1
|
Philips JG, Dudley KJ, Waterhouse PM, Hellens RP. The Rapid Methylation of T-DNAs Upon Agrobacterium Inoculation in Plant Leaves. FRONTIERS IN PLANT SCIENCE 2019; 10:312. [PMID: 30930927 PMCID: PMC6428780 DOI: 10.3389/fpls.2019.00312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/26/2019] [Indexed: 05/10/2023]
Abstract
Agrobacterium tumefaciens has been foundational in the development of transgenic plants for both agricultural biotechnology and plant molecular research. However, the transformation efficiency and level of transgene expression obtained for any given construct can be highly variable. These inefficiencies often require screening of many lines to find one with consistent and heritable transgene expression. Transcriptional gene silencing is known to affect transgene expression, and is associated with DNA methylation, especially of cytosines in symmetric CG and CHG contexts. While the specificity, heritability and silencing-associated effects of DNA methylation of transgene sequences have been analyzed in many stably transformed plants, the methylation status of transgene sequences in the T-DNA during the transformation process has not been well-studied. Here we used agro-infiltration of the eGFP reporter gene in Nicotiana benthamiana leaves driven by either an AtEF1α-A4 or a CaMV-35S promoter to study early T-DNA methylation patterns of these promoter sequences. The T-DNA was examined by amplicon sequencing following sodium bisulfite treatment using three different sequencing platforms: Sanger sequencing, Ion Torrent PGM, and the Illumina MiSeq. Rapid DNA methylation was detectable in each promoter region just 2-3 days post-infiltration and the levels continued to rapidly accumulate over the first week, then steadily up to 21 days later. Cytosines in an asymmetric context (CHH) were the most heavily and rapidly methylated. This suggests that early T-DNA methylation may be important in determining the epigenetic and transcriptional fate of integrated transgenes. The Illumina MiSeq platform was the most sensitive and robust way of detecting and following the methylation profiles of the T-DNA promoters. The utility of the methods was then used to show a subtle but significant difference in promoter methylation during intron-mediated enhancement. In addition, the method was able to detect an increase in promoter methylation when the eGFP reporter gene was targeted by siRNAs generated by co-infiltration of a hairpin RNAi construct.
Collapse
Affiliation(s)
- Joshua G. Philips
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
- *Correspondence: Joshua G. Philips,
| | - Kevin J. Dudley
- Institute for Future Environments, Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, Australia
| | - Peter M. Waterhouse
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
- Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
| | - Roger P. Hellens
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
- Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Khadeeva NV, Yakovleva EY, Sydoruk KV, Korostyleva TV, Istomina EA, Dunaevsky YE, Odintsova TI, Bogush VG, Belozersky MA. Molecular genetic analysis of collection of transgenic tobacco plants with buckwheat serine proteases inhibitor gene during long-term subculture. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417110047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Sun Y, Joyce PA. Application of droplet digital PCR to determine copy number of endogenous genes and transgenes in sugarcane. PLANT CELL REPORTS 2017; 36:1775-1783. [PMID: 28849385 DOI: 10.1007/s00299-017-2193-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/02/2017] [Indexed: 05/25/2023]
Abstract
Droplet digital PCR combined with the low copy ACT allele as endogenous reference gene, makes accurate and rapid estimation of gene copy number in Q208 A and Q240 A attainable. Sugarcane is an important cultivated crop with both high polyploidy and aneuploidy in its 10 Gb genome. Without a known copy number reference gene, it is difficult to accurately estimate the copy number of any gene of interest by PCR-based methods in sugarcane. Recently, a new technology, known as droplet digital PCR (ddPCR) has been developed which can measure the absolute amount of the target DNA in a given sample. In this study, we deduced the true copy number of three endogenous genes, actin depolymerizing factor (ADF), adenine phosphoribosyltransferase (APRT) and actin (ACT) in three Australian sugarcane varieties, using ddPCR by comparing the absolute amounts of the above genes with a transgene of known copy number. A single copy of the ACT allele was detected in Q208 A , two copies in Q240 A , but was absent in Q117. Copy number variation was also observed for both APRT and ADF, and ranged from 9 to 11 in the three tested varieties. Using this newly developed ddPCR method, transgene copy number was successfully determined in 19 transgenic Q208 A and Q240 A events using ACT as the reference endogenous gene. Our study demonstrates that ddPCR can be used for high-throughput genetic analysis and is a quick, accurate and reliable alternative method for gene copy number determination in sugarcane. This discovered ACT allele would be a suitable endogenous reference gene for future gene copy number variation and dosage studies of functional genes in Q208 A and Q240 A .
