1
|
Liu G, Jin T, Xu Y, Yao F, Guan G, Zhou G. Exogenous citrate restores the leaf metabolic profiles of navel orange plants under boron deficiency. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:101-109. [PMID: 36219993 DOI: 10.1016/j.plaphy.2022.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Boron (B) is an essential micronutrient for higher plants, and its deficiency causes a change in the citrate concentration in leaves of young navel orange plants. Although citrate has been implicated in the regulation of gene expression for many transcripts, it is unclear whether citrate can affect metabolic profiling under B deficiency and if so, how many metabolites are affected. In this study, GC-TOF-MS-based untargeted metabolite profiling was used to identify the physiological effects of exogenous citrate on recovery of metabolites in B-deficient orange plants. There were 31 increased and 24 decreased metabolites in the boron-deficient (BD) group leaves relative to those of the boron-adequate (BA) group. Boron deficiency-induced changes in many metabolites were restored to the level of BA (control) group leaves or showed a recovery tendency at 1 week after citrate supply (foliar application of citrate, BDFC), including 11 organic acids, 9 sugars and polyols, 10 amino acids, and 4 other compounds. To compare with the metabolic recovery effects of exogenous citrate on B deficiency, exogenous application of B (borate) was also performed under same conditions (BDFB), and similar effects on the regulation of metabolic homeostasis under B deficiency were observed. Both the results of principal component analysis (PCA) and hierarchical cluster analysis (HCA) showed that BA, BDFC, and BDFB were relatively similar and clustered close to each other. There are different responsive and regulatory mechanisms to the additions of exogenous citrate in navel orange leaves under B adequate and deficient conditions. Based on these results, we suggest that citrate is an important component of the B deficiency stress response, and exogenous application of citrate generally restores the leaf metabolic profiles of navel orange plants under boron deficiency, which might play a positive role in this stress tolerance.
Collapse
Affiliation(s)
- Guidong Liu
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, 341000, PR China; National Navel Orange Engineering Research Center, Ganzhou, Jiangxi Province, 341000, PR China.
| | - Tian Jin
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, 341000, PR China.
| | - Yuemei Xu
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, 341000, PR China.
| | - Fengxian Yao
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, 341000, PR China; National Navel Orange Engineering Research Center, Ganzhou, Jiangxi Province, 341000, PR China.
| | - Guan Guan
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, 341000, PR China; National Navel Orange Engineering Research Center, Ganzhou, Jiangxi Province, 341000, PR China.
| | - Gaofeng Zhou
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, 341000, PR China; National Navel Orange Engineering Research Center, Ganzhou, Jiangxi Province, 341000, PR China.
| |
Collapse
|
2
|
Banerjee A, Roychoudhury A. Dissecting the phytohormonal, genomic and proteomic regulation of micronutrient deficiency during abiotic stresses in plants. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Baseggio M, Murray M, Wu D, Ziegler G, Kaczmar N, Chamness J, Hamilton JP, Buell CR, Vatamaniuk OK, Buckler ES, Smith ME, Baxter I, Tracy WF, Gore MA. Genome-wide association study suggests an independent genetic basis of zinc and cadmium concentrations in fresh sweet corn kernels. G3 (BETHESDA, MD.) 2021; 11:jkab186. [PMID: 34849806 PMCID: PMC8496296 DOI: 10.1093/g3journal/jkab186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/25/2021] [Indexed: 01/05/2023]
Abstract
Despite being one of the most consumed vegetables in the United States, the elemental profile of sweet corn (Zea mays L.) is limited in its dietary contributions. To address this through genetic improvement, a genome-wide association study was conducted for the concentrations of 15 elements in fresh kernels of a sweet corn association panel. In concordance with mapping results from mature maize kernels, we detected a probable pleiotropic association of zinc and iron concentrations with nicotianamine synthase5 (nas5), which purportedly encodes an enzyme involved in synthesis of the metal chelator nicotianamine. In addition, a pervasive association signal was identified for cadmium concentration within a recombination suppressed region on chromosome 2. The likely causal gene underlying this signal was heavy metal ATPase3 (hma3), whose counterpart in rice, OsHMA3, mediates vacuolar sequestration of cadmium and zinc in roots, whereby regulating zinc homeostasis and cadmium accumulation in grains. In our association panel, hma3 associated with cadmium but not zinc accumulation in fresh kernels. This finding implies that selection for low cadmium will not affect zinc levels in fresh kernels. Although less resolved association signals were detected for boron, nickel, and calcium, all 15 elements were shown to have moderate predictive abilities via whole-genome prediction. Collectively, these results help enhance our genomics-assisted breeding efforts centered on improving the elemental profile of fresh sweet corn kernels.
