1
|
Zhang B, Xue L, Wu ZB. Structure and Function of Somatostatin and Its Receptors in Endocrinology. Endocr Rev 2025; 46:26-42. [PMID: 39116368 DOI: 10.1210/endrev/bnae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Somatostatin analogs, such as octreotide, lanreotide, and pasireotide, which function as somatostatin receptor ligands (SRLs), are the main drugs used for the treatment of acromegaly. These ligands are also used as important molecules for radiation therapy and imaging of neuroendocrine tumors. Somatostatin receptors (SSTRs) are canonical G protein-coupled proteins that play a role in metabolism, growth, and pathological conditions such as hormone disorders, neurological diseases, and cancers. Cryogenic electron microscopy combined with the protein structure prediction platform AlphaFold has been used to determine the 3-dimensional structures of many proteins. Recently, several groups published a series of papers illustrating the 3-dimensional structure of SSTR2, including that of the inactive/activated SSTR2-G protein complex bound to different ligands. The results revealed the residues that contribute to the ligand binding pocket and demonstrated that Trp8-Lys9 (the W-K motif) in somatostatin analogs is the key motif in stabilizing the bottom part of the binding pocket. In this review, we discuss the recent findings related to the structural analysis of SSTRs and SRLs, the relationships between the structural data and clinical findings, and the future development of novel structure-based therapies.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Xue
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhe Bao Wu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325005, China
| |
Collapse
|
2
|
Botelho L, Dezonne RS, Wildemberg LE, Miranda RL, Gadelha MR, Andreiuolo F. Somatostatin receptors in pituitary somatotroph adenomas as predictors of response to somatostatin receptor ligands: A pathologist's perspective. Brain Pathol 2025; 35:e13313. [PMID: 39473262 DOI: 10.1111/bpa.13313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/04/2024] [Indexed: 12/28/2024] Open
Abstract
There are five subtypes of somatostatin receptors (SST1-5), which are expressed in several types of solid neoplasms, neuroendocrine tumors, and pituitary adenomas. Most commonly, SST2 and SST5, are of interest regarding diagnostic, treatment, and prognostic purposes. In this article the basic biological characteristics of SST are briefly reviewed, and focus given to the immunohistochemical evaluation of SST2 and SST5 in growth hormone (GH)-secreting pituitary tumors, and their quantification as predictors of response to treatment with somatostatin receptor ligands (SRL), the mainstay of the pharmacological therapy available for these tumors. Although many different scoring systems for SST2 immunohistochemistry showing correlation with SRL response have been reported, among which the immunoreactivity score (IRS) has been the most consistently used, a universally validated immunohistochemical technique and scoring scheme is lacking. Efforts should be made on collaborative multicenter studies aiming at validating homogeneous immunostaining protocols and a scoring system for SST2 and SST5 expression, to help clinicians to define the optimal therapeutic strategy for the patients with somatotroph tumors.
Collapse
Affiliation(s)
- Laura Botelho
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
- Department of Pathology, Rede D'Or, Rio de Janeiro, Brazil
| | - Rômulo Sperduto Dezonne
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Luiz Eduardo Wildemberg
- Neuroendocrinology Research Center, Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Renan Lyra Miranda
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Mônica R Gadelha
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
- Neuroendocrinology Research Center, Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Felipe Andreiuolo
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
- Department of Pathology, Rede D'Or, Rio de Janeiro, Brazil
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Sivcev S, Constantin S, Smiljanic K, Sokanovic SJ, Fletcher PA, Sherman AS, Zemkova H, Stojilkovic SS. Distribution and calcium signaling function of somatostatin receptor subtypes in rat pituitary. Cell Calcium 2024; 124:102967. [PMID: 39522307 PMCID: PMC11624061 DOI: 10.1016/j.ceca.2024.102967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The somatostatin (SST) receptor family controls pituitary hormone secretion, but the distribution and specific roles of these receptors on the excitability and voltage-gated calcium signaling of hormone producing pituitary cells have not been fully characterized. Here we show that the rat pituitary gland expressed Sstr1, Sstr2, Sstr3, and Sstr5 receptor genes in a cell type-specific manner: Sstr1 and Sstr2 in thyrotrophs, Sstr3 in gonadotrophs and lactotrophs, Sstr2, Sstr3, and Sstr5 in somatotrophs, and none in corticotrophs and melanotrophs. Most gonadotrophs and thyrotrophs spontaneously fired high-amplitude single action potentials, which were silenced by SST without affecting intracellular calcium concentrations. In contrast, lactotrophs and somatotrophs spontaneously fired low-amplitude plateau-bursting action potentials in conjunction with calcium transients, both of which were silenced by SST. Moreover, SST inhibited GPCR-induced voltage-gated calcium signaling and hormone secretion in all cell types expressing SST receptors, but the inhibition was more pronounced in somatotrophs. The pattern of inhibition of electrical activity and calcium signaling was consistent with both direct and indirect inhibition of voltage-gated calcium channels, the latter being driven by cell type-specific hyperpolarization. These results indicate that the action of SST in somatotrophs is enhanced by the expression of several types of SST receptors and their slow desensitization, that SST may play a role in the electrical resynchronization of gonadotrophs, thyrotrophs, and lactotrophs, and that the lack of SST receptors in corticotrophs and melanotrophs keeps them excitable and ready to responses to stress.
Collapse
Affiliation(s)
- Sonja Sivcev
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda. USA
| | - Stephanie Constantin
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda. USA
| | - Kosara Smiljanic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda. USA
| | - Srdjan J Sokanovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Patrick A Fletcher
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, USA
| | - Arthur S Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, USA
| | - Hana Zemkova
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda. USA.
| |
Collapse
|
4
|
Sun F, Ji C, Zhou X, Zhang Y, Cheng H, Ye Z. Targeting RACGAP1 suppresses growth hormone pituitary adenoma growth. Endocrine 2024:10.1007/s12020-024-04116-4. [PMID: 39607642 DOI: 10.1007/s12020-024-04116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
PURPOSE Growth hormone pituitary adenoma (GHPA) is a major subtype of pituitary adenoma (PA), with tumor enlargement and abnormal secretion of growth hormone (GH) often causing complications. Rac GTPase-activating protein 1 (RACGAP1), a member of the guanine triphosphatase-activating protein family, is highly overexpressed in multiple tumors and promotes tumor growth. However, the role of RACGAP1 in GHPA remains unelucidated. Besides, specific inhibitors targeting RACGAP1 have not yet been developed. In this study, we aimed to determine the expression and function of RACGAP1 in GHPA and identify effective inhibitors against RACGAP1. METHODS Immunohistochemistry was used to detect the expression of RACGAP1 in GHPA and normal pituitary tissues. The effect of RACGAP1 on cell proliferation, apoptosis, and cell cycle was evaluated by knockdown of RACGAP1 in GH3 cells in vitro and xenograft models of GHPA in vivo. The downstream mechanism of RACGAP1 was explored by RNA sequencing, bioinformatic analysis, and Western blot. Inhibitors targeting RACGAP1 were screened and verified through a structure-based virtual docking method, cell viability assays, and surface plasmon resonance (SPR) experiments. RESULTS RACGAP1 expression was increased in GHPA compared with normal pituitary tissues. Knocking down RACGAP1 suppressed cell growth in vitro and in vivo. Preliminary mechanism studies indicated that inhibition of RACGAP1 led to the upregulation of p21 and the downregulation of several genes involved in the cell cycle signaling pathway, such as Cyclin A, CDK1, and CDK2. Moreover, DB07268 was identified for the first time as an effective RACGAP1 inhibitor that could prominently restrain the proliferation of GH3 cells. CONCLUSION This study demonstrates that RACGAP1 plays a critical role in GHPA, highlighting the novel inhibitor DB07268 as a promising therapeutic approach.