Collapse
Affiliation(s)
- Yue Sun
- Sugar Research Australia, 50 Meiers Road, Indooroopilly, QLD, 4068, Australia.
| | - Priya Aiyar Joyce
- Sugar Research Australia, 50 Meiers Road, Indooroopilly, QLD, 4068, Australia
| |
Collapse
|
4
|
Hartmann M, Gas-Pascual E, Hemmerlin A, Rohmer M, Bach TJ. Development of an image-based screening system for inhibitors of the plastidial MEP pathway and of protein geranylgeranylation. F1000Res 2015; 4:14. [PMID: 26309725 PMCID: PMC4536634 DOI: 10.12688/f1000research.5923.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2015] [Indexed: 03/26/2024] Open
Abstract
In a preceding study we have recently established an in vivo visualization system for the geranylgeranylation of proteins in a stably transformed tobacco BY-2 cell line, which involves expressing a dexamethasone-inducible GFP fused to the prenylable, carboxy-terminal basic domain of the rice calmodulin CaM61, which naturally bears a CaaL geranylgeranylation motif (GFP-BD-CVIL). By using pathway-specific inhibitors it was there demonstrated that inhibition of the methylerythritol phosphate (MEP) pathway with oxoclomazone and fosmidomycin, as well as inhibition of protein geranylgeranyl transferase type 1 (PGGT-1), shifted the localization of the GFP-BD-CVIL protein from the membrane to the nucleus. In contrast, the inhibition of the mevalonate (MVA) pathway with mevinolin did not affect this localization. Furthermore, in this initial study complementation assays with pathway-specific intermediates confirmed that the precursors for the cytosolic isoprenylation of this fusion protein are predominantly provided by the MEP pathway. In order to optimize this visualization system from a more qualitative assay to a statistically trustable medium or a high-throughput screening system, we established now new conditions that permit culture and analysis in 96-well microtiter plates, followed by fluorescence microscopy. For further refinement, the existing GFP-BD-CVIL cell line was transformed with an estradiol-inducible vector driving the expression of a RFP protein, C-terminally fused to a nuclear localization signal (NLS-RFP). We are thus able to quantify the total number of viable cells versus the number of inhibited cells after various treatments. This approach also includes a semi-automatic counting system, based on the freely available image processing software. As a result, the time of image analysis as well as the risk of user-generated bias is reduced to a minimum. Moreover, there is no cross-induction of gene expression by dexamethasone and estradiol, which is an important prerequisite for this test system.