Collapse
Affiliation(s)
- Matheus Baseggio
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Matthew Murray
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Di Wu
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Gregory Ziegler
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Nicholas Kaczmar
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - James Chamness
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - John P Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Olena K Vatamaniuk
- Soil and Crop Sciences Section, Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Edward S Buckler
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA
- US Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, NY 14853, USA
| | - Margaret E Smith
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Ivan Baxter
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - William F Tracy
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
4
|
Chen L, Xia F, Wang M, Mao P. Physiological and proteomic analysis reveals the impact of boron deficiency and surplus on alfalfa (Medicago sativa L.) reproductive organs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112083. [PMID: 33676054 DOI: 10.1016/j.ecoenv.2021.112083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Boron (B), an essential element for increasing seed yield and germinability in alfalfa (Medicago sativa L.), plays a vital role in its reproductive processes. However, effects of B stress on physiological and proteomic changes in reproductive organs related to alfalfa seed yield and germinability are poorly understood. In order to gain a better insight into B response or tolerance mechanisms, field trials were designed for B deficiency (0 mg B L-1), B sufficiency (800 mg B L-1), and B surplus (1600 mg B L-1) application during alfalfa flowering to analyze the proteomics and physiological responses of alfalfa 'Aohan' reproductive organs. Results showed that B deficiency weakened the stress-responsive ability in these organs, while B surplus reduced the sugar utilization of 'Aohan' flowers and caused lipid membrane peroxidation in 'Aohan' seeds. In addition, four upregulated stress responsive proteins (ADF-like protein, IMFP, NAD(P)-binding Rossmann-fold protein and NAD-dependent ALDHs) might play pivotal roles in the response of 'Aohan' reproductive organs to conditions of B deficiency and B surplus. All of the above results would be helpful to understand the tolerance mechanisms of alfalfa reproductive organs to both B deficiency and B surplus conditions, and also to give insight into the regulatory role of B in improving seed yield and germinability in alfalfa seed production. In summary, B likely plays a structural and regulatory role in relation to lipid metabolism, carbohydrate metabolism, amino acid metabolism, and signal transduction, thus regulates alfalfa reproductive processes eventually affecting the seed yield and germinability of alfalfa seeds.
Collapse
Affiliation(s)
- Lingling Chen
- Forage Seed Lab, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, PR China; Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, College of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Fangshan Xia
- Forage Seed Lab, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, PR China; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Mingya Wang
- Forage Seed Lab, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Peisheng Mao
- Forage Seed Lab, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
5
|
Zhou T, Yue CP, Huang JY, Cui JQ, Liu Y, Wang WM, Tian C, Hua YP. Genome-wide identification of the amino acid permease genes and molecular characterization of their transcriptional responses to various nutrient stresses in allotetraploid rapeseed. BMC PLANT BIOLOGY 2020; 20:151. [PMID: 32268885 PMCID: PMC7140331 DOI: 10.1186/s12870-020-02367-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/26/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Nitrogen (N), referred to as a "life element", is a macronutrient essential for optimal plant growth and yield production. Amino acid (AA) permease (AAP) genes play pivotal roles in root import, long-distance translocation, remobilization of organic amide-N from source organs to sinks, and other environmental stress responses. However, few systematic analyses of AAPs have been reported in Brassica napus so far. RESULTS In this study, we identified a total of 34 full-length AAP genes representing eight subgroups (AAP1-8) from the allotetraploid rapeseed genome (AnAnCnCn, 2n = 4x = 38). Great differences in the homolog number among the BnaAAP subgroups might indicate their significant differential roles in the growth and development of rapeseed plants. The BnaAAPs were phylogenetically divided into three evolutionary clades, and the members in the same subgroups had similar physiochemical characteristics, gene/protein structures, and conserved AA transport motifs. Darwin's evolutionary analysis suggested that BnaAAPs were subjected to strong purifying selection pressure. Cis-element analysis showed potential differential transcriptional regulation of AAPs between the model Arabidopsis and B. napus. Differential expression of BnaAAPs under nitrate limitation, ammonium excess, phosphate shortage, boron deficiency, cadmium toxicity, and salt stress conditions indicated their potential involvement in diverse nutrient stress responses. CONCLUSIONS The genome-wide identification of BnaAAPs will provide a comprehensive insight into their family evolution and AAP-mediated AA transport under diverse abiotic stresses. The molecular characterization of core AAPs can provide elite gene resources and contribute to the genetic improvement of crop stress resistance through the modulation of AA transport.
Collapse
Affiliation(s)
- Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000 China
| | - Cai-peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000 China
| | - Jin-yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000 China
| | - Jia-qian Cui
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000 China
| | - Ying Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000 China
| | - Wen-ming Wang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000 China
| | - Chuang Tian
- Sinochem Modern Agricultural Platform, Changchun, 130000 China
| | - Ying-peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000 China
| |
Collapse
|
6
|
Gu J, Li W, Wang S, Zhang X, Coules A, Ding G, Xu F, Ren J, Lu C, Shi L. Differential Alternative Splicing Genes in Response to Boron Deficiency in Brassica napus. Genes (Basel) 2019; 10:genes10030224. [PMID: 30889858 PMCID: PMC6471828 DOI: 10.3390/genes10030224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/07/2019] [Indexed: 11/16/2022] Open
Abstract
Alternative splicing (AS) can increase transcriptome diversity, protein diversity and protein yield, and is an important mechanism to regulate plant responses to stress. Oilseed rape (Brassica napus L.), one of the main oil crops in China, shows higher sensitivity to boron (B) deficiency than other species. Here, we demonstrated AS changes that largely increased the diversity of the mRNA expressed in response to B deficiency in B. napus. Each gene had two or more transcripts on average. A total of 33.3% genes in both Qingyou10 (QY10, B-efficient cultivar) and Westar10 (W10, B-inefficient cultivar) showed AS in both B conditions. The types of AS events were mainly intron retention, 3′ alternative splice site, 5′ alternative splice site and exon skipping. The tolerance ability of QY10 was higher than that of W10, possibly because there were far more differential alternative splicing (DAS) genes identified in QY10 at low B conditions than in W10. The number of genes with both DAS and differentially expressed (DE) was far lower than that of the genes that were either with DAS or DE in QY10 and W10, suggesting that the DAS and DE genes were independent. Four Serine/Arginine-rich (SR) splicing factors, BnaC06g14780D, BnaA01g14750D, BnaA06g15930D and BnaC01g41640D, underwent differentially alternative splicing in both cultivars. There existed gene–gene interactions between BnaC06g14780D and the genes associated with the function of B in oilseed rape at low B supply. This suggests that oilseed rape could regulate the alterative pre-mRNA splicing of SR protein related genes to increase the plant tolerance to B deficiency.
