification of genes involved in the biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Eslam M Abdel-Salam
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Faisal
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Abdulrahman A Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed A Qahtan
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Perwez Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
25
|
Nowrouzi B, Li RA, Walls LE, d'Espaux L, Malcı K, Liang L, Jonguitud-Borrego N, Lerma-Escalera AI, Morones-Ramirez JR, Keasling JD, Rios-Solis L. Enhanced production of taxadiene in Saccharomyces cerevisiae. Microb Cell Fact 2020; 19:200. [PMID: 33138820 PMCID: PMC7607689 DOI: 10.1186/s12934-020-01458-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/17/2020] [Indexed: 12/30/2022] Open
Abstract
Background Cost-effective production of the highly effective anti-cancer drug, paclitaxel (Taxol®), remains limited despite growing global demands. Low yields of the critical taxadiene precursor remains a key bottleneck in microbial production. In this study, the key challenge of poor taxadiene synthase (TASY) solubility in S. cerevisiae was revealed, and the strains were strategically engineered to relieve this bottleneck. Results Multi-copy chromosomal integration of TASY harbouring a selection of fusion solubility tags improved taxadiene titres 22-fold, up to 57 ± 3 mg/L at 30 °C at microscale, compared to expressing a single episomal copy of TASY. The scalability of the process was highlighted through achieving similar titres during scale up to 25 mL and 250 mL in shake flask and bioreactor cultivations, respectively at 20 and 30 °C. Maximum taxadiene titres of 129 ± 15 mg/L and 127 mg/L were achieved through shake flask and bioreactor cultivations, respectively, of the optimal strain at a reduced temperature of 20 °C. Conclusions The results of this study highlight the benefit of employing a combination of molecular biology and bioprocess tools during synthetic pathway development, with which TASY activity was successfully improved by 6.5-fold compared to the highest literature titre in S. cerevisiae cell factories.
Collapse
Affiliation(s)
- Behnaz Nowrouzi
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, United Kingdom
| | - Rachel A Li
- DOE Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Laura E Walls
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, United Kingdom
| | - Leo d'Espaux
- DOE Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Koray Malcı
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, United Kingdom
| | - Lungang Liang
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, United Kingdom
| | - Nestor Jonguitud-Borrego
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, United Kingdom
| | - Albert I Lerma-Escalera
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - Jose R Morones-Ramirez
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - Jay D Keasling
- DOE Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Departments of Chemical & Biomolecular Engineering and of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA.,Center for Biosustainability, Danish Technical University, Lyngby, Denmark.,Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom. .,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, United Kingdom.
| |
Collapse
|
26
|
Shao J, Sun Y, Liu H, Wang Y. Pathway elucidation and engineering of plant-derived diterpenoids. Curr Opin Biotechnol 2020; 69:10-16. [PMID: 33032240 DOI: 10.1016/j.copbio.2020.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/26/2022]
Abstract
Plant-derived diterpenoids are indispensable to plant development, stress-resistance and interaction with environmental microorganisms. Besides significant roles in plant fitness and adaption, many bioactivities beneficial to human beings are also found in diterpenoids from terrestrial plants. However, these high-value compounds are always present in limited species with low-abundance. Complicated chemosynthesis hardly meets the needs of sufficient supplies. To overcome these obstacles, it is necessary to investigate how diterpenoids are biosynthesized in planta, and followed by engineering the biosynthetic pathway to achieve high yield production. This review will summarize the recent progress of plant diterpenoid biosynthetic pathway discovery and engineering, hoping to offer an inspiration for concerned researchers.
Collapse
Affiliation(s)
- Jie Shao
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuwei Sun
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Haili Liu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yong Wang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
27
|
Matos JO, Kumar RP, Ma AC, Patterson M, Krauss IJ, Oprian DD. Mechanism Underlying Anti-Markovnikov Addition in the Reaction of Pentalenene Synthase. Biochemistry 2020; 59:3271-3283. [PMID: 32786410 DOI: 10.1021/acs.biochem.0c00518] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Most terpene synthase reactions follow Markovnikov rules for formation of high-energy carbenium ion intermediates. However, there are notable exceptions. For example, pentalenene synthase (PS) undergoes an initial anti-Markovnikov cyclization reaction followed by a 1,2-hydride shift to form an intermediate humulyl cation with positive charge on the secondary carbon C9 atom of the farnesyl diphosphate substrate. The mechanism by which these enzymes stabilize and guide the regioselectivity of secondary carbocations has not heretofore been elucidated. In an effort to better understand these reactions, we grew crystals of apo-PS, soaked them with the nonreactive substrate analogue 12,13-difluorofarnesyl diphosphate, and determined the X-ray structure of the resulting complex at 2.2 Å resolution. The most striking feature of the active site structure is that C9 is perfectly positioned to make a C-H···π interaction with the side chain benzene ring of residue F76; this would enhance hyperconjugation to stabilize a developing cation at C10 and thus support the anti-Markovnikov regioselectivity of the cyclization. The benzene ring is also positioned to catalyze the migration of H to C10 and stabilize a C9 carbocation. On the opposite face of C9, further cation stabilization is possible via interactions with the main chain carbonyl of I177 and the neighboring intramolecular C6═C7 bond. Mutagenesis experiments also support a role for residue 76 in these interactions, but most interesting is the F76W mutant, whose crystal structure clearly shows C9 and C10 centered above the fused benzene and pyrrole rings of the indole side chain, respectively, such that a carbocation at either position could be stabilized in this complex, and two anti-Markovnikov products, pentalenene and humulene, are formed. Finally, we show that there is a rough correlation (although not absolute) of an aromatic side chain (F or Y) at position 76 in related terpene synthases from Streptomyces that catalyze similar anti-Markovnikov addition reactions.
