1
|
Pegler JL, Oultram JMJ, Mann CWG, Carroll BJ, Grof CPL, Eamens AL. Miniature Inverted-Repeat Transposable Elements: Small DNA Transposons That Have Contributed to Plant MICRORNA Gene Evolution. PLANTS (BASEL, SWITZERLAND) 2023; 12:1101. [PMID: 36903960 PMCID: PMC10004981 DOI: 10.3390/plants12051101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Angiosperms form the largest phylum within the Plantae kingdom and show remarkable genetic variation due to the considerable difference in the nuclear genome size of each species. Transposable elements (TEs), mobile DNA sequences that can amplify and change their chromosome position, account for much of the difference in nuclear genome size between individual angiosperm species. Considering the dramatic consequences of TE movement, including the complete loss of gene function, it is unsurprising that the angiosperms have developed elegant molecular strategies to control TE amplification and movement. Specifically, the RNA-directed DNA methylation (RdDM) pathway, directed by the repeat-associated small-interfering RNA (rasiRNA) class of small regulatory RNA, forms the primary line of defense to control TE activity in the angiosperms. However, the miniature inverted-repeat transposable element (MITE) species of TE has at times avoided the repressive effects imposed by the rasiRNA-directed RdDM pathway. MITE proliferation in angiosperm nuclear genomes is due to their preference to transpose within gene-rich regions, a pattern of transposition that has enabled MITEs to gain further transcriptional activity. The sequence-based properties of a MITE results in the synthesis of a noncoding RNA (ncRNA), which, after transcription, folds to form a structure that closely resembles those of the precursor transcripts of the microRNA (miRNA) class of small regulatory RNA. This shared folding structure results in a MITE-derived miRNA being processed from the MITE-transcribed ncRNA, and post-maturation, the MITE-derived miRNA can be used by the core protein machinery of the miRNA pathway to regulate the expression of protein-coding genes that harbor homologous MITE insertions. Here, we outline the considerable contribution that the MITE species of TE have made to expanding the miRNA repertoire of the angiosperms.
Collapse
Affiliation(s)
- Joseph L. Pegler
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jackson M. J. Oultram
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Christopher W. G. Mann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Bernard J. Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Christopher P. L. Grof
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Andrew L. Eamens
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| |
Collapse
|
2
|
Beric A, Mabry ME, Harkess AE, Brose J, Schranz ME, Conant GC, Edger PP, Meyers BC, Pires JC. Comparative phylogenetics of repetitive elements in a diverse order of flowering plants (Brassicales). G3 (BETHESDA, MD.) 2021; 11:jkab140. [PMID: 33993297 PMCID: PMC8495927 DOI: 10.1093/g3journal/jkab140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/10/2021] [Indexed: 11/14/2022]
Abstract
Genome sizes of plants have long piqued the interest of researchers due to the vast differences among organisms. However, the mechanisms that drive size differences have yet to be fully understood. Two important contributing factors to genome size are expansions of repetitive elements, such as transposable elements (TEs), and whole-genome duplications (WGD). Although studies have found correlations between genome size and both TE abundance and polyploidy, these studies typically test for these patterns within a genus or species. The plant order Brassicales provides an excellent system to further test if genome size evolution patterns are consistent across larger time scales, as there are numerous WGDs. This order is also home to one of the smallest plant genomes, Arabidopsis thaliana-chosen as the model plant system for this reason-as well as to species with very large genomes. With new methods that allow for TE characterization from low-coverage genome shotgun data and 71 taxa across the Brassicales, we confirm the correlation between genome size and TE content, however, we are unable to reconstruct phylogenetic relationships and do not detect any shift in TE abundance associated with WGD.