Collapse
Affiliation(s)
- Jin Gu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wei Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaoyan Zhang
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham NG25 0QF, UK.
| | - Anne Coules
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham NG25 0QF, UK.
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jian Ren
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Chungui Lu
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham NG25 0QF, UK.
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Jiang CC, Fang ZZ, Zhou DR, Pan SL, Ye XF. Changes in secondary metabolites, organic acids and soluble sugars during the development of plum fruit cv. 'Furongli' (Prunus salicina Lindl). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1010-1019. [PMID: 30009532 DOI: 10.1002/jsfa.9265] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/28/2018] [Accepted: 07/12/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Organic acids, sugars and pigments are key components that determine the taste and flavor of plum fruit. However, metabolism of organic acid and sugar is not fully understood during the development of plum fruit cv. 'Furongli'. RESULTS Mature fruit of 'Furongli' has the highest content of anthocyanins and the lowest content of total phenol compounds and flavonoids. Malate is the predominant organic acid anion in 'Furongli' fruit, followed by citrate and isocitrate. Glucose was the predominant sugar form, followed by fructose and sucrose. Correlation analysis indicated that malate content increased with increasing phosphoenolpyruvate carboxylase (PEPC) activity and decreasing nicotinamide adenine dinucleotide-malate dehydrogenase (NAD-MDH) activity. Citrate and isocitrate content increased with increasing PEPC and aconitase (ACO) activities, respectively. Both acid invertase and neutral invertase had higher activities at the early stage than later stage of fruit development. Fructose content decreased with increasing phosphoglucoisomerase (PGI) activity, whereas glucose content increased with decreasing hexokinase (HK) activity. CONCLUSION Dynamics in organic acid anions were not solely controlled by a single enzyme but regulated by the integrated activity of enzymes such as nicotinamide adenine dinucleotide phosphate-malic enzyme (NADP-ME), NAD-ME, PEPC, ACO and NADP-isocitrate dehydrogenase. Sugar metabolism enzymes such as PGI, invertase and HK may play vital roles in the regulation of individual sugar metabolic processes. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cui-Cui Jiang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Zhi-Zhen Fang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Dan-Rong Zhou
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Shao-Lin Pan
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xin-Fu Ye
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
8
|
Zhang J, Li Q, Qi YP, Huang WL, Yang LT, Lai NW, Ye X, Chen LS. Low pH-responsive proteins revealed by a 2-DE based MS approach and related physiological responses in Citrus leaves. BMC PLANT BIOLOGY 2018; 18:188. [PMID: 30208853 PMCID: PMC6134590 DOI: 10.1186/s12870-018-1413-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 08/31/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Rare data are available on the molecular responses of higher plants to low pH. Seedlings of 'Sour pummelo' (Citrus grandis) and 'Xuegan' (Citrus sinensis) were treated daily with nutrient solution at a pH of 2.5, 3, or 6 (control) for nine months. Thereafter, we first used 2-dimensional electrophoresis (2-DE) to investigate low pH-responsive proteins in Citrus leaves. Meanwhile, we examined low pH-effects on leaf gas exchange, carbohydrates, ascorbate, dehydroascorbate and malondialdehyde. The objectives were to understand the adaptive mechanisms of Citrus to low pH and to identify the possible candidate proteins for low pH-tolerance. RESULTS Our results demonstrated that Citrus were tolerant to low pH, with a slightly higher low pH-tolerance in the C. sinensis than in the C. grandis. Using 2-DE, we identified more pH 2.5-responsive proteins than pH 3-responsive proteins in leaves. This paper discussed mainly on the pH 2.5-responsive proteins. pH 2.5 decreased the abundances of proteins involved in ribulose bisphosphate carboxylase/oxygenase activation, Calvin cycle, carbon fixation, chlorophyll biosynthesis and electron transport, hence lowering chlorophyll level, electron transport rate and photosynthesis. The higher oxidative damage in the pH 2.5-treated C. grandis leaves might be due to a combination of factors including higher production of reactive oxygen species, more proteins decreased in abundance involved in antioxidation and detoxification, and lower ascorbate level. Protein and amino acid metabolisms were less affected in the C. sinensis leaves than those in the C. grandis leaves when exposed to pH 2.5. The abundances of proteins related to jasmonic acid biosynthesis and signal transduction were increased and decreased in the pH 2.5-treated C. sinensis and C. grandis leaves, respectively. CONCLUSIONS This is the first report on low pH-responsive proteins in higher plants. Thus, our results provide some novel information on low pH-toxicity and -tolerance in higher plants.
