1
|
Raff H. Salivary Cortisol and Cortisone Measurement Improves ACTH Stimulation Testing in Women Taking Oral Contraceptives. J Clin Endocrinol Metab 2024; 109:e1669-e1670. [PMID: 38214548 DOI: 10.1210/clinem/dgae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/13/2024]
Affiliation(s)
- Hershel Raff
- Division of Endocrinology and Molecular Medicine, Departments of Medicine, Surgery and Physiology, and the Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
2
|
Wright K, van Rossum EFC, Zan E, Werner N, Harris A, Feelders RA, Agrawal N. Emerging diagnostic methods and imaging modalities in cushing's syndrome. Front Endocrinol (Lausanne) 2023; 14:1230447. [PMID: 37560300 PMCID: PMC10407789 DOI: 10.3389/fendo.2023.1230447] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
Endogenous Cushing's syndrome (CS) is a rare disease characterized by prolonged glucocorticoid excess. Timely diagnosis is critical to allow prompt treatment and limit long-term disease morbidity and risk for mortality. Traditional biochemical diagnostic modalities each have limitations and sensitivities and specificities that vary significantly with diagnostic cutoff values. Biochemical evaluation is particularly complex in patients whose hypercortisolemia fluctuates daily, often requiring repetition of tests to confirm or exclude disease, and when delineating CS from physiologic, nonneoplastic states of hypercortisolism. Lastly, traditional pituitary MRI may be negative in up to 60% of patients with adrenocorticotropic hormone (ACTH)-secreting pituitary adenomas (termed "Cushing's disease" [CD]) whereas false positive pituitary MRI findings may exist in patients with ectopic ACTH secretion. Thus, differentiating CD from ectopic ACTH secretion may necessitate dynamic testing or even invasive procedures such as bilateral inferior petrosal sinus sampling. Newer methods may relieve some of the diagnostic uncertainty in CS, providing a more definitive diagnosis prior to subjecting patients to additional imaging or invasive procedures. For example, a novel method of cortisol measurement in patients with CS is scalp hair analysis, a non-invasive method yielding cortisol and cortisone values representing long-term glucocorticoid exposure of the past months. Hair cortisol and cortisone have both shown to differentiate between CS patients and controls with a high sensitivity and specificity. Moreover, advances in imaging techniques may enhance detection of ACTH-secreting pituitary adenomas. While conventional pituitary MRI may fail to identify microadenomas in patients with CD, high-resolution 3T-MRI with 3D-spoiled gradient-echo sequence has thinner sections and superior soft-tissue contrast that can detect adenomas as small as 2 mm. Similarly, functional imaging may improve the identification of ACTH-secreting adenomas noninvasively; Gallium-68-tagged corticotropin-releasing hormone (CRH) combined with PET-CT can be used to detect CRH receptors, which are upregulated on corticotroph adenomas. This technique can delineate functionality of adenomas in patients with CD from patients with ectopic ACTH secretion and false positive pituitary lesions on MRI. Here, we review emerging methods and imaging modalities for the diagnosis of CS, discussing their diagnostic accuracy, strengths and limitations, and applicability to clinical practice.