Collapse
Affiliation(s)
- Feifan Sun
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
| | - Chenxing Ji
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
| | - Xiang Zhou
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
| | - Yichao Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
| | - Haixia Cheng
- Department of Pathology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Zhao Ye
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China.
| |
Collapse
|
5
|
Wang X, Yang Z, Zhang W, Xing L, Luo R, Cao S. Obstacles, research progress, and prospects of oral delivery of bioactive peptides: a comprehensive review. Front Nutr 2024; 11:1496706. [PMID: 39610876 PMCID: PMC11602335 DOI: 10.3389/fnut.2024.1496706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024] Open
Abstract
Bioactive peptides hold significant potential for enhancing human health, however, their limited oral bioavailability poses a substantial barrier to their widespread use in the food and pharmaceutical industries. This article reviews the key factors influencing the absorption efficiency of oral bioactive peptides, including issues related to bitter taste perception, challenges in gastrointestinal environmental stability, and limitations in transmembrane transport. Furthermore, it highlights the latest technologies, such as osmotic technology, chemical modification, and advanced delivery systems, and discusses their advantages in enhancing the stability of bioactive peptides and facilitating intestinal absorption. In addition, the application and challenges of common delivery systems such as liposomes, emulsions, polymer nanoparticles, and hydrogels in oral bioactive peptide delivery are also discussed. This paper aims to provide a theoretical foundation for scientific research and practical applications of oral delivery of bioactive peptides, thereby promoting the further development of bioactive peptides in the context of human health.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Zeyao Yang
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Wangang Zhang
- Key Lab of Meat Processing and Quality Control, MOE, School of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lujuan Xing
- Key Lab of Meat Processing and Quality Control, MOE, School of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ruiming Luo
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Songmin Cao
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| |
Collapse
|
6
|
Qin G, Zhang L, Guo J, Fang S, E G, Zeng Y, Huang Y, Han Y. Combined Proteomic and Metabolomic Analysis Reveals Comprehensive Regulation of Somatostatin DNA Vaccine in Goats. Int J Mol Sci 2024; 25:6888. [PMID: 39000000 PMCID: PMC11241611 DOI: 10.3390/ijms25136888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Somatostatin (SS) plays crucial regulatory roles in animal growth and reproduction by affecting the synthesis and secretion of growth hormone (GH). However, the mechanism by which SS regulates growth and development in goats is still unclear. In order to investigate the regulatory networks of the hypothalamus and pituitary in goats affected by SS DNA vaccines, in this study, we used a previously established oral attenuated Salmonella typhimurium SS DNA vaccine, X9241 (ptCS/2SS-asd), to treat wethers. We analyzed the protein changes in hypothalamic and pituitary tissues using a TMT-based proteomics approach. Additionally, we examined the metabolic profiles of the serum of control and immunized wethers through untargeted metabolomics using liquid chromatography-mass spectrometry (LC-MS). Key signaling pathways were identified based on differentially expressed metabolites (DEMs) and differentially expressed proteins (DEPs). Furthermore, the effect of critical DEPs on signaling pathways was confirmed through Western blotting (WB) experiments, which elucidated the mechanism of active SS immunization in wethers. A proteomics analysis revealed that the expression of 58 proteins in the hypothalamus and 124 in the pituitary gland was significantly altered following SS vaccine treatment (fold change > 1.2 or < 0.83, p < 0.05). In the hypothalamus, many DEPs were associated with gene ontology (GO) terms related to neuronal signaling. In contrast, most DEPs were associated with metabolic pathways. In the pituitary gland, the DEPs were largely related to immune and nutrient metabolism functions, with significant enrichment in KEGG pathways, particularly those involving the metabolic pathway, sphingolipid signaling, and the cGMP-PKG signaling pathway. A metabolomic analysis further showed that active SS immunization in wethers led to significant alterations in seven serum metabolites. Notably, the sphingolipid signaling pathway, secondary bile acid synthesis, sphingolipid metabolism, and lysine synthesis were significantly disrupted. SS vaccines induced marked changes in hypothalamic-pituitary proteins in wethers, facilitating alterations in their growth processes. This study not only provides insights into the mechanism of the SS gene in regulating GH secretion in wethers but also establishes a basis for hormone immunoregulation technology to enhance livestock production performance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yanguo Han
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (G.Q.); (L.Z.); (J.G.); (S.F.); (G.E.); (Y.Z.); (Y.H.)
| |
Collapse
|
7
|
Zhao S, Li B, Gao H, Zhang Y. MiR-320a Acts as a Tumor Suppressor in Somatotroph Pituitary Neuroendocrine Tumors by Targeting BCAT1. Neuroendocrinology 2023; 114:14-24. [PMID: 37591221 DOI: 10.1159/000533549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
INTRODUCTION Aberrant miR-320a has been reported to be involved in the tumorigenesis of several cancers. In our previous study, we identified the low expression of circulating miR-320a in patients with somatotroph pituitary neuroendocrine tumor (PitNET); however, the role of miR-320a in somatotroph PitNET proliferation is still unclear. METHODS Cell viability and colony formation assays were used to detect the effect of miR-320a and BCAT1 on GH3 cells. TargetScan was used to identify the target genes of miR-320a. Dual-luciferase reporter gene assay was used to explore the relation between miR-320a and BCAT1. Transcriptome and proteome analyses were performed between somatotroph PitNETs and healthy controls. The expression level of miR-320a in somatotroph PitNETs were detected by RT-qPCR and Western blot. RESULTS miR-320a mimics inhibit cell proliferation, while miR-320a inhibitors promote cell proliferation in GH3 cells. An overlap analysis using a Venn diagram revealed that BCAT1 is the only target gene of miR-320a overexpressed in somatotroph PitNETs compared to healthy controls, as revealed by both microarray and proteomics results. A dual-luciferase reporter gene assay showed that miR-320a may bind to the BCAT1-3'UTR. The transfection of miR-320a mimics downregulated the expression and miR-320a inhibitors and upregulated the expression of BCAT1 in GH3 cells. The interference of BCAT1 expression in GH3 cells downregulated cell proliferation and growth. Pan-cancer analyses demonstrated that high BCAT1 expression often indicates a poor prognosis. CONCLUSION Our findings illustrate that miR-320a may function as a tumor suppressor and BCAT1 may promote tumor progression. miR-320a may inhibit the growth of somatotroph PitNETs by targeting BCAT1.
Collapse
Affiliation(s)
- Sida Zhao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Bin Li
- Department of Neurosurgery, Peking University People's Hospital, Beijing, China
| | - Hua Gao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders Brain Tumor Center, Beijing, China
| |
Collapse
|
8
|
Börzsei R, Borbély É, Kántás B, Hudhud L, Horváth Á, Szőke É, Hetényi C, Helyes Z, Pintér E. The heptapeptide somatostatin analogue TT-232 exerts analgesic and anti-inflammatory actions via SST 4 receptor activation: In silico, in vitro and in vivo evidence in mice. Biochem Pharmacol 2023; 209:115419. [PMID: 36693436 DOI: 10.1016/j.bcp.2023.115419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Since the conventional and adjuvant analgesics have limited effectiveness frequently accompanied by serious side effects, development of novel, potent pain killers for chronic neuropathic and inflammatory pain conditions is a big challenge. Somatostatin (SS) regulates endocrine, vascular, immune and neuronal functions, cell proliferation through 5 Gi protein-coupled receptors (SST1-SST5). SS released from the capsaicin-sensitive peptidergic sensory nerves mediates anti-inflammatory and antinociceptive effects without endocrine actions via SST4. The therapeutic use of the native SS is limited by its diverse biological actions and short plasma elimination half-life. Therefore, SST4 selective SS analogues could be promising analgesic and anti-inflammatory drug candidates with new mode of action. TT-232 is a cyclic heptapeptide showing great affinity to SST4 and SST1. Here, we report the in silico SST4 receptor binding mechanism, in vitro binding (competition assay) and cAMP- decreasing effect of TT-232 in SST4-expressing CHO cells, as well as its analgesic and anti-inflammatory actions in chronic neuropathic pain and arthritis models using wildtype and SST4-deficient mice. TT-232 binds to SST4 with similar interaction energy (-11.03 kcal/mol) to the superagonist J-2156, displaces somatostatin from SST4 binding (10 nM to 30 µM) and inhibits forskolin-stimulated cAMP accumulation (EC50: 371.6 ± 58.03 nmol; Emax: 78.63 ± 2.636 %). Its i.p. injection (100, 200 µg/kg) results in significant, 35.7 % and 50.4 %, analgesic effects upon single administration in chronic neuropathic pain and repeated injection in arthritis models in wildtype, but not in SST4-deficient mice. These results provide evidence that the analgesic effect of TT-232 is mediated by SST4 activation, which might open novel drug developmental potentials. Chemical compounds Chemical compounds studied in this article TT-232 (PubChem CID: 74053735).