Collapse
Affiliation(s)
- Michael Hartmann
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
- Current address: Department Biologie, Institut für Molekulare Ökophysiologie der Pflanzen, Universität Düsseldorf, Universitätsstr. 1, D-40225, Düsseldorf, Germany
| | - Elisabet Gas-Pascual
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
- Current address: Horticulture and Crop Science, Ohio State University, 208 Williams Hall, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Andrea Hemmerlin
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
| | - Michel Rohmer
- UMR 7177 CNRS/Université de Strasbourg, Institut Le Bel, 4 rue Blaise Pascal, F-67070 Strasbourg, France
| | - Thomas J. Bach
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
| |
Collapse
|
5
|
Hartmann M, Gas-Pascual E, Hemmerlin A, Rohmer M, Bach TJ. Development of an image-based screening system for inhibitors of the plastidial MEP pathway and of protein geranylgeranylation. F1000Res 2015; 4:14. [PMID: 26309725 PMCID: PMC4536634 DOI: 10.12688/f1000research.5923.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2014] [Indexed: 11/20/2022] Open
Abstract
We have recently established an in vivo visualization system for the geranylgeranylation of proteins in a stably transformed tobacco BY-2 cell line, which involves expressing a dexamethasone-inducible GFP fused to the prenylable, carboxy-terminal basic domain of the rice calmodulin CaM61, which naturally bears a CaaL geranylgeranylation motif (GFP-BD-CVIL). By using pathway-specific inhibitors it was demonstrated that inhibition of the methylerythritol phosphate (MEP) pathway with oxoclomazone and fosmidomycin, as well as inhibition of protein geranylgeranyl transferase type 1 (PGGT-1), shifted the localization of the GFP-BD-CVIL protein from the membrane to the nucleus. In contrast, the inhibition of the mevalonate (MVA) pathway with mevinolin did not affect this localization. Furthermore, complementation assays with pathway-specific intermediates confirmed that the precursors for the cytosolic isoprenylation of this fusion protein are predominantly provided by the MEP pathway. In order to optimize this visualization system from a more qualitative assay to a statistically trustable medium or a high-throughput screening system, we established new conditions that permit culture and analysis in 96-well microtiter plates, followed by fluorescence microscopy. For further refinement, the existing GFP-BD-CVIL cell line was transformed with an estradiol-inducible vector driving the expression of a RFP protein, C-terminally fused to a nuclear localization signal (NLS-RFP). We are thus able to quantify the total number of viable cells versus the number of inhibited cells after various treatments. This approach also includes a semi-automatic counting system, based on the freely available image processing software. As a result, the time of image analysis as well as the risk of user-generated bias is reduced to a minimum. Moreover, there is no cross-induction of gene expression by dexamethasone and estradiol, which is an important prerequisite for this test system.
Collapse
Affiliation(s)
- Michael Hartmann
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
- Current address: Department Biologie, Institut für Molekulare Ökophysiologie der Pflanzen, Universität Düsseldorf, Universitätsstr. 1, D-40225, Düsseldorf, Germany
| | - Elisabet Gas-Pascual
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
- Current address: Horticulture and Crop Science, Ohio State University, 208 Williams Hall, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Andrea Hemmerlin
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
| | - Michel Rohmer
- UMR 7177 CNRS/Université de Strasbourg, Institut Le Bel, 4 rue Blaise Pascal, F-67070 Strasbourg, France
| | - Thomas J. Bach
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
| |
Collapse
|
6
|
Zhao M, San León D, Delgadillo MO, García JA, Simón-Mateo C. Virus-induced gene silencing in transgenic plants: transgene silencing and reactivation associate with two patterns of transgene body methylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:440-452. [PMID: 24916614 DOI: 10.1111/tpj.12579] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/09/2014] [Accepted: 05/21/2014] [Indexed: 06/03/2023]
Abstract
We used bisulfite sequencing to study the methylation of a viral transgene whose expression was silenced upon plum pox virus infection of the transgenic plant and its subsequent recovery as a consequence of so-called virus-induced gene silencing (VIGS). VIGS was associated with a general increase in the accumulation of small RNAs corresponding to the coding region of the viral transgene. After VIGS, the transgene promoter was not methylated and the coding region showed uneven methylation, with the 5' end being mostly unmethylated in the recovered tissue or mainly methylated at CG sites in regenerated silenced plants. The methylation increased towards the 3' end, which showed dense methylation in all three contexts (CG, CHG and CHH). This methylation pattern and the corresponding silenced status were maintained after plant regeneration from recovered silenced tissue and did not spread into the promoter region, but were not inherited in the sexual offspring. Instead, a new pattern of methylation was observed in the progeny plants consisting of disappearance of the CHH methylation, similar CHG methylation at the 3' end, and an overall increase in CG methylation in the 5' end. The latter epigenetic state was inherited over several generations and did not correlate with transgene silencing and hence virus resistance. These results suggest that the widespread CG methylation pattern found in body gene bodies located in euchromatic regions of plant genomes may reflect an older silencing event, and most likely these genes are no longer silenced.