Collapse
Affiliation(s)
- Aleksandra Beric
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Makenzie E Mabry
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Alex E Harkess
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Julia Brose
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, Wageningen 6700 AA, The Netherlands
| | - Gavin C Conant
- Bioinformatics Research Center, Program in Genetics and Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Department of Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI 48824, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - J Chris Pires
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
3
|
Hou J, Lu D, Mason AS, Li B, An S, Li G, Cai D. Distribution of MITE family Monkey King in rapeseed (Brassica napus L) and its influence on gene expression. Genomics 2021; 113:2934-2943. [PMID: 34182079 DOI: 10.1016/j.ygeno.2021.06.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 05/06/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
Miniature inverted-repeat transposable elements (MITEs) are a group of class II transposable elements. The MITE Monkey King (MK) was first discovered upstream of BnFLC.A10. In this study, genome resequencing of four selected B. napus accessions, revealed more than 4000 distributed copies of MKs constituting ~2.4 Mb of the B. napus genomic sequence and caused 677 polymorphisms among the four accessions. MK -polymorphism-related markers across 128 natural and 58 synthetic accessions revealed more polymorphic MKs in natural than synthetic accessions. Ten MK -induced indels significantly affected the expression levels of the nearest gene based on RNAseq analysis, six of these effects were subsequently confirmed using qRT-PCR. Decreased expression pattern of MK -derived miRNA-bna-miR6031 was also observed under various stress treatments. Further research focused on the MITE families should promote not only our understanding of gene regulatory networks but also inform crop improvement efforts.
Collapse
Affiliation(s)
- Jinna Hou
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Dandan Lu
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Annaliese S Mason
- Chair of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany.
| | - Baoquan Li
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Sufang An
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Gaoyuan Li
- Bioinformatic Institute, Huazhong Agricultural University, Wuhan 430071, China.
| | - Dongfang Cai
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| |
Collapse
|
4
|
Giraud D, Lima O, Huteau V, Coriton O, Boutte J, Kovarik A, Leitch AR, Leitch IJ, Aïnouche M, Salmon A. Evolutionary dynamics of transposable elements and satellite DNAs in polyploid Spartina species. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110671. [PMID: 33288000 DOI: 10.1016/j.plantsci.2020.110671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/31/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
Repeated sequences and polyploidy play a central role in plant genome dynamics. Here, we analyze the evolutionary dynamics of repeats in tetraploid and hexaploid Spartina species that diverged during the last 10 million years within the Chloridoideae, one of the poorest investigated grass lineages. From high-throughput genome sequencing, we annotated Spartina repeats and determined what sequence types account for the genome size variation among species. We examined whether differential genome size evolution correlated with ploidy levels and phylogenetic relationships. We also examined the tempo of repeat sequence dynamics associated with allopatric speciation over the last 3-6 million years between hexaploid species that diverged on the American and European Atlantic coasts and tetraploid species from North and South America. The tetraploid S. spartinae, whose phylogenetic placement has been debated, exhibits a similar repeat content as hexaploid species, suggesting common ancestry. Genome expansion or contraction resulting from repeat dynamics seems to be explained mostly by the contrasting divergence times between species, rather than by genome changes triggered by ploidy level change per se. One 370 bp satellite may be exhibiting 'meiotic drive' and driving chromosome evolution in S. alterniflora. Our results provide crucial insights for investigating the genetic and epigenetic consequences of such differential repeat dynamics on the ecology and distribution of the meso- and neopolyploid Spartina species.
Collapse
Affiliation(s)
- Delphine Giraud
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, F-35042, Rennes Cedex, France.
| | - Oscar Lima
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, F-35042, Rennes Cedex, France.
| | - Virginie Huteau
- Plateforme de cytogénétique moléculaire végétale, INRAE, Université de Rennes 1, Agrocampus Ouest, IGEPP, F-35650, Le Rheu, France; INRAE, Université de Rennes 1, Agrocampus Ouest, IGEPP, F-35650, Le Rheu, France.
| | - Olivier Coriton
- Plateforme de cytogénétique moléculaire végétale, INRAE, Université de Rennes 1, Agrocampus Ouest, IGEPP, F-35650, Le Rheu, France; INRAE, Université de Rennes 1, Agrocampus Ouest, IGEPP, F-35650, Le Rheu, France.
| | - Julien Boutte
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, F-35042, Rennes Cedex, France; INRAE, Université de Rennes 1, Agrocampus Ouest, IGEPP, F-35650, Le Rheu, France.
| | - Ales Kovarik
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, CZ-61265, Czech Republic.