Collapse
Affiliation(s)
- Jiang Zhang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002 China
| | - Qiang Li
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002 China
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou, 350001 China
| | - Wei-Lin Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002 China
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002 China
| | - Ning-Wei Lai
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002 China
| | - Xin Ye
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002 China
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002 China
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, FAFU, Fuzhou, 350002 China
- The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, College of Resources and Environment, FAFU, Fuzhou, 350002 China
| |
Collapse
|
9
|
Identification of Proteins Involved in Carbohydrate Metabolism and Energy Metabolism Pathways and Their Regulation of Cytoplasmic Male Sterility in Wheat. Int J Mol Sci 2018; 19:ijms19020324. [PMID: 29360773 PMCID: PMC5855548 DOI: 10.3390/ijms19020324] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/13/2018] [Accepted: 01/21/2018] [Indexed: 01/09/2023] Open
Abstract
Cytoplasmic male sterility (CMS) where no functional pollen is produced has important roles in wheat breeding. The anther is a unique organ for male gametogenesis and its abnormal development can cause male sterility. However, the mechanisms and regulatory networks related to plant male sterility are poorly understood. In this study, we conducted comparative analyses using isobaric tags for relative and absolute quantification (iTRAQ) of the pollen proteins in a CMS line and its wheat maintainer. Differentially abundant proteins (DAPs) were analyzed based on Gene Ontology classifications, metabolic pathways and transcriptional regulation networks using Blast2GO. We identified 5570 proteins based on 23,277 peptides, which matched with 73,688 spectra, including proteins in key pathways such as glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase and 6-phosphofructokinase 1 in the glycolysis pathway, isocitrate dehydrogenase and citrate synthase in the tricarboxylic acid cycle and nicotinamide adenine dinucleotide (NADH)-dehydrogenase and adenosine-triphosphate (ATP) synthases in the oxidative phosphorylation pathway. These proteins may comprise a network that regulates male sterility in wheat. Quantitative real time polymerase chain reaction (qRT-PCR) analysis, ATP assays and total sugar assays validated the iTRAQ results. These DAPs could be associated with abnormal pollen grain formation and male sterility. Our findings provide insights into the molecular mechanism related to male sterility in wheat.
Collapse
|
10
|
Wang B, Wang H, Xiong J, Zhou Q, Wu H, Xia L, Li L, Yu Z. A Proteomic Analysis Provides Novel Insights into the Stress Responses of Caenorhabditis elegans towards Nematicidal Cry6A Toxin from Bacillus thuringiensis. Sci Rep 2017; 7:14170. [PMID: 29074967 PMCID: PMC5658354 DOI: 10.1038/s41598-017-14428-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/10/2017] [Indexed: 01/16/2023] Open
Abstract
Cry6A represents a novel family of nematicidal crystal proteins from Bacillus thuringiensis. It has distinctive architecture as well as mechanism of action from Cry5B, a highly focused family of nematicidal crystal proteins, and even from other insecticidal crystal proteins containing the conserved three-domain. However, how nematode defends against Cry6A toxin remains obscure. In this study, the global defense pattern of Caenorhabditis elegans against Cry6Aa2 toxin was investigated by proteomic analysis. In response to Cry6Aa2, 12 proteins with significantly altered abundances were observed from worms, participating in innate immune defense, insulin-like receptor (ILR) signaling pathway, energy metabolism, and muscle assembly. The differentially expressed proteins (DEPs) functioning in diverse biological processes suggest that a variety of defense responses participate in the stress responses of C. elegans to Cry6Aa2. The functional verifications of DEPs suggest that ILR signaling pathway, DIM-1, galectin LEC-6 all are the factors of defense responses to Cry6Aa2. Moreover, Cry6Aa2 also involves in accelerating the metabolic energy production which fulfills the energy demand for the immune responses. In brief, our findings illustrate the global pattern of defense responses of nematode against Cry6A for the first time, and provide a novel insight into the mechanism through which worms respond to Cry6A.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P.R. China
| | - Haiwen Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P.R. China
| | - Jing Xiong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P.R. China
| | - Qiaoni Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P.R. China
| | - Huan Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P.R. China
| | - Liqiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P.R. China
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Ziquan Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P.R. China.
| |
Collapse
|
11
|
Zhang H, Xia Y, Chen C, Zhuang K, Song Y, Shen Z. Analysis of Copper-Binding Proteins in Rice Radicles Exposed to Excess Copper and Hydrogen Peroxide Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1216. [PMID: 27582750 PMCID: PMC4987373 DOI: 10.3389/fpls.2016.01216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/02/2016] [Indexed: 05/15/2023]
Abstract
Copper (Cu) is an essential micronutrient for plants, but excess Cu can inactivate and disturb the protein function due to unavoidable binding to proteins at the cellular level. As a redox-active metal, Cu toxicity is mediated by the formation of reactive oxygen species (ROS). Cu-binding structural motifs may alleviate Cu-induced damage by decreasing free Cu(2+) activity in cytoplasm or scavenging ROS. The identification of Cu-binding proteins involved in the response of plants to Cu or ROS toxicity may increase our understanding the mechanisms of metal toxicity and tolerance in plants. This study investigated change of Cu-binding proteins in radicles of germinating rice seeds under excess Cu and oxidative stress using immobilized Cu(2+) affinity chromatography, two-dimensional electrophoresis, and mass spectra analysis. Quantitative image analysis revealed that 26 protein spots showed more than a 1.5-fold difference in abundances under Cu or H2O2 treatment compared to the control. The identified Cu-binding proteins were involved in anti-oxidative defense, stress response and detoxification, protein synthesis, protein modification, and metabolism regulation. The present results revealed that 17 out of 24 identified Cu-binding proteins have a similar response to low concentration Cu (20 μM Cu) and H2O2 stress, and 5 out of 24 were increased under low and high concentration Cu (100 μM Cu) but unaffected under H2O2 stress, which hint Cu ions can regulate Cu-binding proteins accumulation by H2O2 or no H2O2 pathway to cope with excess Cu in cell. The change pattern of these Cu-binding proteins and their function analysis warrant to further study the roles of Cu ions in these Cu-binding proteins of plant cells.