Collapse
Affiliation(s)
- Rita Börzsei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary.
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary.
| | - Boglárka Kántás
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary.
| | - Lina Hudhud
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary.
| | - Ádám Horváth
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary; Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus str. 2, H-7624 Pécs, Hungary.
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary; Algonist Biotechnologies GmbH, Karl-Farkas-Gasse str. 22, A-1030 Vienna, Austria; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; Eötvös Lorand Research Network, Chronic Pain Research Group, University of Pécs, H-7624, Pécs, Hungary.
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary; Eötvös Lorand Research Network, Chronic Pain Research Group, University of Pécs, H-7624, Pécs, Hungary.
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary; PharmInVivo Ltd., Szondi str. 10, H-7629 Pécs, Hungary; Algonist Biotechnologies GmbH, Karl-Farkas-Gasse str. 22, A-1030 Vienna, Austria; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; Eötvös Lorand Research Network, Chronic Pain Research Group, University of Pécs, H-7624, Pécs, Hungary.
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary; PharmInVivo Ltd., Szondi str. 10, H-7629 Pécs, Hungary; Algonist Biotechnologies GmbH, Karl-Farkas-Gasse str. 22, A-1030 Vienna, Austria; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; Eötvös Lorand Research Network, Chronic Pain Research Group, University of Pécs, H-7624, Pécs, Hungary.
| |
Collapse
|
9
|
Transcriptomic Profiles of Normal Pituitary Cells and Pituitary Neuroendocrine Tumor Cells. Cancers (Basel) 2022; 15:cancers15010110. [PMID: 36612109 PMCID: PMC9817686 DOI: 10.3390/cancers15010110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
The pituitary gland is one of the most cellularly diverse regions of the brain. Recent advancements in transcriptomic biology, such as single-cell RNA sequencing, bring an unprecedented glimpse into the molecular composition of the pituitary, both in its normal physiological state and in disease. Deciphering the normal pituitary transcriptomic signatures provides a better insight into the ontological origin and development of five types of endocrine cells, a process involving complex cascades of transcription factors that are still being established. In parallel with these observations about normal pituitary development, recent transcriptomic findings on pituitary neuroendocrine tumors (PitNETs) demonstrate both preservations and changes in transcription factor expression patterns compared to those seen during gland development. Furthermore, recent studies also identify differentially expressed genes that drive various tumor behaviors, including hormone hypersecretion and tumor aggression. Understanding the comprehensive multiomic profiles of PitNETs is essential in developing molecular profile-based therapies for PitNETs not curable with current treatment modalities and could eventually help align PitNETs with the breakthroughs being made in applying precision medicine to other tumors.
Collapse
|
10
|
Abstract
Molecular therapeutic targets in growth hormone (GH)-secreting adenomas range from well-characterized surface receptors that recognize approved drugs, to surface and intracellular markers that are potential candidates for new drug development. Currently available medical therapies for patients with acromegaly bind to somatostatin receptors, GH receptor, or dopamine receptors, and lead to attainment of disease control in most patients. The degree of control is variable: however, correlates with both disease aggressiveness and tumor factors that predict treatment response including somatostatin receptor subtype expression, granulation pattern, kinases and their receptors, and other markers of proliferation. A better understanding of the mechanisms underlying these molecular markers and their relationship to outcomes holds promise for expanding treatment options as well as a more personalized approach to treating patients with acromegaly.
Collapse
Affiliation(s)
- Artak Labadzhyan
- Department of Medicine, Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | | |
Collapse
|
11
|
Zhang F, Zhang Q, Zhu J, Yao B, Ma C, Qiao N, He S, Ye Z, Wang Y, Han R, Feng J, Wang Y, Qin Z, Ma Z, Li K, Zhang Y, Tian S, Chen Z, Tan S, Wu Y, Ran P, Wang Y, Ding C, Zhao Y. Integrated proteogenomic characterization across major histological types of pituitary neuroendocrine tumors. Cell Res 2022; 32:1047-1067. [PMID: 36307579 PMCID: PMC9715725 DOI: 10.1038/s41422-022-00736-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 09/30/2022] [Indexed: 02/07/2023] Open
Abstract
Pituitary neuroendocrine tumor (PitNET) is one of the most common intracranial tumors. Due to its extensive tumor heterogeneity and the lack of high-quality tissues for biomarker discovery, the causative molecular mechanisms are far from being fully defined. Therefore, more studies are needed to improve the current clinicopathological classification system, and advanced treatment strategies such as targeted therapy and immunotherapy are yet to be explored. Here, we performed the largest integrative genomics, transcriptomics, proteomics, and phosphoproteomics analysis reported to date for a cohort of 200 PitNET patients. Genomics data indicate that GNAS copy number gain can serve as a reliable diagnostic marker for hyperproliferation of the PIT1 lineage. Proteomics-based classification of PitNETs identified 7 clusters, among which, tumors overexpressing epithelial-mesenchymal transition (EMT) markers clustered into a more invasive subgroup. Further analysis identified potential therapeutic targets, including CDK6, TWIST1, EGFR, and VEGFR2, for different clusters. Immune subtyping to explore the potential for application of immunotherapy in PitNET identified an association between alterations in the JAK1-STAT1-PDL1 axis and immune exhaustion, and between changes in the JAK3-STAT6-FOS/JUN axis and immune infiltration. These identified molecular markers and alternations in various clusters/subtypes were further confirmed in an independent cohort of 750 PitNET patients. This proteogenomic analysis across traditional histological boundaries improves our current understanding of PitNET pathophysiology and suggests novel therapeutic targets and strategies.
Collapse
Affiliation(s)
- Fan Zhang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qilin Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China. .,National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Jiajun Zhu
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Boyuan Yao
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chi Ma
- grid.462338.80000 0004 0605 6769State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan China
| | - Nidan Qiao
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shiman He
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhao Ye
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunzhi Wang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rui Han
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinwen Feng
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongfei Wang
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhaoyu Qin
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zengyi Ma
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kai Li
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yichao Zhang
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sha Tian
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhengyuan Chen
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Subei Tan
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yue Wu
- grid.8547.e0000 0001 0125 2443National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Department of Radiology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng Ran
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ye Wang
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yao Zhao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China. .,National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China. .,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China. .,Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China. .,Neurosurgical Institute of Fudan University, Shanghai, China. .,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Gatto F, Feelders RA, van Koetsveld PM, Dogan F, Neggers SJCCMM, van der Lelij AJ, Amarù J, Ferone D, Hofland LJ. Dissecting the in vitro efficacy of octreotide and cabergoline in GH- and GH/PRL-secreting pituitary tumors. J Clin Endocrinol Metab 2022; 108:e98-e109. [PMID: 36413489 DOI: 10.1210/clinem/dgac675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
CONTEXT Cabergoline (CAB) is an off-label medical therapy for acromegaly, overshadowed by first-generation somatostatin receptor ligands, e.g. octreotide (OCT). OBJECTIVE Head-to-head comparison between OCT and CAB in inhibiting growth hormone (GH) secretion in primary cultures of GH- and GH/PRL-secreting tumors. To investigate the role of somatostatin (SST) and dopamine type 2 (D2R) receptor expression. DESIGN To evaluate the antisecretory effect of OCT and CAB, together with receptor mRNA expression, in 23 tumor cultures. SETTING AND PATIENTS Acromegaly patients referred to the Erasmus Medical Center (Rotterdam, The Netherlands). INTERVENTIONS 72-hour OCT and CAB treatment (10 nM). MAIN OUTCOME MEASURES GH concentrations in cell culture media. RESULTS OCT showed a slightly higher efficacy compared with CAB (GH decrease -39.5% vs. -32.5%, p = 0.079). The effect of the two drugs was superimposable in GH/PRL co-secreting tumors (-42.1% vs. -44.8%), where SST1 and D2R had a higher expression compared to the pure GH-secreting ones (p = 0.020 and p = 0.026). OCT was more effective than CAB in 8/23 cultures, while CAB was more effective than OCT in 3/23 (CAB + group). In CAB + tumors, SST1 expression was higher compared to the other groups (p = 0.034). At ROC curve analysis, SST1 and D2R discriminated between GH and GH/PRL co-secretion (AUC 0.856, p = 0.013; AUC 0.822, p = 0.024). SST1 was the best predictor of CAB response (≥50% GH reduction, AUC 0.913, p = 0.006; 80% sensitivity, 94% specificity). CONCLUSIONS OCT is 5-10% more effective than CAB in vitro. SST1 mRNA expression can represent a reliable marker of GH/PRL co-secreting tumors showing a preferential response to CAB treatment.