Collapse
Affiliation(s)
- Mingmin Zhao
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas or (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | | | | | | |
Collapse
|
7
|
Jiang Y, Sun L, Jiang M, Li K, Song Y, Zhu C. Production of marker-free and RSV-resistant transgenic rice using a twin T-DNA system and RNAi. J Biosci 2013; 38:573-81. [PMID: 23938389 DOI: 10.1007/s12038-013-9349-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A twin T-DNA system is a convenient strategy for creating selectable marker-free transgenic plants. The standard transformation plasmid, pCAMBIA 1300, was modified into a binary vector consisting of two separate T-DNAs, one of which contained the hygromycin phosphotransferase (hpt) marker gene. Using this binary vector, we constructed two vectors that expressed inverted-repeat (IR) structures targeting the rice stripe virus (RSV) coat protein (CP) gene and the special-disease protein (SP) gene. Transgenic rice lines were obtained via Agrobacterium-mediated transformation. Seven independent clones harbouring both the hpt marker gene and the target genes (RSV CP or SP) were obtained in the primary transformants of pDTRSVCP and pDTRSVSP, respectively. The segregation frequencies of the target gene and the marker gene in the T1 plants were 8.72 percent for pDTRSVCP and 12.33 percent for pDTRSVSP. Two of the pDTRSVCP lines and three pDTRSVSP lines harbouring the homozygous target gene, but not the hpt gene, were strongly resistant to RSV. A molecular analysis of the resistant transgenic plants confirmed the stable integration and expression of the target genes. The resistant transgenic plants displayed lower levels of the transgene transcripts and specific small interfering RNAs, suggesting that RNAi induced the viral resistance.
Collapse
Affiliation(s)
- Yayuan Jiang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, P.R. China, 271018
| | | | | | | | | | | |
Collapse
|
8
|
Fladung M, Hoenicka H, Raj Ahuja M. Genomic stability and long-term transgene expression in poplar. Transgenic Res 2013; 22:1167-78. [DOI: 10.1007/s11248-013-9719-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
|
9
|
Springer NM. Epigenetics and crop improvement. Trends Genet 2012; 29:241-7. [PMID: 23128009 DOI: 10.1016/j.tig.2012.10.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/08/2012] [Accepted: 10/08/2012] [Indexed: 11/28/2022]
Abstract
There is considerable excitement about the potential for epigenetic information to contribute to heritable variation in many species. Our understanding of the molecular mechanisms of epigenetic inheritance is rapidly growing, and it is now possible to profile the epigenome at high resolution. Epigenetic information plays a role in developmental gene regulation, response to the environment, and in natural variation of gene expression levels. Because of these central roles, there is the potential for epigenetics to play a role in crop improvement strategies including the selection for favorable epigenetic states, creation of novel epialleles, and regulation of transgene expression. In this review we consider the potential, and the limitations, of epigenetic variation in crop improvement.
Collapse
Affiliation(s)
- Nathan M Springer
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, Saint Paul, MN 55108, USA.
| |
Collapse
|
10
|
Jackson MA, Anderson DJ, Birch RG. Comparison of Agrobacterium and particle bombardment using whole plasmid or minimal cassette for production of high-expressing, low-copy transgenic plants. Transgenic Res 2012; 22:143-51. [PMID: 22869288 DOI: 10.1007/s11248-012-9639-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 07/20/2012] [Indexed: 11/28/2022]
Abstract
Transgene integration complexity in the recipient genome can be an important determinant of transgene expression and field performance in transgenic crops. We provide the first direct comparison of Agrobacterium-mediated transformation (AMT) and particle bombardment using whole plasmid (WP) and excised minimal cassettes (MC), for transformation efficiency, transgene integration complexity and transgene expression in plants. To enable direct comparison, a selectable marker and a luciferase reporter gene were linked in identical configurations in plasmids suitable for AMT or direct gene transfer into sugarcane. Transformation efficiencies were similar between WP and MC when equal molar DNA quantities were delivered. When the MC concentration was reduced from 66 to 6.6 ng per shot, transformation efficiency dropped fourfold, to a level equivalent with AMT in amenable genotype Q117. The highest proportion of transformants combining low copy number (estimated below two integrated copies by qPCR) with expression of the non-selected reporter gene was obtained using AMT (55 %) or MC at low DNA concentration (30 %). In sugarcane, both of these methods yielded high-expressing, single-copy transgenic plant lines at a workable efficiency for practical plant improvement; but AMT is currently limited to a few amenable genotypes. These methods are best coupled with rapid early screens for desired molecular characteristics of transformants, e.g. PCR screens for low copy number and/or transcription of the gene of practical interest.