Collapse
Affiliation(s)
- Jason O Matos
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Ramasamy P Kumar
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Alison C Ma
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - MacKenzie Patterson
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Isaac J Krauss
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Daniel D Oprian
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| |
Collapse
|
28
|
Mao Y, Ma Y, Chen T, Ma X, Xu Y, Bu J, Li Q, Jin B, Wang Y, Li Y, Cui G, Zhao Y, Tang J, Shen Y, Lai C, Zeng W, Chen M, Guo J, Huang L. Functional Integration of Two CYP450 Genes Involved in Biosynthesis of Tanshinones for Improved Diterpenoid Production by Synthetic Biology. ACS Synth Biol 2020; 9:1763-1770. [PMID: 32551504 DOI: 10.1021/acssynbio.0c00136] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cytochrome P450s (CYPs) are important enzymes in the secondary metabolism of plants and have been recognized as key players in bioengineering and synthetic biology. Previously reported CYP76AH1 and CYP76AH3, having greater than 80% sequence homology, played a continuous catalytic role in the biosynthesis of tanshinones in Salvia miltiorrhiza. Homology modeling indicates that four sites might be responsible for differences in catalytic activity between the two enzymes. A series of modeling-based mutational variants of CYP76AH1 were designed to integrate the functions of the two CYPs. The mutant CYP76AH1D301E,V479F, which integrated the functions of CYP76AH1 and CYP76AH3, was found to efficiently catalyze C11 and C12 hydroxylation and C7 oxidation of miltiradiene substrates. Integration and utilization of CYP76AH1D301E,V479F by synthetic biology methods allowed the robust production of 11-hydroxy ferruginol, sugiol, and 11-hydroxy sugiol in yeast. The functionally integrated CYP gene after active site modifications improves catalytic efficiency by reducing the transfer of intermediate metabolites between component proteins. This provides a synthetic biology reference for improving the catalytic efficiencies of systems that produce plant natural products in microorganisms.
Collapse
Affiliation(s)
- Yaping Mao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ying Ma
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tong Chen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaohui Ma
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Yanqin Xu
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Junling Bu
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qishuang Li
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013,China
| | - Baolong Jin
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanan Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yong Li
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Guanghong Cui
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yujun Zhao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jinfu Tang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ye Shen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Changjiangsheng Lai
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wen Zeng
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Min Chen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Juan Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
29
|
Liu X, Zhu X, Wang H, Liu T, Cheng J, Jiang H. Discovery and modification of cytochrome P450 for plant natural products biosynthesis. Synth Syst Biotechnol 2020; 5:187-199. [PMID: 32637672 PMCID: PMC7332504 DOI: 10.1016/j.synbio.2020.06.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 11/28/2022] Open
Abstract
Cytochrome P450s are widespread in nature and play key roles in the diversification and functional modification of plant natural products. Over the last few years, there has been remarkable progress in plant P450s identification with the rapid development of sequencing technology, "omics" analysis and synthetic biology. However, challenges still persist in respect of crystal structure, heterologous expression and enzyme engineering. Here, we reviewed several research hotspots of P450 enzymes involved in the biosynthesis of plant natural products, including P450 databases, gene mining, heterologous expression and protein engineering.
Collapse
Affiliation(s)
- Xiaonan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxi Zhu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Wang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Tian Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jian Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
30
|
Yu C, Luo X, Zhang C, Xu X, Huang J, Chen Y, Feng S, Zhan X, Zhang L, Yuan H, Zheng B, Wang H, Shen C. Tissue-specific study across the stem of Taxus media identifies a phloem-specific TmMYB3 involved in the transcriptional regulation of paclitaxel biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:95-110. [PMID: 31999384 DOI: 10.1111/tpj.14710] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/06/2020] [Accepted: 01/22/2020] [Indexed: 05/24/2023]
Abstract
Taxus stem barks can be used for extraction of paclitaxel. However, the composition of taxoids across the whole stem and the stem tissue-specificity of paclitaxel biosynthesis-related enzymes remain largely unknown. We used cultivated Taxus media trees for analyses of the chemical composition and protein of major stem tissues by an integrated metabolomic and proteomic approach, and the role of TmMYB3 in paclitaxel biosynthesis was investigated. The metabolomic landscape analysis showed differences in stem tissue-specific accumulation of metabolites. Phytochemical analysis revealed that there is high accumulation of paclitaxel in the phloem. Ten key enzymes involved in paclitaxel biosynthesis were identified, most of which are predominantly produced in the phloem. The full-length sequence of TmMYB3 and partial promoter sequences of five paclitaxel biosynthesis-related genes were isolated. Several MYB recognition elements were found in the promoters of TBT, DBTNBT and TS. Further in vitro and in vivo investigations indicated that TmMYB3 is involved in paclitaxel biosynthesis by activating the expression of TBT and TS. Differences in the taxoid composition of different stem tissues suggest that the whole stem of T. media has potential for biotechnological applications. Phloem-specific TmMYB3 plays a role in the transcriptional regulation of paclitaxel biosynthesis, and may explain the phloem-specific accumulation of paclitaxel.