Collapse
Affiliation(s)
- Federico Gatto
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine, Division of Endocrinology
- Pituitary Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | - Richard A Feelders
- Department of Internal Medicine, Division of Endocrinology
- Pituitary Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | | | - Fadime Dogan
- Department of Internal Medicine, Division of Endocrinology
| | - Sebastian J C C M M Neggers
- Department of Internal Medicine, Division of Endocrinology
- Pituitary Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | - Aart-Jan van der Lelij
- Department of Internal Medicine, Division of Endocrinology
- Pituitary Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | - Jessica Amarù
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties, University of Genova, Italy
| | - Diego Ferone
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties, University of Genova, Italy
| | - Leo J Hofland
- Department of Internal Medicine, Division of Endocrinology
- Pituitary Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Ji C, Xu W, Ding H, Chen Z, Shi C, Han J, Yu L, Qiao N, Zhang Y, Cao X, Zhou X, Cheng H, Feng H, Luo C, Li Z, Zhou B, Ye Z, Zhao Y. The p300 Inhibitor A-485 Exerts Antitumor Activity in Growth Hormone Pituitary Adenoma. J Clin Endocrinol Metab 2022; 107:e2291-e2300. [PMID: 35247260 PMCID: PMC9113810 DOI: 10.1210/clinem/dgac128] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 12/13/2022]
Abstract
CONTEXT Growth hormone pituitary adenoma (GHPA), a major subtype of pituitary adenoma (PA), can lead to progressive somatic disfigurement, multiple complications, and even increased mortality. The efficacy of current treatments is limited; thus, a novel pharmacological treatment is urgently needed. As a histone acetyltransferase (HAT) coactivator, p300 can regulate the transcription of several genes that are crucial for PA tumorigenesis and progression. However, the role of p300 and its catalytic inhibitor in GHPA is still unclear. OBJECTIVE We aimed to identify the expression of p300 in GHPA and in normal pituitary glands. METHODS The expression of p300 was detected in GHPA and normal pituitary tissues. Genetic knockdown was performed by siRNA. The efficacy of the p300 inhibitor A-485 in the cell cycle, proliferation, apoptosis, and hormone secretion was investigated by flow cytometry, ELISAs, Western blotting, and qRT-PCR. RNA sequencing, bioinformatic analysis, and subsequent validation experiments were performed to reveal the potential biological mechanism of A-485. RESULTS High expression of p300 was found in GHPA tissues compared with normal pituitary tissues. Knockdown of p300 inhibited cell proliferation and clone formation. Treatment with A-485 suppressed cell growth and inhibited the secretion of GH in vitro and in vivo. Further mechanistic studies showed that A-485 could downregulate the expression or activity of several oncogenes, such as genes in the Pttg1, c-Myc, cAMP and PI3K/AKT/mTOR signaling pathways, which are crucial for PA tumorigenesis and progression. CONCLUSION Our findings demonstrate that inhibition of HAT p300 by its selective inhibitor A-485 is a promising therapy for GHPA.
Collapse
Affiliation(s)
- Chenxing Ji
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
| | - Wen Xu
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Hong Ding
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhengyuan Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
| | - Chengzhang Shi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
| | - Jie Han
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Liang Yu
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Nidan Qiao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Yichao Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Xiaoyun Cao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Xiang Zhou
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Haixia Cheng
- Department of Pathology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huijin Feng
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Cheng Luo
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhiyu Li
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Bing Zhou
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| | - Zhao Ye
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Yao Zhao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Zhang Z, Zamojski M, Smith GR, Willis TL, Yianni V, Mendelev N, Pincas H, Seenarine N, Amper MAS, Vasoya M, Cheng WS, Zaslavsky E, Nair VD, Turgeon JL, Bernard DJ, Troyanskaya OG, Andoniadou CL, Sealfon SC, Ruf-Zamojski F. Single nucleus transcriptome and chromatin accessibility of postmortem human pituitaries reveal diverse stem cell regulatory mechanisms. Cell Rep 2022; 38:110467. [PMID: 35263594 PMCID: PMC8957708 DOI: 10.1016/j.celrep.2022.110467] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/23/2021] [Accepted: 02/09/2022] [Indexed: 01/07/2023] Open
Abstract
Despite their importance in tissue homeostasis and renewal, human pituitary stem cells (PSCs) are incompletely characterized. We describe a human single nucleus RNA-seq and ATAC-seq resource from pediatric, adult, and aged postmortem pituitaries (snpituitaryatlas.princeton.edu) and characterize cell-type-specific gene expression and chromatin accessibility programs for all major pituitary cell lineages. We identify uncommitted PSCs, committing progenitor cells, and sex differences. Pseudotime trajectory analysis indicates that early-life PSCs are distinct from the other age groups. Linear modeling of same-cell multiome data identifies regulatory domain accessibility sites and transcription factors that are significantly associated with gene expression in PSCs compared with other cell types and within PSCs. We identify distinct deterministic mechanisms that contribute to heterogeneous marker expression within PSCs. These findings characterize human stem cell lineages and reveal diverse mechanisms regulating key PSC genes and cell type identity. This study profiles the gene expression and chromatin accessibility landscapes in postmortem male and female pituitaries of different ages using single nucleus multiomics technologies. Zhang et al. characterize the pituitary stem cell population and develop computational methods, which allow us to elucidate regulatory mechanisms underlying pituitary stem cell identity.
Collapse
Affiliation(s)
- Zidong Zhang
- Lewis-Sigler Institute for Integrative Genomics and Graduate Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ, USA
| | - Michel Zamojski
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Gregory R Smith
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Thea L Willis
- Center for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Val Yianni
- Center for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Natalia Mendelev
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Hanna Pincas
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Nitish Seenarine
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Mary Anne S Amper
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Mital Vasoya
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Wan Sze Cheng
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Elena Zaslavsky
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Venugopalan D Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Judith L Turgeon
- Department of Internal Medicine, University of California, Davis, Davis, CA, USA
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Olga G Troyanskaya
- Lewis-Sigler Institute for Integrative Genomics and Graduate Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ, USA; Department of Computer Science, Princeton University, Princeton, NJ, USA; Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Cynthia L Andoniadou
- Center for Craniofacial and Regenerative Biology, King's College London, London, UK; Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Stuart C Sealfon
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA.
| | - Frederique Ruf-Zamojski
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA.
| |
Collapse
|
15
|
Yan JL, Chen MY, Chen YL, Chuang CC, Hsu PW, Wei KC, Chang CN. Surgical Outcome and Evaluation of Strategies in the Management of Growth Hormone-Secreting Pituitary Adenomas After Initial Transsphenoidal Pituitary Adenectomy Failure. Front Endocrinol (Lausanne) 2022; 13:756855. [PMID: 35498411 PMCID: PMC9048041 DOI: 10.3389/fendo.2022.756855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/09/2022] [Indexed: 12/02/2022] Open
Abstract
Acromegaly is a systemic disease that requires multidisciplinary treatment to achieve the best clinical outcome. This study aimed to evaluate the outcomes of the endoscopic transsphenoidal approach (TSA) as the primary treatment for somatotroph adenomas and further investigate patients who had suboptimal surgical results. This retrospective study included 83 patients with somatotroph adenomas treated by TSA at our institution from 1999 to 2010. Biochemical remission was defined as hGH <1 and <2.5 ng/ml. Factors associated with failure of TSA and strategy of secondary treatments for refractory and recurrent disease were analyzed. The mean age of patients was 41.1 ± 11.3 years, and the mean follow-up time was 54.2 ± 44.3 months. Approximately 44.5% of patients had residual tumors after TSA. Larger tumor size, higher GH level before the operation, and the existence of residual tumors were associated with TSA failure. Forty-one patients had an inadequate response to TSA or a recurrent lesion, and of these patients, 37 had residual tumor after TSA. Octreotide results in good outcomes in the treatment of DGSA patients, and SRS/EXRT generates good results in treating patients who receive second treatments when remission cannot be reached 6 months after TSA operation.