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| | - Ilia J Leitch
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK.
| | - Malika Aïnouche
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, F-35042, Rennes Cedex, France.
| | - Armel Salmon
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, F-35042, Rennes Cedex, France.
| |
Collapse
|
5
|
Zagorski D, Hartmann M, Bertrand YJK, Paštová L, Slavíková R, Josefiová J, Fehrer J. Characterization and Dynamics of Repeatomes in Closely Related Species of Hieracium (Asteraceae) and Their Synthetic and Apomictic Hybrids. FRONTIERS IN PLANT SCIENCE 2020; 11:591053. [PMID: 33224172 PMCID: PMC7667050 DOI: 10.3389/fpls.2020.591053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/09/2020] [Indexed: 05/05/2023]
Abstract
The repetitive content of the plant genome (repeatome) often represents its largest fraction and is frequently correlated with its size. Transposable elements (TEs), the main component of the repeatome, are an important driver in the genome diversification due to their fast-evolving nature. Hybridization and polyploidization events are hypothesized to induce massive bursts of TEs resulting, among other effects, in an increase of copy number and genome size. Little is known about the repeatome dynamics following hybridization and polyploidization in plants that reproduce by apomixis (asexual reproduction via seeds). To address this, we analyzed the repeatomes of two diploid parental species, Hieracium intybaceum and H. prenanthoides (sexual), their diploid F1 synthetic and their natural triploid hybrids (H. pallidiflorum and H. picroides, apomictic). Using low-coverage next-generation sequencing (NGS) and a graph-based clustering approach, we detected high overall similarity across all major repeatome categories between the parental species, despite their large phylogenetic distance. Medium and highly abundant repetitive elements comprise ∼70% of Hieracium genomes; most prevalent were Ty3/Gypsy chromovirus Tekay and Ty1/Copia Maximus-SIRE elements. No TE bursts were detected, neither in synthetic nor in natural hybrids, as TE abundance generally followed theoretical expectations based on parental genome dosage. Slight over- and under-representation of TE cluster abundances reflected individual differences in genome size. However, in comparative analyses, apomicts displayed an overabundance of pararetrovirus clusters not observed in synthetic hybrids. Substantial deviations were detected in rDNAs and satellite repeats, but these patterns were sample specific. rDNA and satellite repeats (three of them were newly developed as cytogenetic markers) were localized on chromosomes by fluorescence in situ hybridization (FISH). In a few cases, low-abundant repeats (5S rDNA and certain satellites) showed some discrepancy between NGS data and FISH results, which is due partly to the bias of low-coverage sequencing and partly to low amounts of the satellite repeats or their sequence divergence. Overall, satellite DNA (including rDNA) was markedly affected by hybridization, but independent of the ploidy or reproductive mode of the progeny, whereas bursts of TEs did not play an important role in the evolutionary history of Hieracium.