Collapse
Affiliation(s)
- Mark A Jackson
- The University of Queensland, Hines Plant Science Building, Mansfield Place, Brisbane, QLD, 4072, Australia
| | | | | |
Collapse
|
11
|
Expression of a rice chitinase gene in transgenic banana ('Gros Michel', AAA genome group) confers resistance to black leaf streak disease. Transgenic Res 2012; 22:117-30. [PMID: 22791138 PMCID: PMC3525978 DOI: 10.1007/s11248-012-9631-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/30/2012] [Indexed: 12/03/2022]
Abstract
Transgenic banana (Musa acuminata ‘Gros Michel’) integrating either of two rice chitinase genes was generated and its resistance to Black Leaf Streak disease caused by the fungus Mycosphaerella fijiensis was tested using a leaf disk bioassay. PCR screening indicated the presence of the hpt selectable marker gene in more than 90 % of the lines tested, whereas more than three quarters of the lines contained the linked rice chitinase gene resulting in a co-transformation frequency of at least 71.4 %. Further, a unique stable integration of the transgenes in each line revealed some false negative PCR results and the expected co-transformation frequency of 100 %. The transgene insert number per line ranged from 1 to 5 and single transgene insert lines (25 % of all) were identified. Considerable delay in disease development (up to 63 days post-incoculation) over a monitoring period of 108 days occurred in nine lines with extracellularly targeted chitinase out of 17 transgenic lines tested and their necrotic leaf area decreased by 73–94 % compared to the untransformed susceptible control line. Finally, correlation between symptom development and rice chitinase expression was confirmed in two lines by Western analysis. The potential of rice chitinase genes to enhance resistance against M. fijiensis in banana was demonstrated as well as the usefulness of the leaf disk bioassay for early disease screening in transgenic banana lines.
Collapse
|
12
|
Dosage-Dependent Gene Expression from Direct Repeat Locus in Rice Developed by Site-Specific Gene Integration. Mol Biotechnol 2010; 45:15-23. [DOI: 10.1007/s12033-009-9235-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Khadeeva NV, Yakovleva EY. Inheritance of marker and target genes in seed and vegetative progenies of transgenic tobacco plants carrying the buckwheat serine protease inhibitor gene. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410010084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Choi HW, Yu XH, Lemaux PG, Cho MJ. Stability and inheritance of endosperm-specific expression of two transgenes in progeny from crossing independently transformed barley plants. PLANT CELL REPORTS 2009; 28:1265-1272. [PMID: 19529943 PMCID: PMC2717377 DOI: 10.1007/s00299-009-0726-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 05/11/2009] [Accepted: 05/27/2009] [Indexed: 05/27/2023]
Abstract
To study stability and inheritance of two different transgenes in barley, we crossed a homozygous T(8) plant, having uidA (or gus) driven by the barley endosperm-specific B(1)-hordein promoter (localized in the near centromeric region of chromosome 7H) with a second homozygous T(4) plant, having sgfp(S65T) driven by the barley endosperm-specific D-hordein promoter (localized on the subtelomeric region of chromosome 2H). Both lines stably expressed the two transgenes in the generations prior to the cross. Three independently crossed F(1) progeny were analyzed by PCR for both uidA and sgfp(S65T) in each plant and functional expression of GUS and GFP in F(2) seeds followed a 3:1 Mendelian segregation ratio and transgenes were localized by FISH to the same location as in the parental plants. FISH was used to screen F(2) plants for homozygosity of both transgenes; four homozygous plants were identified from the two crossed lines tested. FISH results showing presence of transgenes were consistent with segregation ratios of expression of both transgenes, indicating that the two transgenes were expressed without transgene silencing in homozygous progeny advanced to the F(3) and F(4) generations. Thus, even after crossing independently transformed, homozygous parental plants containing a single, stably expressed transgene, progeny were obtained that continued to express multiple transgenes through generation advance. Such stability of transgenes, following outcrossing, is an important attribute for trait modification and for gene flow studies.