Collapse
Affiliation(s)
- Chunna Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xiujun Luo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chengchao Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xinyun Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jiefang Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yueyue Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shangguo Feng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xiaori Zhan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Huwei Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Hangzhou, 311300, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Hangzhou, 311300, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
31
|
Doering NA, Sarpong R, Hoffmann RW. A Case for Bond-Network Analysis in the Synthesis of Bridged Polycyclic Complex Molecules: Hetidine and Hetisine Diterpenoid Alkaloids. Angew Chem Int Ed Engl 2020; 59:10722-10731. [PMID: 31808282 PMCID: PMC7317470 DOI: 10.1002/anie.201909656] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/29/2019] [Indexed: 01/28/2023]
Abstract
A key challenge in the synthesis of diterpenoid alkaloids lies in identifying strategies that rapidly construct their multiply bridged polycyclic skeletons. Existing approaches to these structurally intricate secondary metabolites are discussed in the context of a "bond-network analysis" of molecular frameworks, which was originally devised by Corey some 40 years ago. The retrosynthesis plans that emerge from a topological analysis of the highly bridged frameworks of the diterpenoid alkaloids are discussed in the context of eight recent syntheses of hetidine and hetisine natural products and their derivatives. This Minireview highlights the extent to which network analyses of the type described here sufficed for designing synthesis plans, as well as areas where they had to be amalgamated with functional group oriented synthetic planning considerations.
Collapse
Affiliation(s)
- Nicolle A. Doering
- Latimer HallDepartment of ChemistryUniversity of California, BerkeleyBerkeleyCA94720USA
| | - Richmond Sarpong
- Latimer HallDepartment of ChemistryUniversity of California, BerkeleyBerkeleyCA94720USA
| | | |
Collapse
|
32
|
Sanchez-Muñoz R, Perez-Mata E, Almagro L, Cusido RM, Bonfill M, Palazon J, Moyano E. A Novel Hydroxylation Step in the Taxane Biosynthetic Pathway: A New Approach to Paclitaxel Production by Synthetic Biology. Front Bioeng Biotechnol 2020; 8:410. [PMID: 32528936 PMCID: PMC7247824 DOI: 10.3389/fbioe.2020.00410] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/14/2020] [Indexed: 11/13/2022] Open
Abstract
Engineered plant cell lines have the potential to achieve enhanced metabolite production rates, providing a high-yielding source of compounds of interest. Improving the production of taxanes, pharmacologically valuable secondary metabolites of Taxus spp., is hindered by an incomplete knowledge of the taxane biosynthetic pathway. Of the five unknown steps, three are thought to involve cytochrome P450-like hydroxylases. In the current work, after an in-depth in silico characterization of four candidate enzymes proposed in a previous cDNA-AFLP assay, TB506 was selected as a candidate for the hydroxylation of the taxane side chain. A docking assay indicated TB506 is active after the attachment of the side chain based on its affinity to the ligand 3'N-dehydroxydebenzoyltaxol. Finally, the involvement of TB506 in the last hydroxylation step of the paclitaxel biosynthetic pathway was confirmed by functional assays. The identification of this hydroxylase will contribute to the development of alternative sustainable paclitaxel production systems using synthetic biology techniques.
Collapse
Affiliation(s)
- Raul Sanchez-Muñoz
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Edgar Perez-Mata
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
| | - Lorena Almagro
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Rosa M. Cusido
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
| | - Mercedes Bonfill
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
| | - Javier Palazon
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
| | - Elisabeth Moyano
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
33
|
Doering NA, Sarpong R, Hoffmann RW. Ein Fall für die Bindungs‐Netzwerk‐Analyse bei der Synthese verbrückter polycyclischer komplexer Moleküle: Hetidin‐ und Hetisin‐Diterpen‐Alkaloide. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201909656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nicolle A. Doering
- Latimer Hall Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | - Richmond Sarpong
- Latimer Hall Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | | |
Collapse
|
34
|
Liu Y, You T, Wang HX, Tang Z, Zhou CY, Che CM. Iron- and cobalt-catalyzed C(sp3)–H bond functionalization reactions and their application in organic synthesis. Chem Soc Rev 2020; 49:5310-5358. [DOI: 10.1039/d0cs00340a] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the developments in iron and cobalt catalyzed C(sp3)–H bond functionalization reactions with emphasis on their applications in organic synthesis, i.e. natural products and pharmaceuticals synthesis and/or modification.