Collapse
|
6
|
Jedlicka P, Lexa M, Vanat I, Hobza R, Kejnovsky E. Nested plant LTR retrotransposons target specific regions of other elements, while all LTR retrotransposons often target palindromes and nucleosome-occupied regions: in silico study. Mob DNA 2019; 10:50. [PMID: 31871489 PMCID: PMC6911290 DOI: 10.1186/s13100-019-0186-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/31/2019] [Indexed: 01/08/2023] Open
Abstract
Background Nesting is common in LTR retrotransposons, especially in large genomes containing a high number of elements. Results We analyzed 12 plant genomes and obtained 1491 pairs of nested and original (pre-existing) LTR retrotransposons. We systematically analyzed mutual nesting of individual LTR retrotransposons and found that certain families, more often belonging to the Ty3/gypsy than Ty1/copia superfamilies, showed a higher nesting frequency as well as a higher preference for older copies of the same family ("autoinsertions"). Nested LTR retrotransposons were preferentially located in the 3'UTR of other LTR retrotransposons, while coding and regulatory regions (LTRs) are not commonly targeted. Insertions displayed a weak preference for palindromes and were associated with a strong positional pattern of higher predicted nucleosome occupancy. Deviation from randomness in target site choice was also found in 13,983 non-nested plant LTR retrotransposons. Conclusions We reveal that nesting of LTR retrotransposons is not random. Integration is correlated with sequence composition, secondary structure and the chromatin environment. Insertion into retrotransposon positions with a low negative impact on family fitness supports the concept of the genome being viewed as an ecosystem of various elements.
Collapse
Affiliation(s)
- Pavel Jedlicka
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61200 Brno, Czech Republic
| | - Matej Lexa
- 2Faculty of Informatics, Masaryk University, Botanicka 68a, 60200 Brno, Czech Republic
| | - Ivan Vanat
- 2Faculty of Informatics, Masaryk University, Botanicka 68a, 60200 Brno, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61200 Brno, Czech Republic
| | - Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61200 Brno, Czech Republic
| |
Collapse
|
7
|
Baduel P, Bray S, Vallejo-Marin M, Kolář F, Yant L. The “Polyploid Hop”: Shifting Challenges and Opportunities Over the Evolutionary Lifespan of Genome Duplications. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00117] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Vicient CM, Casacuberta JM. Impact of transposable elements on polyploid plant genomes. ANNALS OF BOTANY 2017; 120:195-207. [PMID: 28854566 PMCID: PMC5737689 DOI: 10.1093/aob/mcx078] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/23/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND The growing wealth of knowledge on whole-plant genome sequences is highlighting the key role of transposable elements (TEs) in plant evolution, as a driver of drastic changes in genome size and as a source of an important number of new coding and regulatory sequences. Together with polyploidization events, TEs should thus be considered the major players in evolution of plants. SCOPE This review outlines the major mechanisms by which TEs impact plant genome evolution and how polyploidy events can affect these impacts, and vice versa. These include direct effects on genes, by providing them with new coding or regulatory sequences, an effect on the epigenetic status of the chromatin close to genes, and more subtle effects by imposing diverse evolutionary constraints to different chromosomal regions. These effects are particularly relevant after polyploidization events. Polyploidization often induces bursts of transposition probably due to a relaxation in their epigenetic control, and, in the short term, this can increase the rate of gene mutations and changes in gene regulation due to the insertion of TEs next to or into genes. Over longer times, TE bursts may induce global changes in genome structure due to inter-element recombination including losses of large genome regions and chromosomal rearrangements that reduce the genome size and the chromosome number as part of a process called diploidization. CONCLUSIONS TEs play an essential role in genome and gene evolution, in particular after polyploidization events. Polyploidization can induce TE activity that may explain part of the new phenotypes observed. TEs may also play a role in the diploidization that follows polyploidization events. However, the extent to which TEs contribute to diploidization and fractionation bias remains unclear. Investigating the multiple factors controlling TE dynamics and the nature of ancient and recent polyploid genomes may shed light on these processes.