Collapse
Affiliation(s)
- Jiun-Lin Yan
- Department of Neurosurgery, Keelung Chang Gung Memorial Hospital of the Chang Gung Medical Foundation, Keelung, Taiwan
- Chang Gung University, College of Medicine, Taoyuan, Taiwan
- *Correspondence: Jiun-Lin Yan, ; Chen-Nen Chang,
| | - Mao-Yu Chen
- Department of Neurosurgery, Keelung Chang Gung Memorial Hospital of the Chang Gung Medical Foundation, Keelung, Taiwan
| | - Yao-Liang Chen
- Department of Radiology, Keelung Chang Gung Memorial Hospital of the Chang Gung Medical Foundation, Keelung, Taiwan
| | - Chi-Cheng Chuang
- Chang Gung University, College of Medicine, Taoyuan, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan
| | - Peng-Wei Hsu
- Chang Gung University, College of Medicine, Taoyuan, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan
| | - Kuo-Chen Wei
- Chang Gung University, College of Medicine, Taoyuan, Taiwan
- Department of Radiology, Keelung Chang Gung Memorial Hospital of the Chang Gung Medical Foundation, Keelung, Taiwan
| | - Chen-Nen Chang
- Department of Neurosurgery, Keelung Chang Gung Memorial Hospital of the Chang Gung Medical Foundation, Keelung, Taiwan
- Chang Gung University, College of Medicine, Taoyuan, Taiwan
- Department of Neurosurgery, Xiamen Chang Gung Hospital, Xiamen, Taiwan
- *Correspondence: Jiun-Lin Yan, ; Chen-Nen Chang,
| |
Collapse
|
16
|
Ionovici N, Carsote M, Terzea DC, Predescu AM, Rauten AM, Popescu M. Somatostatin receptors in normal and acromegalic somatotroph cells: the U-turn of the clinician to immunohistochemistry report - a review. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:353-359. [PMID: 33544787 PMCID: PMC7864306 DOI: 10.47162/rjme.61.2.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
This is a narrative review of literature introducing somatostatin receptors (SSTRs) as part of understanding the somatotroph cells since they are positive in normal cells but also in tumoral cells as seen in somatotropinoma, a growth hormone (GH)-producing neoplasia, which causes acromegaly. They are five subtypes of SSTRs (1 to 5), which are immunohistochemically positive in different proportions in somatotropinomas. SSTR types 2 and 5 are most frequent in GH-secreting adenomas and they are both targeted by medical therapy with somatostatin analogues (SSTAs) like first generation Octreotide and Lanreotide (mainly targeting SSTR2) and second generation Pasireotide (with highest affinity for SSTR5), thus heterogeneous SSTRs configuration into the tumor explains different pattern of response to treatment and it might predict it once the SSTRs immunostaining is performed. Monoclonal antibodies are used for immunohistochemical detection of SSTRs; currently, a lack of standardization is presented, and scoring systems, such as Volante, H-score or human epidermal growth factor receptor 2 (HER2)-score, are applied. Immunoreactive markers like SSTRs are the U-turn in clinical practice regarding somatotropinomas since the configuration of subtypes 2 and 5 explains the responsiveness to medical therapy like SSTA. Further achievement of disease control is imperiously necessary because acromegaly has an increased rate of morbidity and mortality.
Collapse
Affiliation(s)
- Nina Ionovici
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, C. I. Parhon National Institute of Endocrinology, Bucharest, Romania;
| | | | | | | | | | | |
Collapse
|
17
|
Somatostatin-Dopamine Chimeric Molecules in Neuroendocrine Neoplasms. J Clin Med 2021; 10:jcm10030501. [PMID: 33535394 PMCID: PMC7867079 DOI: 10.3390/jcm10030501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroendocrine neoplasms (NENs) are a widely heterogeneous family of neoplasms arising from neuroendocrine cells, which are interspersed throughout the body. Despite NENs are relatively rare, their incidence and prevalence are constantly increasing probably due to the improvement in earlier diagnosis and patients’ management. When surgery is not curative, particularly for patients with metastatic disease, several medical options are available. Somatostatin analogues (SSA) are the first-line medical therapy for well-differentiated NENs. Interestingly, the heterodimerization of somatostatin receptors (SSTs) with dopamine receptors (DRs) has been discovered in NENs. This phenomenon results in hybrid receptors with enhanced functional activity. On these bases, chimeric molecules embracing somatostatin and dopamine features have been recently developed. The aim of this review is to provide a comprehensive overview of the available preclinical and clinical data regarding chimeric somatostatin-dopamine agonists as a new class of “magic bullet” in the therapy of NENs.
Collapse
|
18
|
Fattah S, Ismaiel M, Murphy B, Rulikowska A, Frias JM, Winter DC, Brayden DJ. Salcaprozate sodium (SNAC) enhances permeability of octreotide across isolated rat and human intestinal epithelial mucosae in Ussing chambers. Eur J Pharm Sci 2020; 154:105509. [PMID: 32777258 DOI: 10.1016/j.ejps.2020.105509] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/21/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022]
Abstract
Octreotide is approved as a one-month injectable for treatment of acromegaly and neuroendocrine tumours. Oral delivery of the octapeptide is a challenge due mainly to low intestinal epithelial permeability. The intestinal permeation enhancer (PE) salcaprozate sodium (SNAC) has Generally Regarded As Safe (GRAS) status and is a component of an approved oral peptide formulation. The purpose of the study was to examine the capacity of salcaprozate sodium (SNAC), to increase its permeability across isolated rat intestinal mucosae from five regions and across human colonic mucosae mounted in Ussing chambers. Apical-side buffers were Kreb's-Henseleit (KH), fasted simulated intestinal fluid (FaSSIF-V2), rat simulated intestinal fluid (rSIF), and colonic simulated intestinal fluid (FaSSCoF). The basal apparent permeability coefficient (Papp) of [3H]-octreotide was equally low across rat intestinal regional mucosae in KH, rSIF, and FaSSIF-V2. Apical addition of 20 mM SNAC increased the Papp across rat tissue in KH: colon (by 3.2-fold) > ileum (3.4-fold) > upper jejunum (2.3-fold) > duodenum (1.4-fold) > stomach (1.4-fold). 20 mM and 40 mM SNAC also increased the Papp by 1.5-fold and 2.1-fold respectively across human colonic mucosae in KH. Transepithelial electrical resistance (TEER) values were reduced in the presence in SNAC especially in colonic regions. LC-MS/MS analysis of permeated unlabelled octreotide across human colonic mucosae in the presence of SNAC indicated that [3H]-octreotide remained intact. No gross damage was caused to rat or human mucosae by SNAC. Attenuation of the effects of SNAC was seen in rat jejunal mucosae incubated with FaSSIF-V2 and rSIF, and also to some extent in human colonic mucosae using FaSSCoF, suggesting interaction between SNAC with buffer components. In conclusion, SNAC showed potential as an intestinal permeation enhancer for octreotide, but in vivo efficacy may be attenuated by interactions with GI luminal fluid contents.