Collapse
Affiliation(s)
- Hongxiao Zhang
- College of Agriculture, Henan University of Science and TechnologyLuoyang, China
| | - Yan Xia
- College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Chen Chen
- College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Kai Zhuang
- College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Yufeng Song
- College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
12
|
Peng HY, Qi YP, Lee J, Yang LT, Guo P, Jiang HX, Chen LS. Proteomic analysis of Citrus sinensis roots and leaves in response to long-term magnesium-deficiency. BMC Genomics 2015; 16:253. [PMID: 25887480 PMCID: PMC4383213 DOI: 10.1186/s12864-015-1462-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 03/09/2015] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Magnesium (Mg)-deficiency is frequently observed in Citrus plantations and is responsible for the loss of productivity and poor fruit quality. Knowledge on the effects of Mg-deficiency on upstream targets is scarce. Seedlings of 'Xuegan' [Citrus sinensis (L.) Osbeck] were irrigated with Mg-deficient (0 mM MgSO4) or Mg-sufficient (1 mM MgSO4) nutrient solution for 16 weeks. Thereafter, we first investigated the proteomic responses of C. sinensis roots and leaves to Mg-deficiency using two-dimensional electrophoresis (2-DE) in order to (a) enrich our understanding of the molecular mechanisms of plants to deal with Mg-deficiency and (b) understand the molecular mechanisms by which Mg-deficiency lead to a decrease in photosynthesis. RESULTS Fifty-nine upregulated and 31 downregulated protein spots were isolated in Mg-deficient leaves, while only 19 upregulated and 12 downregulated protein spots in Mg-deficient roots. Many Mg-deficiency-responsive proteins were involved in carbohydrate and energy metabolism, followed by protein metabolism, stress responses, nucleic acid metabolism, cell wall and cytoskeleton metabolism, lipid metabolism and cell transport. The larger changes in leaf proteome versus root one in response to Mg-deficiency was further supported by our observation that total soluble protein concentration was decreased by Mg-deficiency in leaves, but unaffected in roots. Mg-deficiency had decreased levels of proteins [i.e. ribulose-1,5-bisphosphate carboxylase (Rubisco), rubisco activase, oxygen evolving enhancer protein 1, photosynthetic electron transfer-like protein, ferredoxin-NADP reductase (FNR), aldolase] involved in photosynthesis, thus decreasing leaf photosynthesis. To cope with Mg-deficiency, C. sinensis leaves and roots might respond adaptively to Mg-deficiency through: improving leaf respiration and lowering root respiration, but increasing (decreasing) the levels of proteins related to ATP synthase in roots (leaves); enhancing the levels of proteins involved in reactive oxygen species (ROS) scavenging and other stress-responsive proteins; accelerating proteolytic cleavage of proteins by proteases, protein transport and amino acid metabolism; and upregulating the levels of proteins involved in cell wall and cytoskeleton metabolism. CONCLUSIONS Our results demonstrated that proteomics were more affected by long-term Mg-deficiency in leaves than in roots, and that the adaptive responses differed between roots and leaves when exposed to long-term Mg-deficiency. Mg-deficiency decreased the levels of many proteins involved in photosynthesis, thus decreasing leaf photosynthesis.
Collapse
Affiliation(s)
- Hao-Yang Peng
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou, 350001, China.
| | - Jinwook Lee
- Department of Horticultural Science, Kyungpook National University, Daegu, 702-701, ROK.
| | - Lin-Tong Yang
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Peng Guo
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Huan-Xin Jiang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Li-Song Chen
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Fujian Key Laboratory for Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
13
|
Lin KH, Chen LFO, Li SD, Lo HF. Comparative proteomic analysis of cauliflower under high temperature and flooding stresses. SCIENTIA HORTICULTURAE 2015; 183:118-129. [PMID: 32287882 PMCID: PMC7116940 DOI: 10.1016/j.scienta.2014.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/15/2014] [Accepted: 12/13/2014] [Indexed: 05/04/2023]
Abstract
High-temperature and waterlogging are major abiotic stresses that affect the yield and quality of cauliflower. Cauliflower cultivars 'H41' and 'H69' are tolerant to high temperature and flooding, respectively; however, 'H71' is sensitive to both stresses. The objectives of this study were to identify the proteins that were differentially regulated and the physiological changes that occurred during different time periods in 'H41', 'H69', and 'H71' when responding to treatments of flooding, 40 °C, and both stresses combined. Changes in the leaf proteome were analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) and identified by Mascot peptide mass fingerprint (PMF) and database searching. Stress treatments caused significant reductions in electrolyte leakage, chlorophyll fluorescence Fv/Fm, chlorophyll content, and water potential as stress times were prolonged. By the comparative proteomic analysis, 85 protein peaks that were differentially expressed in response to combination treatments at 0, 6, and 24 h, 69 (33 in 'H41', 29 in 'H69', and 9 in 'H71') were identified, of which were cultivar specific. Differentially regulated proteins predominantly functioned in photosynthesis and to a lesser extent in energy metabolism, cellular homeostasis, transcription and translation, signal transduction, and protein biosynthesis. This is the first report that utilizes proteomics to discover changes in the protein expression profile of cauliflower in response to heat and flooding.