Collapse
Affiliation(s)
- Carlos M. Vicient
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain
- For correspondence. E-mail
| | - Josep M. Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
9
|
Guo C, Spinelli M, Ye C, Li QQ, Liang C. Genome-Wide Comparative Analysis of Miniature Inverted Repeat Transposable Elements in 19 Arabidopsis thaliana Ecotype Accessions. Sci Rep 2017; 7:2634. [PMID: 28572566 PMCID: PMC5454002 DOI: 10.1038/s41598-017-02855-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 04/20/2017] [Indexed: 01/03/2023] Open
Abstract
Miniature inverted repeat transposable elements (MITEs) are prevalent in eukaryotic genomes. They are known to critically influence the process of genome evolution and play a role in gene regulation. As the first study concentrated in the transposition activities of MITEs among different ecotype accessions within a species, we conducted a genome-wide comparative analysis by characterizing and comparing MITEs in 19 Arabidopsis thaliana accessions. A total of 343485 MITE putative sequences, including canonical, diverse and partial ones, were delineated from all 19 accessions. Within the entire population of MITEs sequences, 80.7% of them were previously unclassified MITEs, demonstrating a different genomic distribution and functionality compared to the classified MITEs. The interactions between MITEs and homologous genes across 19 accessions provided a fine source for analyzing MITE transposition activities and their impacts on genome evolution. Moreover, a significant proportion of MITEs were found located in the last exon of genes besides the ordinary intron locality, thus potentially modifying the end of genes. Finally, analysis of the impact of MITEs on gene expression suggests that migrations of MITEs have no detectable effect on the expression level for host genes across accessions.
Collapse
Affiliation(s)
- Cheng Guo
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | | | - Congting Ye
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China.
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA.
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH, 45056, USA.
| |
Collapse
|
10
|
Abstract
LTR retrotransposons are the most abundant group of transposable elements (TEs) in plants. These elements can fall inside or close to genes, and therefore influence their expression and evolution. This review aims to examine how LTR retrotransposons, especially Ty1-copia elements, mediate gene regulation and evolution. Various stimuli, including polyploidization and biotic and abiotic elicitors, result in the transcription and movement of these retrotransposons, and can facilitate adaptation. The presence of cis-regulatory motifs in the LTRs are central to their stress-mediated responses and are shared with host stress-responsive genes, showing a complex evolutionary history in which TEs provide new regulatory units to genes. The presence of retrotransposon remnants in genes that are necessary for normal gene function, demonstrates the importance of exaptation and co-option, and is also a consequence of the abundance of these elements in plant genomes. Furthermore, insertions of LTR retrotransposons in and around genes provide potential for alternative splicing, epigenetic control, transduction, duplication and recombination. These characteristics can become an active part of the evolution of gene families as in the case of resistance genes (R-genes). The character of TEs as exclusively selfish is now being re-evaluated. Since genome-wide reprogramming via TEs is a long evolutionary process, the changes we can examine are case-specific and their fitness advantage may not be evident until TE-derived motifs and domains have been completely co-opted and fixed. Nevertheless, the presence of LTR retrotransposons inside genes and as part of gene promoter regions is consistent with their roles as engines of plant genome evolution.
Collapse
|
11
|
Gautam M, Dang Y, Ge X, Shao Y, Li Z. Genetic and Epigenetic Changes in Oilseed Rape (Brassica napus L.) Extracted from Intergeneric Allopolyploid and Additions with Orychophragmus. FRONTIERS IN PLANT SCIENCE 2016; 7:438. [PMID: 27148282 PMCID: PMC4828432 DOI: 10.3389/fpls.2016.00438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/21/2016] [Indexed: 05/24/2023]
Abstract
Allopolyploidization with the merger of the genomes from different species has been shown to be associated with genetic and epigenetic changes. But the maintenance of such alterations related to one parental species after the genome is extracted from the allopolyploid remains to be detected. In this study, the genome of Brassica napus L. (2n = 38, genomes AACC) was extracted from its intergeneric allohexaploid (2n = 62, genomes AACCOO) with another crucifer Orychophragmus violaceus (2n = 24, genome OO), by backcrossing and development of alien addition lines. B. napus-type plants identified in the self-pollinated progenies of nine monosomic additions were analyzed by the methods of amplified fragment length polymorphism, sequence-specific amplified polymorphism, and methylation-sensitive amplified polymorphism. They showed modifications to certain extents in genomic components (loss and gain of DNA segments and transposons, introgression of alien DNA segments) and DNA methylation, compared with B. napus donor. The significant differences in the changes between the B. napus types extracted from these additions likely resulted from the different effects of individual alien chromosomes. Particularly, the additions which harbored the O. violaceus chromosome carrying dominant rRNA genes over those of B. napus tended to result in the development of plants which showed fewer changes, suggesting a role of the expression levels of alien rRNA genes in genomic stability. These results provided new cues for the genetic alterations in one parental genome that are maintained even after the genome becomes independent.