Collapse
Affiliation(s)
- Sarinj Fattah
- School of Veterinary Medicine, Conway Institute, and Science Foundation Ireland CÚRAM Centre for Medical Devices, University College Dublin (UCD), Belfield, Dublin 4, Ireland.
| | - Mohamed Ismaiel
- Department of Surgery, St. Vincent's University Hospital, Dublin 4, Ireland; School of Medicine and Medical Science, UCD, Belfield, Dublin 4, Ireland
| | - Brenda Murphy
- Department of Surgery, St. Vincent's University Hospital, Dublin 4, Ireland; School of Medicine and Medical Science, UCD, Belfield, Dublin 4, Ireland
| | - Aleksandra Rulikowska
- Environmental Sustainability and Health Institute. Technological University of Dublin, Dublin 7, Ireland
| | - Jesus M Frias
- Environmental Sustainability and Health Institute. Technological University of Dublin, Dublin 7, Ireland
| | - Desmond C Winter
- Department of Surgery, St. Vincent's University Hospital, Dublin 4, Ireland; School of Medicine and Medical Science, UCD, Belfield, Dublin 4, Ireland
| | - David J Brayden
- School of Veterinary Medicine, Conway Institute, and Science Foundation Ireland CÚRAM Centre for Medical Devices, University College Dublin (UCD), Belfield, Dublin 4, Ireland.
| |
Collapse
|
19
|
Tyrosine Hydroxylase Neurons Regulate Growth Hormone Secretion via Short-Loop Negative Feedback. J Neurosci 2020; 40:4309-4322. [PMID: 32317389 DOI: 10.1523/jneurosci.2531-19.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Classical studies suggest that growth hormone (GH) secretion is controlled by negative-feedback loops mediated by GH-releasing hormone (GHRH)- or somatostatin-expressing neurons. Catecholamines are known to alter GH secretion and neurons expressing TH are located in several brain areas containing GH-responsive cells. However, whether TH-expressing neurons are required to regulate GH secretion via negative-feedback mechanisms is unknown. In the present study, we showed that between 50% and 90% of TH-expressing neurons in the periventricular, paraventricular, and arcuate hypothalamic nuclei and locus ceruleus of mice exhibited STAT5 phosphorylation (pSTAT5) after an acute GH injection. Ablation of GH receptor (GHR) from TH cells or in the entire brain markedly increased GH pulse secretion and body growth in both male and female mice. In contrast, GHR ablation in cells that express the dopamine transporter (DAT) or dopamine β-hydroxylase (DBH; marker of noradrenergic/adrenergic cells) did not affect body growth. Nevertheless, less than 50% of TH-expressing neurons in the hypothalamus were found to express DAT. Ablation of GHR in TH cells increased the hypothalamic expression of Ghrh mRNA, although very few GHRH neurons were found to coexpress TH- and GH-induced pSTAT5. In summary, TH neurons that do not express DAT or DBH are required for the autoregulation of GH secretion via a negative-feedback loop. Our findings revealed a critical and previously unidentified group of catecholaminergic interneurons that are apt to sense changes in GH levels and regulate the somatotropic axis in mice.SIGNIFICANCE STATEMENT Textbooks indicate until now that the pulsatile pattern of growth hormone (GH) secretion is primarily controlled by GH-releasing hormone and somatostatin neurons. The regulation of GH secretion relies on the ability of these cells to sense changes in circulating GH levels to adjust pituitary GH secretion within a narrow physiological range. However, our study identifies a specific population of tyrosine hydroxylase-expressing neurons that is critical to autoregulate GH secretion via a negative-feedback loop. The lack of this mechanism in transgenic mice results in aberrant GH secretion and body growth. Since GH plays a key role in cell proliferation, body growth, and metabolism, our findings provide a major advance to understand how the brain regulates the somatotropic axis.
Collapse
|
20
|
Neou M, Villa C, Armignacco R, Jouinot A, Raffin-Sanson ML, Septier A, Letourneur F, Diry S, Diedisheim M, Izac B, Gaspar C, Perlemoine K, Verjus V, Bernier M, Boulin A, Emile JF, Bertagna X, Jaffrezic F, Laloe D, Baussart B, Bertherat J, Gaillard S, Assié G. Pangenomic Classification of Pituitary Neuroendocrine Tumors. Cancer Cell 2020; 37:123-134.e5. [PMID: 31883967 DOI: 10.1016/j.ccell.2019.11.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/07/2019] [Accepted: 11/21/2019] [Indexed: 12/14/2022]
Abstract
Pituitary neuroendocrine tumors (PitNETs) are common, with five main histological subtypes: lactotroph, somatotroph, and thyrotroph (POU1F1/PIT1 lineage); corticotroph (TBX19/TPIT lineage); and gonadotroph (NR5A1/SF1 lineage). We report a comprehensive pangenomic classification of PitNETs. PitNETs from POU1F1/PIT1 lineage showed an epigenetic signature of diffuse DNA hypomethylation, with transposable elements expression and chromosomal instability (except for GNAS-mutated somatotrophs). In TPIT lineage, corticotrophs were divided into three classes: the USP8-mutated with overt secretion, the USP8-wild-type with increased invasiveness and increased epithelial-mesenchymal transition, and the large silent tumors with gonadotroph transdifferentiation. Unexpected expression of gonadotroph markers was also found in GNAS-wild-type somatotrophs (SF1 expression), challenging the current definition of SF1/gonadotroph lineage. This classification improves our understanding and affects the clinical stratification of patients with PitNETs.
Collapse
Affiliation(s)
- Mario Neou
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes-Université de Paris, 75006 Paris, France
| | - Chiara Villa
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes-Université de Paris, 75006 Paris, France; Department of Pathological Cytology and Anatomy, Foch Hospital, 92151 Suresnes, France; Department of Endocrinology, Sart Tilman B35, 4000 Liège, Belgium
| | - Roberta Armignacco
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes-Université de Paris, 75006 Paris, France
| | - Anne Jouinot
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes-Université de Paris, 75006 Paris, France
| | - Marie-Laure Raffin-Sanson
- Department of Endocrinology, Hôpital Ambroise Paré, Assistance Publique-Hôpitaux de Paris, 92100 Boulogne Billancourt, France; UE4340, Université de Versailles Saint-Quentin-en-Yvelines Montigny-le-Bretonneux, 78000 Versailles, France
| | - Amandine Septier
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes-Université de Paris, 75006 Paris, France
| | - Franck Letourneur
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes-Université de Paris, 75006 Paris, France; Plate-Forme Séquençage et Génomique (Genom'IC), INSERM U1016, Institut Cochin, 75014 Paris, France
| | - Ségolène Diry
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes-Université de Paris, 75006 Paris, France
| | - Marc Diedisheim
- Department of Diabetology, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, 75014 Paris, France
| | - Brigitte Izac
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes-Université de Paris, 75006 Paris, France; Plate-Forme Séquençage et Génomique (Genom'IC), INSERM U1016, Institut Cochin, 75014 Paris, France
| | - Cassandra Gaspar
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes-Université de Paris, 75006 Paris, France; Sorbonne Université, Inserm, UMS PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, P3S, 75013 Paris, France
| | - Karine Perlemoine
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes-Université de Paris, 75006 Paris, France
| | - Victoria Verjus
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes-Université de Paris, 75006 Paris, France
| | - Michèle Bernier
- Department of Pathological Cytology and Anatomy, Foch Hospital, 92151 Suresnes, France
| | - Anne Boulin
- Department of Diagnostic and Interventional Neuroradiology, Foch Hospital, 92151 Suresnes, France
| | - Jean-François Emile
- Department of Pathology, Ambroise Paré, Assistance Publique-Hôpitaux de Paris, 92100 Boulogne Billancourt, France
| | - Xavier Bertagna
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes-Université de Paris, 75006 Paris, France; Department of Endocrinology, Center for Rare Adrenal Diseases, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, 75014 Paris, France
| | - Florence Jaffrezic
- INRA, UMR 1313 GABI, Université Paris Saclay, AgroParisTech, 78352 Jouy-en-Josas, France
| | - Denis Laloe
- INRA, UMR 1313 GABI, Université Paris Saclay, AgroParisTech, 78352 Jouy-en-Josas, France
| | | | - Jérôme Bertherat
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes-Université de Paris, 75006 Paris, France; Department of Endocrinology, Center for Rare Adrenal Diseases, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, 75014 Paris, France
| | - Stephan Gaillard
- Department of Neurosurgery, Foch Hospital, 92151 Suresnes, France
| | - Guillaume Assié
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes-Université de Paris, 75006 Paris, France; Department of Endocrinology, Center for Rare Adrenal Diseases, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, 75014 Paris, France.
| |
Collapse
|
21
|
Chang M, Yang C, Bao X, Wang R. Genetic and Epigenetic Causes of Pituitary Adenomas. Front Endocrinol (Lausanne) 2020; 11:596554. [PMID: 33574795 PMCID: PMC7870789 DOI: 10.3389/fendo.2020.596554] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/23/2020] [Indexed: 01/30/2023] Open
Abstract
Pituitary adenomas (PAs) can be classified as non-secreting adenomas, somatotroph adenomas, corticotroph adenomas, lactotroph adenomas, and thyrotroph adenomas. Substantial advances have been made in our knowledge of the pathobiology of PAs. To obtain a comprehensive understanding of the molecular biological characteristics of different types of PAs, we reviewed the important advances that have been made involving genetic and epigenetic variation, comprising genetic mutations, chromosome number variations, DNA methylation, microRNA regulation, and transcription factor regulation. Classical tumor predisposition syndromes include multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4) syndromes, Carney complex, and X-LAG syndromes. PAs have also been described in association with succinate dehydrogenase-related familial PA, neurofibromatosis type 1, and von Hippel-Lindau, DICER1, and Lynch syndromes. Patients with aryl hydrocarbon receptor-interacting protein (AIP) mutations often present with pituitary gigantism, either in familial or sporadic adenomas. In contrast, guanine nucleotide-binding protein G(s) subunit alpha (GNAS) and G protein-coupled receptor 101 (GPR101) mutations can lead to excess growth hormone. Moreover, the deubiquitinase gene USP8, USP48, and BRAF mutations are associated with adrenocorticotropic hormone production. In this review, we describe the genetic and epigenetic landscape of PAs and summarize novel insights into the regulation of pituitary tumorigenesis.