Collapse
Affiliation(s)
- Yungen Liu
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
| | - Tingjie You
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Hai-Xu Wang
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Zhou Tang
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Cong-Ying Zhou
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Chi-Ming Che
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
- Department of Chemistry
| |
Collapse
|
35
|
Zhou T, Luo X, Zhang C, Xu X, Yu C, Jiang Z, Zhang L, Yuan H, Zheng B, Pi E, Shen C. Comparative metabolomic analysis reveals the variations in taxoids and flavonoids among three Taxus species. BMC PLANT BIOLOGY 2019; 19:529. [PMID: 31783790 PMCID: PMC6884900 DOI: 10.1186/s12870-019-2146-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/18/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND Trees of the genus Taxus are highly valuable medicinal plants with multiple pharmacological effects on various cancer treatments. Paclitaxel from Taxus trees is an efficient and widely used anticancer drug, however, the accumulation of taxoids and other active ingredients can vary greatly among Taxus species. In our study, the metabolomes of three Taxus species have been investigated. RESULTS A total of 2246 metabolites assigned to various primary and secondary metabolic pathways were identified using an untargeted approach. Analysis of differentially accumulated metabolites identified 358 T. media-, 220 T. cuspidata-, and 169 T. mairei-specific accumulated metabolites, respectively. By searching the metabolite pool, 7 MEP pathway precursors, 11 intermediates, side chain products and derivatives of paclitaxel, and paclitaxel itself were detected. Most precursors, initiated intermediates were highly accumulated in T. mairei, and most intermediate products approaching the end point of taxol biosynthesis pathway were primarily accumulated in T. cuspidata and T. media. Our data suggested that there were higher-efficiency pathways to paclitaxel in T. cuspidata and T. media compared with in T. mairei. As an important class of active ingredients in Taxus trees, a majority of flavonoids were predominantly accumulated in T. mairei rather than T. media and T. cuspidata. The variations in several selected taxoids and flavonoids were confirmed using a targeted approach. CONCLUSIONS Systematic correlativity analysis identifies a number of metabolites associated with paclitaxel biosynthesis, suggesting a potential negative correlation between flavonoid metabolism and taxoid accumulation. Investigation of the variations in taxoids and other active ingredients will provide us with a deeper understanding of the interspecific differential accumulation of taxoids and an opportunity to accelerate the highest-yielding species breeding and resource utilization.
Collapse
Affiliation(s)
- Ting Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036 China
| | - Xiujun Luo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Chengchao Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Xinyun Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Chunna Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Zhifang Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430 USA
| | - Huwei Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300 People’s Republic of China
- Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Hangzhou, 311300 People’s Republic of China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300 People’s Republic of China
- Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Hangzhou, 311300 People’s Republic of China
| | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| |
Collapse
|
36
|
Bergman ME, Davis B, Phillips MA. Medically Useful Plant Terpenoids: Biosynthesis, Occurrence, and Mechanism of Action. Molecules 2019; 24:E3961. [PMID: 31683764 PMCID: PMC6864776 DOI: 10.3390/molecules24213961] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 12/23/2022] Open
Abstract
Specialized plant terpenoids have found fortuitous uses in medicine due to their evolutionary and biochemical selection for biological activity in animals. However, these highly functionalized natural products are produced through complex biosynthetic pathways for which we have a complete understanding in only a few cases. Here we review some of the most effective and promising plant terpenoids that are currently used in medicine and medical research and provide updates on their biosynthesis, natural occurrence, and mechanism of action in the body. This includes pharmacologically useful plastidic terpenoids such as p-menthane monoterpenoids, cannabinoids, paclitaxel (taxol®), and ingenol mebutate which are derived from the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway, as well as cytosolic terpenoids such as thapsigargin and artemisinin produced through the mevalonate (MVA) pathway. We further provide a review of the MEP and MVA precursor pathways which supply the carbon skeletons for the downstream transformations yielding these medically significant natural products.
Collapse
Affiliation(s)
- Matthew E Bergman
- Department of Cellular and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| | - Benjamin Davis
- Department of Cellular and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| | - Michael A Phillips
- Department of Cellular and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
- Department of Biology, University of Toronto-Mississauga, Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
37
|
Li J, Mutanda I, Wang K, Yang L, Wang J, Wang Y. Chloroplastic metabolic engineering coupled with isoprenoid pool enhancement for committed taxanes biosynthesis in Nicotiana benthamiana. Nat Commun 2019; 10:4850. [PMID: 31649252 PMCID: PMC6813417 DOI: 10.1038/s41467-019-12879-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/27/2019] [Indexed: 11/08/2022] Open
Abstract
Production of the anticancer drug Taxol and its precursors in heterologous hosts is more sustainable than extraction from tissues of yew trees or chemical synthesis. Although attempts to engineer the Taxol pathway in microbes have made significant progress, challenges such as functional expression of plant P450 enzymes remain to be addressed. Here, we introduce taxadiene synthase, taxadiene-5α-hydroxylase, and cytochrome P450 reductase in a high biomass plant Nicotiana benthamiana. Using a chloroplastic compartmentalized metabolic engineering strategy, combined with enhancement of isoprenoid precursors, we show that the engineered plants can produce taxadiene and taxadiene-5α-ol, the committed taxol intermediates, at 56.6 μg g-1 FW and 1.3 μg g-1 FW, respectively. In addition to the tools and strategies reported here, this study highlights the potential of Nicotiana spp. as an alternative platform for Taxol production.