Collapse
Affiliation(s)
- Hae-Woon Choi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
- School of Bioscience and Biotechnology, Chungnam National University, Daejeon, 305-764 Korea
| | - Xiao-Hong Yu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
- Biology Department, Brookhaven National Laboratory, 50 Bell Avenue, Upton, NY 11973 USA
| | - Peggy G. Lemaux
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Myeong-Je Cho
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
- RWC Research Campus, Pioneer Hi-Bred International, Inc., 700A Bay Road, Redwood City, CA 94063 USA
| |
Collapse
|
15
|
Krizova K, Fojtova M, Depicker A, Kovarik A. Cell culture-induced gradual and frequent epigenetic reprogramming of invertedly repeated tobacco transgene epialleles. PLANT PHYSIOLOGY 2009; 149:1493-504. [PMID: 19129419 PMCID: PMC2649402 DOI: 10.1104/pp.108.133165] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 12/22/2008] [Indexed: 05/04/2023]
Abstract
Using a two-component transgene system involving two epiallelic variants of the invertedly repeated transgenes in locus 1 (Lo1) and a homologous single-copy transgene locus 2 (Lo2), we have studied the stability of the methylation patterns and trans-silencing interactions in cell culture and regenerated tobacco (Nicotiana tabacum) plants. The posttranscriptionally silenced (PTGS) epiallele of the Lo1 trans-silences and trans-methylates the target Lo2 in a hybrid (Lo1/Lo2 line), while its transcriptionally silenced variant (Lo1E) does not. This pattern was stable over several generations in plants. However, in early Lo1E/Lo2 callus, decreased transgene expression and partial loss of Lo1E promoter methylation compared with leaf tissue in the parental plant were observed. Analysis of small RNA species and coding region methylation suggested that the transgenes were silenced by a PTGS mechanism. The Lo1/Lo2 line remained silenced, but the nonmethylated Lo1 promoter acquired partial methylation in later callus stages. These data indicate that a cell culture process has brought both epialleles to a similar epigenetic ground. Bisulfite sequencing of the 35S promoter within the Lo1 silencer revealed molecules with no, intermediate, and high levels of methylation, demonstrating, to our knowledge for the first time, cell-to-cell methylation diversity of callus. Regenerated plants showed high interindividual but low intraindividual epigenetic variability, indicating that the callus-induced epiallelic variants were transmitted to plants and became fixed. We propose that epigenetic changes associated with dedifferentiation might influence regulatory pathways mediated by trans-PTGS processes.
Collapse
Affiliation(s)
- Katerina Krizova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic
| | | | | | | |
Collapse
|
16
|
Lunerová-Bedrichová J, Bleys A, Fojtová M, Khaitová L, Depicker A, Kovarík A. Trans-generation inheritance of methylation patterns in a tobacco transgene following a post-transcriptional silencing event. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:1049-62. [PMID: 18315537 DOI: 10.1111/j.1365-313x.2008.03475.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We have studied the inheritance of the epigenetic state of tobacco transgenes whose expression was post-transcriptionally silenced by an invertedly repeated silencer locus. We show that, in hybrids, the coding region of the target neomycin phosphotransferase (nptII) gene was almost exclusively methylated at CG configurations, and dense non-CG methylation occurred in the 3' untranslated region. Homologous sequences in the silencer locus were heavily methylated at both CG and non-CG motifs. After segregation of the silencer locus, the CG methylation but not the non-CG methylation of the target genes was transmitted to the progeny. In the segregants, we observed an overall increase of CG methylation in the target genes, associated with a re-distribution from the 3' end of the coding region towards the middle. This pattern was inherited with some fluctuation for at least two additional generations in the absence of a detectable T-DNA-derived small RNA fraction. Thus CG methylation is not cleared during meiosis and may be inherited over generations without RNA signals being present. These epi-allelic variants re-expressed the reporter gene immediately after segregation of the trigger, showing that relatively dense CG methylation (approximately 60-80%) imprinted on most of the coding region (>500 bp) did not reduce expression compared with the parental non-methylated locus. We propose that the genic CG methylation seen in euchromatic regions of the genome may originate from ancient post-transcriptional gene silencing events as a result of adventitiously produced methylation-directing RNA molecules.