Collapse
Affiliation(s)
| | | | - Xinjie Bao
- *Correspondence: Xinjie Bao, ; Renzhi Wang,
| | | |
Collapse
|
22
|
Lin S, Zhang A, Zhang X, Wu ZB. Treatment of Pituitary and Other Tumours with Cabergoline: New Mechanisms and Potential Broader Applications. Neuroendocrinology 2020; 110:477-488. [PMID: 31597135 DOI: 10.1159/000504000] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/09/2019] [Indexed: 11/19/2022]
Abstract
Cabergoline is a dopamine agonist that has been used as the first-line treatment option for prolactin-secreting pituitary adenomas for several decades. It not only suppresses hormone production from these prolactinomas, but also causes tumour shrinkage. Recent studies revealed some novel mechanisms by which cabergoline suppresses tumour cell proliferation and induces cell death. In this article, we review the most recent findings in cabergoline studies, focusing on its anti-tumour function. These studies suggest the potential broader clinical use of cabergoline in the treatment of other tumours such as breast cancer, pancreatic neuroendocrine tumours, and lung cancer.
Collapse
Affiliation(s)
- Shaojian Lin
- Center of Pituitary Tumour, Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anke Zhang
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xun Zhang
- Neuroendocrine Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Zhe Bao Wu
- Center of Pituitary Tumour, Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
| |
Collapse
|
23
|
Vélez EJ, Unniappan S. A Comparative Update on the Neuroendocrine Regulation of Growth Hormone in Vertebrates. Front Endocrinol (Lausanne) 2020; 11:614981. [PMID: 33708174 PMCID: PMC7940767 DOI: 10.3389/fendo.2020.614981] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/31/2020] [Indexed: 12/22/2022] Open
Abstract
Growth hormone (GH), mainly produced from the pituitary somatotrophs is a key endocrine regulator of somatic growth. GH, a pleiotropic hormone, is also involved in regulating vital processes, including nutrition, reproduction, physical activity, neuroprotection, immunity, and osmotic pressure in vertebrates. The dysregulation of the pituitary GH and hepatic insulin-like growth factors (IGFs) affects many cellular processes associated with growth promotion, including protein synthesis, cell proliferation and metabolism, leading to growth disorders. The metabolic and growth effects of GH have interesting applications in different fields, including the livestock industry and aquaculture. The latest discoveries on new regulators of pituitary GH synthesis and secretion deserve our attention. These novel regulators include the stimulators adropin, klotho, and the fibroblast growth factors, as well as the inhibitors, nucleobindin-encoded peptides (nesfatin-1 and nesfatin-1-like peptide) and irisin. This review aims for a comparative analysis of our current understanding of the endocrine regulation of GH from the pituitary of vertebrates. In addition, we will consider useful pharmacological molecules (i.e. stimulators and inhibitors of the GH signaling pathways) that are important in studying GH and somatotroph biology. The main goal of this review is to provide an overview and update on GH regulators in 2020. While an extensive review of each of the GH regulators and an in-depth analysis of specifics are beyond its scope, we have compiled information on the main endogenous and pharmacological regulators to facilitate an easy access. Overall, this review aims to serve as a resource on GH endocrinology for a beginner to intermediate level knowledge seeker on this topic.
Collapse
|
24
|
Biological and Biochemical Basis of the Differential Efficacy of First and Second Generation Somatostatin Receptor Ligands in Neuroendocrine Neoplasms. Int J Mol Sci 2019; 20:ijms20163940. [PMID: 31412614 PMCID: PMC6720449 DOI: 10.3390/ijms20163940] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
Endogenous somatostatin shows anti-secretory effects in both physiological and pathological settings, as well as inhibitory activity on cell growth. Since somatostatin is not suitable for clinical practice, researchers developed synthetic somatostatin receptor ligands (SRLs) to overcome this limitation. Currently, SRLs represent pivotal tools in the treatment algorithm of neuroendocrine tumors (NETs). Octreotide and lanreotide are the first-generation SRLs developed and show a preferential binding affinity to somatostatin receptor (SST) subtype 2, while pasireotide, which is a second-generation SRL, has high affinity for multiple SSTs (SST5 > SST2 > SST3 > SST1). A number of studies demonstrated that first-generation and second-generation SRLs show distinct functional properties, besides the mere receptor affinity. Therefore, the aim of the present review is to critically review the current evidence on the biological effects of SRLs in pituitary adenomas and neuroendocrine tumors, by mainly focusing on the differences between first-generation and second-generation ligands.
Collapse
|
25
|
de Boon WMI, van Esdonk MJ, Stuurman FE, Biermasz NR, Pons L, Paty I, Burggraaf J. A Novel Somatostatin-Dopamine Chimera (BIM23B065) Reduced GH Secretion in a First-in-Human Clinical Trial. J Clin Endocrinol Metab 2019; 104:883-891. [PMID: 30371791 DOI: 10.1210/jc.2018-01364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/23/2018] [Indexed: 02/02/2023]
Abstract
CONTEXT A somatostatin-dopamine chimera (BIM23B065) was under investigation to reduce GH secretion for the treatment of pituitary adenomas. OBJECTIVE To determine pharmacokinetics, safety, and tolerability and to monitor hormonal changes after single and multiple subcutaneous BIM23B065 administrations. DESIGN Randomized, double-blind, placebo-controlled, parallel-group design with five single and three 13-day multiple ascending-dose cohorts. PATIENTS A total of 63 healthy male white volunteers were enrolled (47 active, 16 placebo). MAIN OUTCOME MEASURES Pharmacokinetics, GH, prolactin (PRL), IGF-1, GH after GHRH administration, and general clinical safety criteria. RESULTS The maximum dosage of BIM23B065 administered in this study was 1.5 mg. BIM23B065 reduced the mean GH concentrations after 8 and 13 days of treatment. A decrease in GH release after GHRH administration indicated inhibition of the hypothalamic-pituitary-somatotropic axis. IGF-1 was not altered after single doses but showed a significant change from baseline after multiple dosing. PRL secretion was reduced in all subjects who were treated. Orthostatic hypotension and injection site reactions were commonly observed at high dosages. A 6-day uptitration period was included to successfully lower the cardiovascular effects in the multiple ascending dose part of the study. CONCLUSIONS Proof of pharmacology of BIM23B065 was shown by a reduction in GH, IGF-1, and PRL concentrations in healthy male volunteers, supporting activity of the somatostatin analog and dopamine agonist moieties. The safety and tolerability of the higher dosing regions was limited mainly by orthostatic hypotension.