Collapse
Affiliation(s)
- Jianhua Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ishmael Mutanda
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Kaibo Wang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Henan Key Laboratory of Plant Stress Biology, Henan University, Kaifeng, 475004, China
| | - Lei Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Jiawei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yong Wang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
38
|
Nazhand A, Durazzo A, Lucarini M, Mobilia MA, Omri B, Santini A. Rewiring cellular metabolism for heterologous biosynthesis of Taxol. Nat Prod Res 2019; 34:110-121. [DOI: 10.1080/14786419.2019.1630122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Amirhossein Nazhand
- Biotechnology Department, Sari University of Agricultural Sciences and Natural Resources, Mazandaran, Sari, Iran
| | | | | | | | - Besma Omri
- Laboratory of Improvement & Integrated Development of Animal Productivity & Food Resources, Higher School of Agriculture of Mateur, University of Carthage, Bizerte, Tunisia
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| |
Collapse
|
39
|
Bathe U, Tissier A. Cytochrome P450 enzymes: A driving force of plant diterpene diversity. PHYTOCHEMISTRY 2019; 161:149-162. [PMID: 30733060 DOI: 10.1016/j.phytochem.2018.12.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 05/06/2023]
Abstract
In plant terpene biosynthesis, oxidation of the hydrocarbon backbone produced by terpene synthases is typically carried out by cytochrome P450 oxygenases (CYPs). The modifications introduced by CYPs include hydroxylations, sequential oxidations at one position and ring rearrangements and closures. These reactions significantly expand the structural diversity of terpenoids, but also provide anchoring points for further decorations by various transferases. In recent years, there has been a significant increase in reports of CYPs involved in plant terpene pathways. Plant diterpenes represent an important class of metabolites that includes hormones and a number of industrially relevant compounds such as pharmaceutical, aroma or food ingredients. In this review, we provide a comprehensive survey on CYPs reported to be involved in plant diterpene biosynthesis to date. A phylogenetic analysis showed that only few CYP clans are represented in diterpene biosynthesis, namely CYP71, CYP85 and CYP72. Remarkably few CYP families and subfamilies within those clans are involved, indicating specific expansion of these clades in plant diterpene biosynthesis. Nonetheless, the evolutionary trajectory of CYPs of specialized diterpene biosynthesis is diverse. Some are recently derived from gibberellin biosynthesis, while others have a more ancient history with recent expansions in specific plant families. Among diterpenoids, labdane-related diterpenoids represent a dominant class. The availability of CYPs from diverse plant species able to catalyze oxidations in specific regions of the labdane-related backbones provides opportunities for combinatorial biosynthesis to produce novel diterpene compounds that can be screened for biological activities of interest.
Collapse
Affiliation(s)
- Ulschan Bathe
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany.
| |
Collapse
|
40
|
Zhou T, Luo X, Yu C, Zhang C, Zhang L, Song YB, Dong M, Shen C. Transcriptome analyses provide insights into the expression pattern and sequence similarity of several taxol biosynthesis-related genes in three Taxus species. BMC PLANT BIOLOGY 2019; 19:33. [PMID: 30665359 PMCID: PMC6341696 DOI: 10.1186/s12870-019-1645-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 01/11/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Taxol is an efficient anticancer drug; however, the accumulation of taxoids can vary hugely among Taxus species. The mechanism underlying differential accumulation of taxoids is largely unknown. Thus, comparative analysis of the transcriptomes in three Taxus species, including T. media, T. mairei and T. cuspidata, was performed. RESULTS KEGG enrichment analysis revealed that the diterpenoid biosynthesis and cytochrome P450 pathways were significantly enriched in different comparisons. Differential expressions of these taxol biosynthesis related genes might be a potential explanation for the interspecific differential accumulation of taxol and its derivatives. Besides, the sequences of several MEP pathway-associated genes, such as DXS, DXR, MCT, CMK, MDS, HDS, HDR, IPPI, and GGPPS, were re-assembled based on independent transcriptomes from the three Taxus species. Phylogenetic analysis of these MEP pathway-associated enzymes also showed a high sequence similarity between T. media and T. cuspidata. Moreover, 48 JA-related transcription factor (TF) genes, including 10 MYBs, 5 ERFs, 4 RAPs, 3 VTCs, and 26 other TFs, were analyzed. Differential expression of these JA-related TF genes suggested distinct responses to exogenous JA applications in the three Taxus species. CONCLUSIONS Our results provide insights into the expression pattern and sequence similarity of several taxol biosynthesis-related genes in three Taxus species. The data give us an opportunity to reveal the mechanism underlying the variations in the taxoid contents and to select the highest-yielding Taxus species.