Collapse
Affiliation(s)
- Mayank Gautam
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yanwei Dang
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yujiao Shao
- College of Chemistry and Life Science, Hubei University of EducationWuhan, China
| | - Zaiyun Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
12
|
Evolutionary genomics of miniature inverted-repeat transposable elements (MITEs) in Brassica. Mol Genet Genomics 2015; 290:2297-312. [DOI: 10.1007/s00438-015-1076-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/29/2015] [Indexed: 11/26/2022]
|
13
|
Dai S, Hou J, Long Y, Wang J, Li C, Xiao Q, Jiang X, Zou X, Zou J, Meng J. Widespread and evolutionary analysis of a MITE family Monkey King in Brassicaceae. BMC PLANT BIOLOGY 2015; 15:149. [PMID: 26084405 PMCID: PMC4471910 DOI: 10.1186/s12870-015-0490-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/07/2015] [Indexed: 05/24/2023]
Abstract
BACKGROUND Miniature inverted repeat transposable elements (MITEs) are important components of eukaryotic genomes, with hundreds of families and many copies, which may play important roles in gene regulation and genome evolution. However, few studies have investigated the molecular mechanisms involved. In our previous study, a Tourist-like MITE, Monkey King, was identified from the promoter region of a flowering time gene, BnFLC.A10, in Brassica napus. Based on this MITE, the characteristics and potential roles on gene regulation of the MITE family were analyzed in Brassicaceae. RESULTS The characteristics of the Tourist-like MITE family Monkey King in Brassicaceae, including its distribution, copies and insertion sites in the genomes of major Brassicaceae species were analyzed in this study. Monkey King was actively amplified in Brassica after divergence from Arabidopsis, which was indicated by the prompt increase in copy number and by phylogenetic analysis. The genomic variations caused by Monkey King insertions, both intra- and inter-species in Brassica, were traced by PCR amplification. Genomic sequence analysis showed that most complete Monkey King elements are located in gene-rich regions, less than 3kb from genes, in both the B. rapa and A. thaliana genomes. Sixty-seven Brassica expressed sequence tags carrying Monkey King fragments were also identified from the NCBI database. Bisulfite sequencing identified specific DNA methylation of cytosine residues in the Monkey King sequence. A fragment containing putative TATA-box motifs in the MITE sequence could bind with nuclear protein(s) extracted from leaves of B. napus plants. A Monkey King-related microRNA, bna-miR6031, was identified in the microRNA database. In transgenic A. thaliana, when the Monkey King element was inserted upstream of 35S promoter, the promoter activity was weakened. CONCLUSION Monkey King, a Brassicaceae Tourist-like MITE family, has amplified relatively recently and has induced intra- and inter-species genomic variations in Brassica. Monkey King elements are most abundant in the vicinity of genes and may have a substantial effect on genome-wide gene regulation in Brassicaceae. Monkey King insertions potentially regulate gene expression and genome evolution through epigenetic modification and new regulatory motif production.