Collapse
Affiliation(s)
| | - Michiel J van Esdonk
- Centre for Human Drug Research, Leiden, Netherlands
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Frederik E Stuurman
- Centre for Human Drug Research, Leiden, Netherlands
- Leiden University Medical Center, Leiden, Netherlands
| | - Nienke R Biermasz
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | | | | | - Jacobus Burggraaf
- Centre for Human Drug Research, Leiden, Netherlands
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
26
|
Gadelha MR, Kasuki L, Lim DST, Fleseriu M. Systemic Complications of Acromegaly and the Impact of the Current Treatment Landscape: An Update. Endocr Rev 2019; 40:268-332. [PMID: 30184064 DOI: 10.1210/er.2018-00115] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/26/2018] [Indexed: 12/19/2022]
Abstract
Acromegaly is a chronic systemic disease with many complications and is associated with increased mortality when not adequately treated. Substantial advances in acromegaly treatment, as well as in the treatment of many of its complications, mainly diabetes mellitus, heart failure, and arterial hypertension, were achieved in the last decades. These developments allowed change in both prevalence and severity of some acromegaly complications and furthermore resulted in a reduction of mortality. Currently, mortality seems to be similar to the general population in adequately treated patients with acromegaly. In this review, we update the knowledge in complications of acromegaly and detail the effects of different acromegaly treatment options on these complications. Incidence of mortality, its correlation with GH (cumulative exposure vs last value), and IGF-I levels and the shift in the main cause of mortality in patients with acromegaly are also addressed.
Collapse
Affiliation(s)
- Mônica R Gadelha
- Neuroendocrinology Research Center/Endocrine Section and Medical School, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Neuroendocrine Section, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, Brazil.,Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Leandro Kasuki
- Neuroendocrinology Research Center/Endocrine Section and Medical School, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Neuroendocrine Section, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, Brazil.,Endocrine Unit, Hospital Federal de Bonsucesso, Rio de Janeiro, Brazil
| | - Dawn S T Lim
- Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| | - Maria Fleseriu
- Department of Endocrinology, Diabetes and Metabolism, Oregon Health and Science University, Portland, Oregon.,Department of Neurological Surgery, Oregon Health and Science University, Portland, Oregon.,Northwest Pituitary Center, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
27
|
Gatto F, Arvigo M, Amarù J, Campana C, Cocchiara F, Graziani G, Bruzzone E, Giusti M, Boschetti M, Ferone D. Cell specific interaction of pasireotide: review of preclinical studies in somatotroph and corticotroph pituitary cells. Pituitary 2019; 22:89-99. [PMID: 30483918 DOI: 10.1007/s11102-018-0926-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Pasireotide is a second-generation somatostatin (SRIF) receptor ligand (SRL), approved for medical treatment of acromegaly and Cushing's disease (CD). The molecule is a stable cyclohexapeptide synthetized based on SRIF structure. Differently from first-generation SRLs (e.g. octreotide), preferentially binding somatostatin receptor (SST) subtype 2 (SST2), pasireotide has high affinity for multiple SSTs (SST5 > SST2 > SST3 > SST1). Interestingly, early preclinical studies demonstrated that pasireotide shows distinct functional properties compared to SRIF and first-generation SRLs when binding SSTs. METHODS We aimed to highlight the differential receptor-targeted action of pasireotide in the treatment of somatotroph and corticotroph adenomas, throughout the critical revision of preclinical studies carried out on acromegaly and CD models. RESULTS Different authors demonstrated that the antisecretory effect of pasireotide in somatotroph adenoma cell cultures is comparable to that of the SST2-preferential agonist octreotide. Some reports even show a direct correlation between SST2 mRNA expression and GH reduction after pasireotide treatment, thus laying for a predominant role of SST2 in driving pasireotide efficacy in somatotropinomas in vitro. On the other hand, the inhibitory effect of pasireotide on ACTH secretion in corticotropinoma cells seems to be mainly mediated by SST5. Indeed, most reports show a higher potency and efficacy of pasireotide compared to SST2 preferential agonists, while functional studies confirm the pivotal role of SST5 targeting in corticotroph cells. CONCLUSIONS The analysis of preclinical studies carried out in somatotroph and corticoph adenomas points out that pasireotide shows a cell-specific activity, exerting its biological effects via different SSTs in the different adenoma histotypes.
Collapse
Affiliation(s)
- Federico Gatto
- Endocrinology Unit, Department of Internal Medicine, Policlinico San Martino, 16132, Genoa, Italy.
| | | | | | | | | | | | | | - Massimo Giusti
- Endocrinology Unit, Department of Internal Medicine, Policlinico San Martino, 16132, Genoa, Italy
- University of Genoa, Genoa, Italy
| | - Mara Boschetti
- Endocrinology Unit, Department of Internal Medicine, Policlinico San Martino, 16132, Genoa, Italy
- University of Genoa, Genoa, Italy
| | - Diego Ferone
- Endocrinology Unit, Department of Internal Medicine, Policlinico San Martino, 16132, Genoa, Italy
- University of Genoa, Genoa, Italy
| |
Collapse
|
28
|
Venegas-Moreno E, Vazquez-Borrego MC, Dios E, Gros-Herguido N, Flores-Martinez A, Rivero-Cortés E, Madrazo-Atutxa A, Japón MA, Luque RM, Castaño JP, Cano DA, Soto-Moreno A. Association between dopamine and somatostatin receptor expression and pharmacological response to somatostatin analogues in acromegaly. J Cell Mol Med 2017; 22:1640-1649. [PMID: 29266696 PMCID: PMC5824369 DOI: 10.1111/jcmm.13440] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/27/2017] [Indexed: 12/14/2022] Open
Abstract
Acromegaly is a hormonal disorder resulting from excessive growth hormone (GH) secretion frequently produced by pituitary adenomas and consequent increase in insulin‐like growth factor 1 (IGF‐I). Elevated GH and IGF‐I levels result in a wide range of somatic, cardiovascular, endocrine, metabolic and gastrointestinal morbidities. Somatostatin analogues (SSAs) form the basis of medical therapy for acromegaly and are currently used as first‐line treatment or as second‐line therapy in patients undergoing unsuccessful surgery. However, a considerable percentage of patients do not respond to SSAs treatment. Somatostatin receptors (SSTR1‐5) and dopamine receptors (DRD1‐5) subtypes play critical roles in the regulation of hormone secretion. These receptors are considered important pharmacological targets to inhibit hormone oversecretion. It has been proposed that decreased expression of SSTRs may be associated with poor response to SSAs. Here, we systematically examine SSTRs and DRDs expression in human somatotroph adenomas by quantitative PCR. We observed an association between the response to SSAs treatment and DRD4, DRD5, SSTR1 and SSTR2 expression. We also examined SSTR expression by immunohistochemistry and found that the immunohistochemical detection of SSTR2 in particular might be a good predictor of response to SSAs.
Collapse
Affiliation(s)
- Eva Venegas-Moreno
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Mari C Vazquez-Borrego
- Department of Cell Biology, Physiology and Immunology, Maimonides Institute For Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital (HURS), CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Agrifood Campus of International Excellence (ceiA3), University of Cordoba, Cordoba, Spain
| | - Elena Dios
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Noelia Gros-Herguido
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Alvaro Flores-Martinez
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Esther Rivero-Cortés
- Department of Cell Biology, Physiology and Immunology, Maimonides Institute For Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital (HURS), CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Agrifood Campus of International Excellence (ceiA3), University of Cordoba, Cordoba, Spain
| | - Ainara Madrazo-Atutxa
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Miguel A Japón
- Department of Pathology, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Raúl M Luque
- Department of Cell Biology, Physiology and Immunology, Maimonides Institute For Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital (HURS), CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Agrifood Campus of International Excellence (ceiA3), University of Cordoba, Cordoba, Spain
| | - Justo P Castaño
- Department of Cell Biology, Physiology and Immunology, Maimonides Institute For Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital (HURS), CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Agrifood Campus of International Excellence (ceiA3), University of Cordoba, Cordoba, Spain
| | - David A Cano
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Alfonso Soto-Moreno
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
29
|
Progress in the formulation and delivery of somatostatin analogs for acromegaly. Ther Deliv 2017; 8:867-878. [DOI: 10.4155/tde-2017-0064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A 14 amino acid cystin bridge containing neuropeptide was discovered in 1973 and designated as growth hormone-inhibiting hormone, in other words, somatostatin. Its discovery led to the synthesis of three analogs which were licensed for the treatment of acromegaly: octreotide, lanreotide and pasireotide. Somatostatin analogs are currently approved only as either subcutaneous or intramuscular long-acting injections. We examine the challenges that must be overcome to create oral formulations of somatostatin analogs and examine selected clinical trial data. While octreotide has low intestinal permeability, similar to almost all other peptides, it has an advantage of being more stable against intestinal peptidases. The development of new oral formulation strategies may eventually allow for the successful oral administration of potent somatostatin analogs with high therapeutic indices.
Collapse
|