Collapse
Affiliation(s)
- Kyla Wright
- New York University (NYU) Grossman School of Medicine, New York, NY, United States
| | - Elisabeth F. C. van Rossum
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical College (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Elcin Zan
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Nicole Werner
- New York University (NYU) Grossman School of Medicine, New York, NY, United States
| | - Alan Harris
- Department of Medicine, Division of Endocrinology, New York University (NYU) Langone Medical Center, New York, NY, United States
| | - Richard A. Feelders
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical College (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nidhi Agrawal
- Department of Medicine, Division of Endocrinology, New York University (NYU) Langone Medical Center, New York, NY, United States
| |
Collapse
|
3
|
Findling JW, Raff H. Recognition of Nonneoplastic Hypercortisolism in the Evaluation of Patients With Cushing Syndrome. J Endocr Soc 2023; 7:bvad087. [PMID: 37440963 PMCID: PMC10334485 DOI: 10.1210/jendso/bvad087] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Indexed: 07/15/2023] Open
Abstract
The evaluation of suspected hypercortisolism is one of the most challenging problems in medicine. The signs and symptoms described by Dr Harvey Cushing are common and often create diagnostic confusion to even experienced endocrinologists. Cushing syndrome is classically defined as neoplastic hypercortisolism resulting from an ACTH-secreting tumor or from autonomous secretion of excess cortisol associated with benign or malignant adrenal neoplasia. The increasing recognition of the negative cardiometabolic effects of mild cortisol excess without overt physical signs of Cushing syndrome has led to more screening for endogenous hypercortisolism in patients with adrenal nodular disease, osteoporosis, and the metabolic syndrome. However, sustained or intermittent activation of the dynamic hypothalamic-pituitary-adrenal axis caused by chemical (alcohol), inflammatory (chronic kidney disease), psychologic (major depression), and physical (starvation/chronic intense exercise) stimuli can result in clinical and/or biochemical features indistinguishable from neoplastic hypercortisolism. Nonneoplastic hypercortisolism (formerly known as pseudo-Cushing syndrome) has been recognized for more than 50 years and often causes diagnostic uncertainty. This expert consultation describes two patients with features of Cushing syndrome who were referred for inferior petrosal sinus sampling for the differential diagnosis of ACTH-dependent hypercortisolism. Both patients were discovered to have nonneoplastic hypercortisolism: one from a covert alcohol use disorder and the other to chronic kidney disease. This consultation emphasizes the value of a good history and physical examination, appropriate laboratory testing, and the desmopressin acetate stimulation test to aid in distinguishing neoplastic from nonneoplastic hypercortisolism.
Collapse
Affiliation(s)
- James W Findling
- Department of Medicine (Endocrinology and Molecular Medicine), Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hershel Raff
- Correspondence: Hershel Raff, PhD, Endocrinology Research HRC4150, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA.
| |
Collapse
|
4
|
Musacchio S, Kallenbach MD, Huber DL, Raff H, Johnson BD, Leddy J, McCrea MA, Meier TB, Nelson LD. Salivary Cortisol Dynamics After Mild Traumatic Brain Injury. J Head Trauma Rehabil 2023; 38:E318-E327. [PMID: 36696236 PMCID: PMC10329977 DOI: 10.1097/htr.0000000000000855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To assess mild traumatic brain injury (mTBI)-related alterations in baseline (resting) salivary cortisol and cortisol reactivity to cognitive and exercise stressors, which are frequently encountered during mTBI rehabilitation and recovery. SETTING Persons with mTBI were recruited from a level 1 trauma center emergency department. Uninjured controls (UCs) were recruited from the community. PARTICIPANTS Participants were 37 individuals with mTBI and 24 UCs. All patients with mTBI were enrolled at 7 ± 3 days post-injury, met the American Congress of Rehabilitation Medicine definition of mTBI, and had no acute intracranial findings on clinical neuroimaging (if performed). DESIGN A prospective cohort study design was used. All participants provided saliva samples 10 times during each of 2 visits spaced 3 weeks apart (1 week and 1 month post-injury for the mTBI group). Each visit included baseline saliva sampling and sampling to evaluate reactivity to a cognitive stressor (Paced Auditory Serial Addition Test) and physical stressor (Buffalo Concussion Treadmill Test [BCTT]). MAIN OUTCOME MEASURE Natural log-transformed salivary cortisol was measured by enzyme immunoassay. Cortisol was predicted using a linear mixed-effects model by group (mTBI and UC), visit (1 week and 1 month), and saliva sample. RESULTS Mean salivary cortisol was higher in the mTBI group (1.67 nmol/L [95% CI 1.42-1.72]) than in controls (1.30 nmol/L [1.12-1.47]), without an mTBI × time interaction. At 1 week, the mTBI group had greater cortisol reactivity in response to the BCTT. CONCLUSIONS Higher cortisol in individuals with mTBI at 1 week and 1 month post-injury extends previous findings into the subacute recovery period. Furthermore, the mTBI group demonstrated a greater cortisol response to mild-to-moderate aerobic exercise (BCTT) at 1 week post-injury. Given the increasing role of exercise in mTBI rehabilitation, further research is warranted to replicate these findings and identify the clinical implications, if any, of enhanced hypothalamic-pituitary-adrenal axis responses to exercise in civilians with recent mTBI.