Collapse
Affiliation(s)
- Ting Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
| | - Xiujun Luo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Chunna Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Chengchao Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430 USA
| | - Yao-bin Song
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
| | - Ming Dong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| |
Collapse
|
41
|
Sagwan-Barkdoll L, Anterola AM. Taxadiene-5α-ol is a minor product of CYP725A4 when expressed in Escherichia coli. Biotechnol Appl Biochem 2018; 65:294-305. [PMID: 28876471 PMCID: PMC5839926 DOI: 10.1002/bab.1606] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/02/2017] [Indexed: 11/11/2022]
Abstract
CYP725A4 is a P450 enzyme from Taxus cuspidata that catalyzes the formation of taxadiene-5α-ol (T5α-ol) from taxadiene in paclitaxel biosynthesis. Past attempts expressing CYP725A4 in heterologous hosts reported the formation of 5(12)-oxa-3(11)-cyclotaxane (OCT) and/or 5(11)-oxa-3(11)-cyclotaxane (iso-OCT) instead of, or in addition to, T5α-ol. Here, we report that T5α-ol is produced as a minor product by Escherichia coli expressing both taxadiene synthase and CYP725A4. The major products were OCT and iso-OCT, while trace amounts of unidentified monooxygenated taxanes were also detected by gas chromatography-mass spectrometry. Since OCT and iso-OCT had not been found in nature, we tested the hypothesis that protein-protein interaction of CYP725A4 with redox partners, such as cytochrome P450 reductase (CPR) and cytochrome b5, may affect the products formed by CYP725A4, possibly favoring the formation of T5α-ol over OCT and iso-OCT. Our results show that coexpression of CYP725A4 with CPR from different organisms did not change the relative ratios of OCT, iso-OCT, and T5α-ol, while cytochrome b5 decreased overall levels of the products formed. Although unsuccessful in finding conditions that promote T5α-ol formation over other products, we used our results to clarify conflicting claims in the literature and discuss other possible approaches to produce paclitaxel via metabolic and enzyme engineering.
Collapse
Affiliation(s)
- Laxmi Sagwan-Barkdoll
- Department of Plant Biology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Aldwin M. Anterola
- Department of Plant Biology, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
42
|
Banerjee A, Hamberger B. P450s controlling metabolic bifurcations in plant terpene specialized metabolism. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2018; 17:81-111. [PMID: 29563859 PMCID: PMC5842272 DOI: 10.1007/s11101-017-9530-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/20/2017] [Indexed: 05/18/2023]
Abstract
ABSTRACT Catalyzing stereo- and regio-specific oxidation of inert hydrocarbon backbones, and a range of more exotic reactions inherently difficult in formal chemical synthesis, cytochromes P450 (P450s) offer outstanding potential for biotechnological engineering. Plants and their dazzling diversity of specialized metabolites have emerged as rich repository for functional P450s with the advances of deep transcriptomics and genome wide discovery. P450s are of outstanding interest for understanding chemical diversification throughout evolution, for gaining mechanistic insights through the study of their structure-function relationship, and for exploitation in Synthetic Biology. In this review, we highlight recent developments and examples in the discovery of plant P450s involved in the biosynthesis of industrially relevant monoterpenoids, sesquiterpenoids, diterpenoids and triterpenoids, throughout 2016 and early 2017. Examples were selected to illustrate the spectrum of value from commodity chemicals, flavor and fragrance compounds to pharmacologically active terpenoids. We focus on a recently emerging theme, where P450s control metabolic bifurcations and chemical diversity of the final product profile, either within a pathway, or through neo-functionalization in related species. The implications may inform approaches for rational assembly of recombinant pathways, biotechnological production of high value terpenoids and generation of novel chemical entities.
Collapse
Affiliation(s)
- Aparajita Banerjee
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824 USA
| | - Björn Hamberger
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824 USA
| |
Collapse
|
43
|
Yu C, Guo H, Zhang Y, Song Y, Pi E, Yu C, Zhang L, Dong M, Zheng B, Wang H, Shen C. Identification of potential genes that contributed to the variation in the taxoid contents between two Taxus species (Taxus media and Taxus mairei). TREE PHYSIOLOGY 2017; 37:1659-1671. [PMID: 28985439 DOI: 10.1093/treephys/tpx091] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/22/2017] [Indexed: 05/20/2023]
Abstract
Taxol is currently a valuable anticancer drug; however, the accumulated mixture of taxoids can vary greatly among Taxus species. So far, there is very little genomic information for the genus Taxus, except for Taxus baccata. Transcriptome analysis is a powerful approach to explore the different regulatory mechanisms underlying the taxoid biosynthesis pathway in Taxus species. First, we quantified the variation in the taxoid contents between Taxus media and Taxus mairei. The contents of paclitaxel and 10-deacetylpaclitaxel in T. media are higher than that in T. mairei. Then, the transcriptome profiles of T. media and T. mairei were analyzed to investigate the altered expressions. A total of 20,704 significantly differentially expressed genes (DEGs), including 9865 unigenes predominantly expressed in T. media and 10,839 unigenes predominantly expressed in T. mairei, were identified. In total, 120 jasmonic acid-related DEGs were analyzed, suggesting variations in 'response to JA stimulus' and 'JA biosynthetic process' pathways between T. media and T. mairei. Furthermore, a number of genes related to the precursor supply, taxane skeleton formation and hydroxylation, and C13-side chain assembly were also identified. The differential expression of the candidate genes involved in taxoid biosynthetic pathways may explain the variation in the taxoid contents between T. media and T. mairei.