Collapse
Affiliation(s)
- K H Lin
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei 111, Taiwan
| | - L F O Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - S D Li
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei 111, Taiwan
| | - H F Lo
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
14
|
Lu YB, Yang LT, Li Y, Xu J, Liao TT, Chen YB, Chen LS. Effects of boron deficiency on major metabolites, key enzymes and gas exchange in leaves and roots of Citrus sinensis seedlings. TREE PHYSIOLOGY 2014; 34:608-18. [PMID: 24957048 DOI: 10.1093/treephys/tpu047] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Boron (B) deficiency is a widespread problem in many crops, including Citrus. The effects of B-deficiency on gas exchange, carbohydrates, organic acids, amino acids, total soluble proteins and phenolics, and the activities of key enzymes involved in organic acid and amino acid metabolism in 'Xuegan' [Citrus sinensis (L.) Osbeck] leaves and roots were investigated. Boron-deficient leaves displayed excessive accumulation of nonstructural carbohydrates and much lower CO2 assimilation, demonstrating feedback inhibition of photosynthesis. Dark respiration, concentrations of most organic acids [i.e., malate, citrate, oxaloacetate (OAA), pyruvate and phosphoenolpyruvate] and activities of enzymes [i.e., phosphoenolpyruvate carboxylase (PEPC), NAD-malate dehydrogenase, NAD-malic enzyme (NAD-ME), NADP-ME, pyruvate kinase (PK), phosphoenolpyruvate phosphatase (PEPP), citrate synthase (CS), aconitase (ACO), NADP-isocitrate dehydrogenase (NADP-IDH) and hexokinase] involved in glycolysis, the tricarboxylic acid (TCA) cycle and the anapleurotic reaction were higher in B-deficient leaves than in controls. Also, total free amino acid (TFAA) concentration and related enzyme [i.e., NADH-dependent glutamate 2-oxoglutarate aminotransferase (NADH-GOGAT) and glutamate OAA transaminase (GOT)] activities were enhanced in B-deficient leaves. By contrast, respiration, concentrations of nonstructural carbohydrates and three organic acids (malate, citrate and pyruvate), and activities of most enzymes [i.e., PEPC, NADP-ME, PK, PEPP, CS, ACO, NAD-isocitrate dehydrogenase, NADP-IDH and hexokinase] involved in glycolysis, the TCA cycle and the anapleurotic reaction, as well as concentration of TFAA and activities of related enzymes (i.e., nitrate reductase, NADH-GOGAT, glutamate pyruvate transaminase and glutamine synthetase) were lower in B-deficient roots than in controls. Interestingly, leaf and root concentration of total phenolics increased, whereas that of total soluble protein decreased, in response to B-deficiency. In conclusion, respiration, organic acid (i.e., glycolysis and the TCA cycle) metabolism, the anapleurotic pathway and amino acid biosynthesis were upregulated in B-deficient leaves with excessive accumulation of carbohydrates to 'consume' the excessive carbon available, but downregulated in B-deficient roots with less accumulation of carbohydrates to maintain the net carbon balance.
Collapse
Affiliation(s)
- Yi-Bin Lu
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin-Tong Yang
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan Li
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Xu
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tian-Tai Liao
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan-Bin Chen
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li-Song Chen
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China Fujian Key Laboratory for Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
15
|
Lu YB, Yang LT, Qi YP, Li Y, Li Z, Chen YB, Huang ZR, Chen LS. Identification of boron-deficiency-responsive microRNAs in Citrus sinensis roots by Illumina sequencing. BMC PLANT BIOLOGY 2014; 14:123. [PMID: 24885979 PMCID: PMC4041134 DOI: 10.1186/1471-2229-14-123] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/30/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Boron (B)-deficiency is a widespread problem in many crops, including Citrus. MicroRNAs (miRNAs) play important roles in nutrient deficiencies. However, little is known on B-deficiency-responsive miRNAs in plants. In this study, we first identified miRNAs and their expression pattern in B-deficient Citrus sinensis roots by Illumina sequencing in order to identify miRNAs that might be involved in the tolerance of plants to B-deficiency. RESULTS We isolated 52 (40 known and 12 novel) up-regulated and 82 (72 known and 10 novel) down-regulated miRNAs from B-deficient roots, demonstrating remarkable metabolic flexibility of roots, which might contribute to the tolerance of plants to B-deficiency. A model for the possible roles of miRNAs in the tolerance of roots to B-deficiency was proposed. miRNAs might regulate the adaptations of roots to B-deficiency through following several aspects: (a) inactivating reactive oxygen species (ROS) signaling and scavenging through up-regulating miR474 and down-regulating miR782 and miR843; (b) increasing lateral root number by lowering miR5023 expression and maintaining a certain phenotype favorable for B-deficiency-tolerance by increasing miR394 expression; (c) enhancing cell transport by decreasing the transcripts of miR830, miR5266 and miR3465; (d) improving osmoprotection (miR474) and regulating other metabolic reactions (miR5023 and miR821). Other miRNAs such as miR472 and miR2118 in roots increased in response to B-deficiency, thus decreasing the expression of their target genes, which are involved in disease resistance, and hence, the disease resistance of roots. CONCLUSIONS Our work demonstrates the possible roles of miRNAs and related mechanisms in the response of plant roots to B-deficiency.
Collapse
Affiliation(s)
- Yi-Bin Lu
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin-Tong Yang
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Yan Li
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong Li
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan-Bin Chen
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zeng-Rong Huang
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li-Song Chen
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Key Laboratory for Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
16
|
Chen M, Mishra S, Heckathorn SA, Frantz JM, Krause C. Proteomic analysis of Arabidopsis thaliana leaves in response to acute boron deficiency and toxicity reveals effects on photosynthesis, carbohydrate metabolism, and protein synthesis. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:235-42. [PMID: 23988561 DOI: 10.1016/j.jplph.2013.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/25/2013] [Accepted: 07/25/2013] [Indexed: 05/10/2023]
Abstract
Boron (B) stress (deficiency and toxicity) is common in plants, but as the functions of this essential micronutrient are incompletely understood, so too are the effects of B stress. To investigate mechanisms underlying B stress, we examined protein profiles in leaves of Arabidopsis thaliana plants grown under normal B (30 μM), compared to plants transferred for 60 and 84 h (i.e., before and after initial visible symptoms) in deficient (0 μM) or toxic (3 mM) levels of B. B-responsive polypeptides were sequenced by mass spectrometry, following 2D gel electrophoresis, and 1D gels and immunoblotting were used to confirm the B-responsiveness of some of these proteins. Fourteen B-responsive proteins were identified, including: 9 chloroplast proteins, 6 proteins of photosynthetic/carbohydrate metabolism (rubisco activase, OEC23, photosystem I reaction center subunit II-1, ATPase δ-subunit, glycolate oxidase, fructose bisphosphate aldolase), 6 stress proteins, and 3 proteins involved in protein synthesis (note that the 14 proteins may fall into multiple categories). Most (8) of the B-responsive proteins decreased under both B deficiency and toxicity; only 3 increased with B stress. Boron stress decreased, or had no effect on, 3 of 4 oxidative stress proteins examined, and did not affect total protein. Hence, our results indicate relatively early specific effects of B stress on chloroplasts and protein synthesis.