Collapse
Affiliation(s)
- Sophia Musacchio
- Departments of Neurosurgery (Ms Musacchio, Mx Kallenbach, Mr Huber, and Drs McCrea, Meier, and Nelson) and Medicine, Surgery, and Physiology (Dr Raff), Medical College of Wisconsin, Milwaukee; Endocrine Research Laboratory, Aurora St Luke's Medical Center, Advocate Aurora Research Institute, Milwaukee, Wisconsin (Dr Raff); Department of Kinesiology, Indiana University, Bloomington (Dr Johnson); and UBMD Orthopaedics and Sports Medicine, and SUNY Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York (Dr Leddy)
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Karachaliou CE, Koukouvinos G, Goustouridis D, Raptis I, Kakabakos S, Petrou P, Livaniou E. Cortisol Immunosensors: A Literature Review. BIOSENSORS 2023; 13:bios13020285. [PMID: 36832050 PMCID: PMC9954523 DOI: 10.3390/bios13020285] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 05/26/2023]
Abstract
Cortisol is a steroid hormone that is involved in a broad range of physiological processes in human/animal organisms. Cortisol levels in biological samples are a valuable biomarker, e.g., of stress and stress-related diseases; thus, cortisol determination in biological fluids, such as serum, saliva and urine, is of great clinical value. Although cortisol analysis can be performed with chromatography-based analytical techniques, such as liquid chromatography-tandem mass spectrometry (LC-MS/MS), conventional immunoassays (radioimmunoassays (RIAs), enzyme-linked immunosorbent assays (ELISAs), etc.) are considered the "gold standard" analytical methodology for cortisol, due to their high sensitivity along with a series of practical advantages, such as low-cost instrumentation, an assay protocol that is fast and easy to perform, and high sample throughput. Especially in recent decades, research efforts have focused on the replacement of conventional immunoassays by cortisol immunosensors, which may offer further improvements in the field, such as real-time analysis at the point of care (e.g., continuous cortisol monitoring in sweat through wearable electrochemical sensors). In this review, most of the reported cortisol immunosensors, mainly electrochemical and also optical ones, are presented, focusing on their immunosensing/detection principles. Future prospects are also briefly discussed.
Collapse
Affiliation(s)
- Chrysoula-Evangelia Karachaliou
- Immunopeptide Chemistry Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research ‘‘Demokritos”, P.O. Box 60037, 153 10 Agia Paraskevi, Greece
| | - Georgios Koukouvinos
- Immunoassay/Immunosensors Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research ‘‘Demokritos”, P.O. Box 60037, 153 10 Agia Paraskevi, Greece
| | - Dimitrios Goustouridis
- ThetaMetrisis S.A., Christou Lada 40, 121 32 Athens, Greece
- Department of Electrical & Electronics Engineering, University of West Attica, 122 44 Athens, Greece
| | - Ioannis Raptis
- ThetaMetrisis S.A., Christou Lada 40, 121 32 Athens, Greece
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research ‘‘Demokritos”, P.O. Box 60037, 153 10 Agia Paraskevi, Greece
| | - Sotirios Kakabakos
- Immunoassay/Immunosensors Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research ‘‘Demokritos”, P.O. Box 60037, 153 10 Agia Paraskevi, Greece
| | - Panagiota Petrou
- Immunoassay/Immunosensors Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research ‘‘Demokritos”, P.O. Box 60037, 153 10 Agia Paraskevi, Greece
| | - Evangelia Livaniou
- Immunopeptide Chemistry Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research ‘‘Demokritos”, P.O. Box 60037, 153 10 Agia Paraskevi, Greece
| |
Collapse
|
6
|
Bertherat J, Bourdeau I, Bouys L, Chasseloup F, Kamenicky P, Lacroix A. Clinical, pathophysiologic, genetic and therapeutic progress in Primary Bilateral Macronodular Adrenal Hyperplasia. Endocr Rev 2022:6957368. [PMID: 36548967 DOI: 10.1210/endrev/bnac034] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/07/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Patients with primary bilateral macronodular adrenal hyperplasia (PBMAH) usually present bilateral benign adrenocortical macronodules at imaging and variable levels of cortisol excess. PBMAH is a rare cause of primary overt Cushing's syndrome, but may represent up to one third of bilateral adrenal incidentalomas with evidence of cortisol excess. The increased steroidogenesis in PBMAH is often regulated