Collapse
Affiliation(s)
- Jana Lunerová-Bedrichová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
17
|
McGinnis K, Murphy N, Carlson AR, Akula A, Akula C, Basinger H, Carlson M, Hermanson P, Kovacevic N, McGill MA, Seshadri V, Yoyokie J, Cone K, Kaeppler HF, Kaeppler SM, Springer NM. Assessing the efficiency of RNA interference for maize functional genomics. PLANT PHYSIOLOGY 2007; 143:1441-51. [PMID: 17307899 PMCID: PMC1851846 DOI: 10.1104/pp.106.094334] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 02/05/2007] [Indexed: 05/14/2023]
Abstract
A large-scale functional genomics project was initiated to study the function of chromatin-related genes in maize (Zea mays). Transgenic lines containing short gene segments in inverted repeat orientation designed to reduce expression of target genes by RNA interference (RNAi) were isolated, propagated, and analyzed in a variety of assays. Analysis of the selectable marker expression over multiple generations revealed that most transgenes were transmitted faithfully, whereas some displayed reduced transmission or transgene silencing. A range of target-gene silencing efficiencies, from nondetectable silencing to nearly complete silencing, was revealed by semiquantitative reverse transcription-PCR analysis of transcript abundance for the target gene. In some cases, the RNAi construct was able to cause a reduction in the steady-state RNA levels of not only the target gene, but also another closely related gene. Correlation of silencing efficiency with expression level of the target gene and sequence features of the inverted repeat did not reveal any factors capable of predicting the silencing success of a particular RNAi-inducing construct. The frequencies of success of this large-scale project in maize, together with parameters for optimization at various steps, should serve as a useful framework for designing future RNAi-based functional genomics projects in crop plants.
Collapse
Affiliation(s)
- Karen McGinnis
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Singh J, Zhang S, Chen C, Cooper L, Bregitzer P, Sturbaum A, Hayes PM, Lemaux PG. High-frequency Ds remobilization over multiple generations in barley facilitates gene tagging in large genome cereals. PLANT MOLECULAR BIOLOGY 2006; 62:937-50. [PMID: 17004014 DOI: 10.1007/s11103-006-9067-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 07/26/2006] [Indexed: 05/12/2023]
Abstract
Transposable elements have certain advantages over other approaches for identifying and determining gene function in large genome cereals. Different strategies have been used to exploit the maize Activator/dissociation (Ac/Ds) transposon system for functional genomics in heterologous species. Either large numbers of independent Ds insertion lines or transposants (TNPs) are generated and screened phenotypically, or smaller numbers of TNPs are produced, Ds locations mapped and remobilized for localized gene targeting. It is imperative to characterize key features of the system in order to utilize the latter strategy, which is more feasible in large genome cereals like barley and wheat. In barley, we generated greater than 100 single-copy Ds TNPs and determined remobilization frequencies of primary, secondary, and tertiary TNPs with intact terminal inverted repeats (TIRs); frequencies ranged from 11.8 to 17.1%. In 16% of TNPs that had damaged TIRs no transposition was detected among progeny of crosses using those TNPs as parental lines. In half of the greater than 100 TNP lines, the nature of flanking sequences and status of the 11 bp TIRs and 8-bp direct repeats were determined. BLAST searches using a gene prediction program revealed that 86% of TNP flanking sequences matched either known or putative genes, indicating preferential Ds insertion into genic regions, critical in large genome species. Observed remobilization frequencies of primary, secondary, tertiary, and quaternary TNPs, coupled with the tendency for localized Ds transposition, validates a saturation mutagenesis approach using Ds to tag and characterize genes linked to Ds in large genome cereals like barley and wheat.
Collapse
Affiliation(s)
- Jaswinder Singh
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | | | |
Collapse
|