Collapse
Affiliation(s)
- Chunna Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Hong Guo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Yangyang Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Yaobin Song
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Chenliang Yu
- Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Ming Dong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou 311300, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
44
|
Hao J, Guo H, Shi X, Wang Y, Wan Q, Song YB, Zhang L, Dong M, Shen C. Comparative proteomic analyses of two Taxus species (Taxus × media and Taxus mairei) reveals variations in the metabolisms associated with paclitaxel and other metabolites. PLANT & CELL PHYSIOLOGY 2017; 58:1878-1890. [PMID: 29016978 DOI: 10.1093/pcp/pcx128] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/23/2017] [Indexed: 05/20/2023]
Abstract
Taxus species are well-known for paclitaxel, which exhibits antitumor activities and is used for treating various cancers. Although most Taxus species are widespread in many areas, few studies have characterized the variation in metabolism among different Taxus species. Using an integrated approach involving 'tandem mass tag' labeling and liquid chromatography-tandem mass spectrometry (HPLC-MS), proteomes of T. media and T. mairei were investigated and 4078 proteins were quantified. Screening and classification of differentially expressed proteins revealed many metabolism-associated proteins. In detail, four enzymes involved in the flavonoid biosynthesis pathway were predominantly expressed in T. mairei. Four enzymes associated with supplying precursors for paclitaxel biosynthesis and three cytochrome P450 taxoid oxygenases were preferentially expressed in T. media compared with T. mairei. Furthermore, variations in taxoid contents between T. media and T. mairei were determined using HPLC-MS analysis. Variations in flavonoid contents between T. media and T. mairei were determined by HPLC analysis. A number of differentially expressed proteins may provide an explanation for the variation in metabolisms of different Taxus species.
Collapse
Affiliation(s)
- Juan Hao
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Hong Guo
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Xinai Shi
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
| | - Ye Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan Province 455000, China
| | - Qinghua Wan
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
| | - Yao-Bin Song
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Ming Dong
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Chenjia Shen
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
45
|
Upp DM, Lewis JC. Selective C-H bond functionalization using repurposed or artificial metalloenzymes. Curr Opin Chem Biol 2017; 37:48-55. [PMID: 28135654 DOI: 10.1016/j.cbpa.2016.12.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/23/2016] [Indexed: 11/26/2022]
Abstract
Catalytic CH bond functionalization has become an important tool for organic synthesis. Metalloenzymes offer a solution to one of the foremost challenges in this field, site-selective CH functionalization, but they are only capable of catalyzing a subset of the CH functionalization reactions known to small molecule catalysts. To overcome this limitation, metalloenzymes have been repurposed by exploiting the reactivity of their native cofactors toward substrates not found in nature. Additionally, new reactivity has been accessed by incorporating synthetic metal cofactors into protein scaffolds to form artificial metalloenzymes. The selectivity and activity of these catalysts has been tuned using directed evolution. This review covers the recent progress in developing and optimizing both repurposed and artificial metalloenzymes as catalysts for selective CH bond functionalization.
Collapse
Affiliation(s)
- David M Upp
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Jared C Lewis
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
46
|
Liao W, Zhao S, Zhang M, Dong K, Chen Y, Fu C, Yu L. Transcriptome Assembly and Systematic Identification of Novel Cytochrome P450s in Taxus chinensis. FRONTIERS IN PLANT SCIENCE 2017; 8:1468. [PMID: 28878800 PMCID: PMC5572210 DOI: 10.3389/fpls.2017.01468] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/07/2017] [Indexed: 05/06/2023]
Abstract
Taxus spp. is a highly valuable medicinal plant with multiple pharmacological effects on various cancers. Cytochrome P450s (CYP450s) play important roles in the biosynthesis of active compounds in Taxus spp., such as the famous diterpenoid, Taxol. However, some specific CYP450 enzymes involved in the biosynthesis of Taxol remain unknown, and the systematic identification of CYP450s in Taxus has not been reported. In this study, 118 full-length and 175 partial CYP450 genes were identified in Taxus chinensis transcriptomes. The 118 full-length genes were divided into 8 clans and 29 families. The CYP71 clan included all A-type genes (52) belonging to 11 families. The other seven clans possessed 18 families containing 66 non-A-type genes. Two new gymnosperm-specific families were discovered, and were named CYP864 and CYP947 respectively. Protein sequence alignments revealed that all of the T. chinensis CYP450s hold distinct conserved domains. The expression patterns of all 118 CYP450 genes during the long-time subculture and MeJA elicitation were analyzed. Additionally, the expression levels of 15 novel CYP725 genes in different Taxus species were explored. Considering all the evidence, 6 CYP725s were identified to be candidates for Taxol biosynthesis. The cis-regulatory elements involved in the transcriptional regulation were also identified in the promoter regions of CYP725s. This study presents a comprehensive overview of the CYP450 gene family in T. chinensis and can provide important insights into the functional gene studies of Taxol biosynthesis.