by various G-protein coupled receptors aberrantly expressed in PBMAH tissues; some receptor ligands are ectopically produced in PBMAH tissues creating aberrant autocrine/paracrine regulation of steroidogenesis. The bilateral nature of PBMAH and familial aggregation, led to the identification of germline heterozygous inactivating mutations of the ARMC5 gene, in 20-25% of the apparent sporadic cases and more frequently in familial cases; ARMC5 mutations/pathogenic variants can be associated with meningiomas. More recently, combined germline mutations/pathogenic variants and somatic events inactivating the KDM1A gene were specifically identified in patients affected by GIP-dependent PBMAH. Functional studies demonstrated that inactivation of KDM1A leads to GIP-receptor (GIPR) overexpression and over or down-regulation of other GPCRs. Genetic analysis is now available for early detection of family members of index cases with PBMAH carrying identified germline pathogenic variants. Detailed biochemical, imaging, and co-morbidities assessment of the nature and severity of PBMAH is essential for its management. Treatment is reserved for patients with overt or mild cortisol/aldosterone or other steroid excesses taking in account co-morbidities. It previously relied on bilateral adrenalectomy; however recent studies tend to favor unilateral adrenalectomy, or less frequently, medical treatment with cortisol synthesis inhibitors or specific blockers of aberrant GPCR.
Collapse
Affiliation(s)
- Jerôme Bertherat
- Department of Endocrinology and National Reference Center for Rare Adrenal Disorders, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 24 rue du Fg St Jacques, Paris 75014, France
| | - Isabelle Bourdeau
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Lucas Bouys
- Department of Endocrinology and National Reference Center for Rare Adrenal Disorders, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 24 rue du Fg St Jacques, Paris 75014, France
| | - Fanny Chasseloup
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Service d'Endocrinologie et des Maladies de la Reproduction, 94276 Le Kremlin-Bicêtre, France
| | - Peter Kamenicky
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Service d'Endocrinologie et des Maladies de la Reproduction, 94276 Le Kremlin-Bicêtre, France
| | - André Lacroix
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| |
Collapse
|
7
|
Fleseriu M. Special issue: Cushing's disease update. Pituitary 2022; 25:687-688. [PMID: 36001219 DOI: 10.1007/s11102-022-01271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Maria Fleseriu
- Departments of Medicine and Neurological Surgery, Pituitary Center, Oregon Health & Science University, 3303 South Bond Avenue, Mail Code CH8N, Portland, OR, 97239, USA.
| |
Collapse
|
8
|
Cai Y, Ren L, Tan S, Liu X, Li C, Gang X, Wang G. Mechanism, diagnosis, and treatment of cyclic Cushing's syndrome: A review. Biomed Pharmacother 2022; 153:113301. [PMID: 35717778 DOI: 10.1016/j.biopha.2022.113301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
Cushing's syndrome (CS) is caused by hypercortisolemia, leading to the occurrence of characteristic clinical symptoms. A small number of patients with CS have periodic and intermittent increases in cortisol levels, resulting in recurrent episodes of clinical symptoms. Such patients are known as having cyclic CS (CCS). The cortisol secretion cycle of patients with CCS is unpredictable, and laboratory tests often show negative results during the normal cortisol secretion period; therefore, the diagnosis and treatment of the disease are currently difficult. Although the pathogenesis of CCS remains uncertain, recent studies have suggested that it may be closely related to hypothalamic factors, feedback mechanisms, and tumor infarction. Our review summarizes the current state of research on the potential mechanisms, diagnosis, and treatment of CS and provides an outlook for future studies.
Collapse
Affiliation(s)
- Yunjia Cai
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, China
| | - Linan Ren
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, China
| | - Shuwen Tan
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, China
| | - Xinming Liu
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, China
| | - Chen Li
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, China.
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|