Collapse
Affiliation(s)
- Shutao Dai
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Jinna Hou
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Crop Designing Centre, Henan Academy of Agricultural Sciences, Zhenzhou, Henan, 450002, China.
| | - Yan Long
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Jing Wang
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Cong Li
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Qinqin Xiao
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Xiaoxue Jiang
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Xiaoxiao Zou
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Jun Zou
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Jinling Meng
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
14
|
Murukarthick J, Sampath P, Lee SC, Choi BS, Senthil N, Liu S, Yang TJ. BrassicaTED - a public database for utilization of miniature transposable elements in Brassica species. BMC Res Notes 2014; 7:379. [PMID: 24948109 PMCID: PMC4077149 DOI: 10.1186/1756-0500-7-379] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/13/2014] [Indexed: 12/04/2022] Open
Abstract
Background MITE, TRIM and SINEs are miniature form transposable elements (mTEs) that are ubiquitous and dispersed throughout entire plant genomes. Tens of thousands of members cause insertion polymorphism at both the inter- and intra- species level. Therefore, mTEs are valuable targets and resources for development of markers that can be utilized for breeding, genetic diversity and genome evolution studies. Taking advantage of the completely sequenced genomes of Brassica rapa and B. oleracea, characterization of mTEs and building a curated database are prerequisite to extending their utilization for genomics and applied fields in Brassica crops. Findings We have developed BrassicaTED as a unique web portal containing detailed characterization information for mTEs of Brassica species. At present, BrassicaTED has datasets for 41 mTE families, including 5894 and 6026 members from 20 MITE families, 1393 and 1639 members from 5 TRIM families, 1270 and 2364 members from 16 SINE families in B. rapa and B. oleracea, respectively. BrassicaTED offers different sections to browse structural and positional characteristics for every mTE family. In addition, we have added data on 289 MITE insertion polymorphisms from a survey of seven Brassica relatives. Genes with internal mTE insertions are shown with detailed gene annotation and microarray-based comparative gene expression data in comparison with their paralogs in the triplicated B. rapa genome. This database also includes a novel tool, K BLAST (Karyotype BLAST), for clear visualization of the locations for each member in the B. rapa and B. oleracea pseudo-genome sequences. Conclusions BrassicaTED is a newly developed database of information regarding the characteristics and potential utility of mTEs including MITE, TRIM and SINEs in B. rapa and B. oleracea. The database will promote the development of desirable mTE-based markers, which can be utilized for genomics and breeding in Brassica species. BrassicaTED will be a valuable repository for scientists and breeders, promoting efficient research on Brassica species. BrassicaTED can be accessed at http://im-crop.snu.ac.kr/BrassicaTED/index.php.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea.
| |
Collapse
|
15
|
Genome-wide comparative analysis of 20 miniature inverted-repeat transposable element families in Brassica rapa and B. oleracea. PLoS One 2014; 9:e94499. [PMID: 24747717 PMCID: PMC3991616 DOI: 10.1371/journal.pone.0094499] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/17/2014] [Indexed: 12/25/2022] Open
Abstract
Miniature inverted-repeat transposable elements (MITEs) are ubiquitous, non-autonomous class II transposable elements. Here, we conducted genome-wide comparative analysis of 20 MITE families in B. rapa, B. oleracea, and Arabidopsis thaliana. A total of 5894 and 6026 MITE members belonging to the 20 families were found in the whole genome pseudo-chromosome sequences of B. rapa and B. oleracea, respectively. Meanwhile, only four of the 20 families, comprising 573 members, were identified in the Arabidopsis genome, indicating that most of the families were activated in the Brassica genus after divergence from Arabidopsis. Copy numbers varied from 4 to 1459 for each MITE family, and there was up to 6-fold variation between B. rapa and B. oleracea. In particular, analysis of intact members showed that whereas eleven families were present in similar copy numbers in B. rapa and B. oleracea, nine families showed copy number variation ranging from 2- to 16-fold. Four of those families (BraSto-3, BraTo-3, 4, 5) were more abundant in B. rapa, and the other five (BraSto-1, BraSto-4, BraTo-1, 7 and BraHAT-1) were more abundant in B. oleracea. Overall, 54% and 51% of the MITEs resided in or within 2 kb of a gene in the B. rapa and B. oleracea genomes, respectively. Notably, 92 MITEs were found within the CDS of annotated genes, suggesting that MITEs might play roles in diversification of genes in the recently triplicated Brassica genome. MITE insertion polymorphism (MIP) analysis of 289 MITE members showed that 52% and 23% were polymorphic at the inter- and intra-species levels, respectively, indicating that there has been recent MITE activity in the Brassica genome. These recently activated MITE families with abundant MIP will provide useful resources for molecular breeding and identification of novel functional genes arising from MITE insertion.