Collapse
Affiliation(s)
- Weifang Liao
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Shengying Zhao
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Meng Zhang
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Kaige Dong
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Ying Chen
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Chunhua Fu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- *Correspondence: Chunhua Fu
| | - Longjiang Yu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Longjiang Yu
| |
Collapse
|
47
|
Dziggel C, Schäfer H, Wink M. Tools of pathway reconstruction and production of economically relevant plant secondary metabolites in recombinant microorganisms. Biotechnol J 2016; 12. [DOI: 10.1002/biot.201600145] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/28/2016] [Accepted: 11/29/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Clarissa Dziggel
- Heidelberg University; Institute of Pharmacy and Molecular Biotechnology; Heidelberg Germany
| | - Holger Schäfer
- Heidelberg University; Institute of Pharmacy and Molecular Biotechnology; Heidelberg Germany
| | - Michael Wink
- Heidelberg University; Institute of Pharmacy and Molecular Biotechnology; Heidelberg Germany
| |
Collapse
|
48
|
Guo J, Ma X, Cai Y, Ma Y, Zhan Z, Zhou YJ, Liu W, Guan M, Yang J, Cui G, Kang L, Yang L, Shen Y, Tang J, Lin H, Ma X, Jin B, Liu Z, Peters RJ, Zhao ZK, Huang L. Cytochrome P450 promiscuity leads to a bifurcating biosynthetic pathway for tanshinones. THE NEW PHYTOLOGIST 2016; 210:525-34. [PMID: 26682704 PMCID: PMC4930649 DOI: 10.1111/nph.13790] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/29/2015] [Indexed: 05/21/2023]
Abstract
Cytochromes P450 (CYPs) play a key role in generating the structural diversity of terpenoids, the largest group of plant natural products. However, functional characterization of CYPs has been challenging because of the expansive families found in plant genomes, diverse reactivity and inaccessibility of their substrates and products. Here we present the characterization of two CYPs, CYP76AH3 and CYP76AK1, which act sequentially to form a bifurcating pathway for the biosynthesis of tanshinones, the oxygenated diterpenoids from the Chinese medicinal plant Danshen (Salvia miltiorrhiza). These CYPs had similar transcription profiles to that of the known gene responsible for tanshinone production in elicited Danshen hairy roots. Biochemical and RNA interference studies demonstrated that both CYPs are promiscuous. CYP76AH3 oxidizes ferruginol at two different carbon centers, and CYP76AK1 hydroxylates C-20 of two of the resulting intermediates. Together, these convert ferruginol into 11,20-dihydroxy ferruginol and 11,20-dihydroxy sugiol en route to tanshinones. Moreover, we demonstrated the utility of these CYPs by engineering yeast for heterologous production of six oxygenated diterpenoids, which in turn enabled structural characterization of three novel compounds produced by CYP-mediated oxidation. Our results highlight the incorporation of multiple CYPs into diterpenoid metabolic engineering, and a continuing trend of CYP promiscuity generating complex networks in terpenoid biosynthesis.
Collapse
Affiliation(s)
- Juan Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| | - Xiaohui Ma
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China
| | - Yuan Cai
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, 116023, P.R. China
| | - Ying Ma
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| | - Zhilai Zhan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, 116023, P.R. China
| | - Wujun Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, 116023, P.R. China
| | - Mengxin Guan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| | - Guanghong Cui
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| | - Liping Kang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| | - Lei Yang
- Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai 201602, P.R. China
| | - Ye Shen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| | - Jinfu Tang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| | - Huixin Lin
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| | - Xiaojing Ma
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| | - Baolong Jin
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Reuben J. Peters
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Zongbao K. Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, 116023, P.R. China
- Corresponding authors: Luqi Huang, Tel: 86-10-84044340. , Zongbao K. Zhao, Tel: 86-411-84379211.
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
- Corresponding authors: Luqi Huang, Tel: 86-10-84044340. , Zongbao K. Zhao, Tel: 86-411-84379211.
| |
Collapse
|
49
|
Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli. Proc Natl Acad Sci U S A 2016; 113:3209-14. [PMID: 26951651 DOI: 10.1073/pnas.1515826113] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Recent advances in metabolic engineering have demonstrated the potential to exploit biological chemistry for the synthesis of complex molecules. Much of the progress to date has leveraged increasingly precise genetic tools to control the transcription and translation of enzymes for superior biosynthetic pathway performance. However, applying these approaches and principles to the synthesis of more complex natural products will require a new set of tools for enabling various classes of metabolic chemistries (i.e., cyclization, oxygenation, glycosylation, and halogenation) in vivo. Of these diverse chemistries, oxygenation is one of the most challenging and pivotal for the synthesis of complex natural products. Here, using Taxol as a model system, we use nature's favored oxygenase, the cytochrome P450, to perform high-level oxygenation chemistry in Escherichia coli. An unexpected coupling of P450 expression and the expression of upstream pathway enzymes was discovered and identified as a key obstacle for functional oxidative chemistry. By optimizing P450 expression, reductase partner interactions, and N-terminal modifications, we achieved the highest reported titer of oxygenated taxanes (∼570 ± 45 mg/L) in E. coli. Altogether, this study establishes E. coli as a tractable host for P450 chemistry, highlights the potential magnitude of protein interdependency in the context of synthetic biology and metabolic engineering, and points to a promising future for the microbial synthesis of complex chemical entities.
Collapse
|
50
|
Pateraki I, Heskes AM, Hamberger B. Cytochromes P450 for Terpene Functionalisation and Metabolic Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 148:107-39. [DOI: 10.1007/10_2014_301] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|