Collapse
Affiliation(s)
- Mei Chen
- Department of Environmental Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Sasmita Mishra
- Department of Environmental Sciences, University of Toledo, Toledo, OH 43606, USA.
| | - Scott A Heckathorn
- Department of Environmental Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Jonathan M Frantz
- United States Department of Agriculture-Agricultural Research Service, University of Toledo, Toledo, OH 43606, USA
| | - Charles Krause
- United States Department of Agriculture-Agricultural Research Service, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
17
|
Yang N, Sun Y, Wang Y, Long C, Li Y, Li Y. Proteomic analysis of the low mutation rate of diploid male gametes induced by colchicine in Ginkgo biloba L. PLoS One 2013; 8:e76088. [PMID: 24167543 PMCID: PMC3805548 DOI: 10.1371/journal.pone.0076088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 08/21/2013] [Indexed: 11/19/2022] Open
Abstract
Colchicine treatment of G. biloba microsporocytes results in a low mutation rate in the diploid (2n) male gamete. The mutation rate is significantly lower as compared to other tree species and impedes the breeding of new economic varieties. Proteomic analysis was done to identify the proteins that influence the process of 2n gamete formation in G. biloba. The microsporangia of G. biloba were treated with colchicine solution for 48 h and the proteins were analyzed using 2-D gel electrophoresis and compared to protein profiles of untreated microsporangia. A total of 66 proteins showed difference in expression levels. Twenty-seven of these proteins were identified by mass spectrometry. Among the 27 proteins, 14 were found to be up-regulated and the rest 13 were down-regulated. The identified proteins belonged to five different functional classes: ATP generation, transport and carbohydrate metabolism; protein metabolism; ROS scavenging and detoxifying enzymes; cell wall remodeling and metabolism; transcription, cell cycle and signal transduction. The identification of these differentially expressed proteins and their function could help in analysing the mechanism of lower mutation rate of diploid male gamete when the microsporangium of G. biloba was induced by colchicine.
Collapse
Affiliation(s)
- Nina Yang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yuhan Sun
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yaru Wang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Shijiazhuang Pomology Institute, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Cui Long
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yingyue Li
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yun Li
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
18
|
Yang LT, Qi YP, Lu YB, Guo P, Sang W, Feng H, Zhang HX, Chen LS. iTRAQ protein profile analysis of Citrus sinensis roots in response to long-term boron-deficiency. J Proteomics 2013; 93:179-206. [PMID: 23628855 DOI: 10.1016/j.jprot.2013.04.025] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 04/09/2013] [Accepted: 04/16/2013] [Indexed: 12/24/2022]
Abstract
UNLABELLED Seedlings of Citrus sinensis were fertilized with boron (B)-deficient (0μM H3BO3) or -sufficient (10μM H3BO3) nutrient solution for 15weeks. Thereafter, iTRAQ analysis was employed to compare the abundances of proteins from B-deficient and -sufficient roots. In B-deficient roots, 164 up-regulated and 225 down-regulated proteins were identified. These proteins were grouped into the following functional categories: protein metabolism, nucleic acid metabolism, stress responses, carbohydrate and energy metabolism, cell transport, cell wall and cytoskeleton metabolism, biological regulation and signal transduction, and lipid metabolism. The adaptive responses of roots to B-deficiency might include following several aspects: (a) decreasing root respiration; (b) improving the total ability to scavenge reactive oxygen species (ROS); and (c) enhancing cell transport. The differentially expressed proteins identified by iTRAQ are much larger than those detected using 2D gel electrophoresis, and many novel B-deficiency-responsive proteins involved in cell transport, biological regulation and signal transduction, stress responses and other metabolic processes were identified in this work. Our results indicate remarkable metabolic flexibility of citrus roots, which may contribute to the survival of B-deficient plants. This represents the most comprehensive analysis of protein profiles in response to B-deficiency. BIOLOGICAL SIGNIFICANCE In this study, we identified many new proteins involved in cell transport, biological regulation and signal transduction, stress responses and other metabolic processes that were not previously known to be associated with root B-deficiency responses. Therefore, our manuscript represents the most comprehensive analysis of protein profiles in response to B-deficiency and provides new information about the plant response to B-deficiency. This article is part of a Special Issue entitled: Translational Plant Proteomics.
Collapse
Affiliation(s)
- Lin-Tong Yang
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Fang X, Jost R, Finnegan PM, Barbetti MJ. Comparative Proteome Analysis of the Strawberry-Fusarium oxysporum f. sp. fragariae Pathosystem Reveals Early Activation of Defense Responses as a Crucial Determinant of Host Resistance. J Proteome Res 2013; 12:1772-88. [DOI: 10.1021/pr301117a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiangling Fang
- School of Plant Biology, Faculty
of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Ricarda Jost
- School of Plant Biology, Faculty
of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Patrick M. Finnegan
- School of Plant Biology, Faculty
of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- The UWA Institute of Agriculture,
Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Martin J. Barbetti
- School of Plant Biology, Faculty
of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- The UWA Institute of Agriculture,
Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
20
|
Liang C, Tian J, Liao H. Proteomics dissection of plant responses to mineral nutrient deficiency. Proteomics 2013. [PMID: 23193087 DOI: 10.1002/pmic.201200263] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Plants require at least 17 essential nutrients to complete their life cycle. Except for carbon, hydrogen, and oxygen, other essential nutrients are mineral nutrients, which are mainly acquired from soils by roots. In natural soils, the availability of most essential mineral nutrients is very low and hard to meet the demand of plants. Developing crops with high nutrient efficiency is essential for sustainable agriculture, which requires more understandings of crop responses to mineral nutrient deficiency. Proteomic techniques provide a crucial and complementary tool to dissect molecular mechanisms underlying crop adaptation to mineral nutrient deficiency in the rapidly processing postgenome era. This review gives a comparative overview about identification of mineral nutrient deficiency responsive proteins using proteomic analysis, and discusses the current status for crop proteomics and its challenges to be integrated into systems biology approaches for developing crops with high mineral nutrient efficiency.
Collapse
Affiliation(s)
- Cuiyue Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou, P. R. China
| | | | | |
Collapse
|
21
|
Zhao Z, Wu L, Nian F, Ding G, Shi T, Zhang D, Shi L, Xu F, Meng J. Dissecting quantitative trait loci for boron efficiency across multiple environments in Brassica napus. PLoS One 2012; 7:e45215. [PMID: 23028855 PMCID: PMC3454432 DOI: 10.1371/journal.pone.0045215] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/14/2012] [Indexed: 01/06/2023] Open
Abstract
High yield is the most important goal in crop breeding, and boron (B) is an essential micronutrient for plants. However, B deficiency, leading to yield decreases, is an agricultural problem worldwide. Brassica napus is one of the most sensitive crops to B deficiency, and considerable genotypic variation exists among different cultivars in response to B deficiency. To dissect the genetic basis of tolerance to B deficiency in B. napus, we carried out QTL analysis for seed yield and yield-related traits under low and normal B conditions using the double haploid population (TNDH) by two-year and the BQDH population by three-year field trials. In total, 80 putative QTLs and 42 epistatic interactions for seed yield, plant height, branch number, pod number, seed number, seed weight and B efficiency coefficient (BEC) were identified under low and normal B conditions, singly explaining 4.15-23.16% and 0.53-14.38% of the phenotypic variation. An additive effect of putative QTLs was a more important controlling factor than the additive-additive effect of epistatic interactions. Four QTL-by-environment interactions and 7 interactions between epistatic interactions and the environment contributed to 1.27-4.95% and 1.17-3.68% of the phenotypic variation, respectively. The chromosome region on A2 of SYLB-A2 for seed yield under low B condition and BEC-A2 for BEC in the two populations was equivalent to the region of a reported major QTL, BE1. The B. napus homologous genes of Bra020592 and Bra020595 mapped to the A2 region and were speculated to be candidate genes for B efficiency. These findings reveal the complex genetic basis of B efficiency in B. napus. They provide a basis for the fine mapping and cloning of the B efficiency genes and for breeding B-efficient cultivars by marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Zunkang Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Likun Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fuzhao Nian
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Taoxiong Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Didi Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
22
|
Li H, Chen Z, Hu M, Wang Z, Hua H, Yin C, Zeng H. Different effects of night versus day high temperature on rice quality and accumulation profiling of rice grain proteins during grain filling. PLANT CELL REPORTS 2011; 30:1641-1659. [PMID: 21556707 DOI: 10.1007/s00299-011-1074-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 03/25/2011] [Accepted: 04/14/2011] [Indexed: 05/30/2023]
Abstract
High temperature has adverse effects on rice yield and quality. The different influences of night high temperature (NHT) and day high temperature (DHT) on rice quality and seed protein accumulation profiles during grain filling in indica rice '9311' were studied in this research. The treatment temperatures of the control, NHT, and DHT were 28°C/20°C, 27°C/35°C, and 35°C/27°C, respectively, and all the treatments were maintained for 20 days. The result of rice quality analysis indicated that compared with DHT, NHT exerted less effect on head rice rate and chalkiness, whereas greater effect on grain weight. Moreover, the dynamic accumulation change profiles of 61 protein spots, differentially accumulated and successfully identified under NHT and DHT conditions, were performed by proteomic approach. The results also showed that the different suppressed extent of accumulation amount of cyPPDKB might result in different grain chalkiness between NHT and DHT. Most identified isoforms of proteins, such as PPDK and pullulanase, displayed different accumulation change patterns between NHT and DHT. In addition, compared with DHT, NHT resulted in the unique accumulation patterns of stress and defense proteins. Taken together, the mechanisms of seed protein accumulation profiles induced by NHT and DHT during grain filling should be different in rice, and the potential molecular basis is discussed in this study.
Collapse
Affiliation(s)
- Haixia Li
- Crop Physiology and Production Center, Key Laboratory of Huazhong Crop Physiology, Ecology and Production, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Alves M, Moes S, Jenö P, Pinheiro C, Passarinho J, Ricardo C. The analysis of Lupinus albus root proteome revealed cytoskeleton altered features due to long-term boron deficiency. J Proteomics 2011; 74:1351-63. [DOI: 10.1016/j.jprot.2011.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/25/2011] [Accepted: 03/01/2011] [Indexed: 11/29/2022]
|