Collapse
|
16
|
Vitte C, Fustier MA, Alix K, Tenaillon MI. The bright side of transposons in crop evolution. Brief Funct Genomics 2014; 13:276-95. [PMID: 24681749 DOI: 10.1093/bfgp/elu002] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The past decades have revealed an unexpected yet prominent role of so-called 'junk DNA' in the regulation of gene expression, thereby challenging our view of the mechanisms underlying phenotypic evolution. In particular, several mechanisms through which transposable elements (TEs) participate in functional genome diversity have been depicted, bringing to light the 'TEs bright side'. However, the relative contribution of those mechanisms and, more generally, the importance of TE-based polymorphisms on past and present phenotypic variation in crops species remain poorly understood. Here, we review current knowledge on both issues, and discuss how analyses of massively parallel sequencing data combined with statistical methodologies and functional validations will help unravelling the impact of TEs on crop evolution in a near future.
Collapse
|
17
|
Park KC, Son JH, Lee SII, Kim KS, Chang YS, Kim NS. Pong-like elements in Arabidopsis and Brassica rapa: its regulation of F-box protein gene in different ecotypes of Arabidopsis thaliana. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Gaines TA, Wright AA, Molin WT, Lorentz L, Riggins CW, Tranel PJ, Beffa R, Westra P, Powles SB. Identification of genetic elements associated with EPSPs gene amplification. PLoS One 2013; 8:e65819. [PMID: 23762434 PMCID: PMC3677901 DOI: 10.1371/journal.pone.0065819] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/28/2013] [Indexed: 01/22/2023] Open
Abstract
Weed populations can have high genetic plasticity and rapid responses to environmental selection pressures. For example, 100-fold amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene evolved in the weed species Amaranthus palmeri to confer resistance to glyphosate, the world's most important herbicide. However, the gene amplification mechanism is unknown. We sequenced the EPSPS gene and genomic regions flanking EPSPS loci in A. palmeri, and searched for mobile genetic elements or repetitive sequences. The EPSPS gene was 10,229 bp, containing 8 exons and 7 introns. The gene amplification likely proceeded through a DNA-mediated mechanism, as introns exist in the amplified gene copies and the entire amplified sequence is at least 30 kb in length. Our data support the presence of two EPSPS loci in susceptible (S) A. palmeri, and that only one of these was amplified in glyphosate-resistant (R) A. palmeri. The EPSPS gene amplification event likely occurred recently, as no sequence polymorphisms were found within introns of amplified EPSPS copies from R individuals. Sequences with homology to miniature inverted-repeat transposable elements (MITEs) were identified next to EPSPS gene copies only in R individuals. Additionally, a putative Activator (Ac) transposase and a repetitive sequence region were associated with amplified EPSPS genes. The mechanism controlling this DNA-mediated amplification remains unknown. Further investigation is necessary to determine if the gene amplification may have proceeded via DNA transposon-mediated replication, and/or unequal recombination between different genomic regions resulting in replication of the EPSPS gene.
Collapse
Affiliation(s)
- Todd A Gaines
- Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, Crawley, Western Australia, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sampath P, Lee SC, Lee J, Izzah NK, Choi BS, Jin M, Park BS, Yang TJ. Characterization of a new high copy Stowaway family MITE, BRAMI-1 in Brassica genome. BMC PLANT BIOLOGY 2013; 13:56. [PMID: 23547712 PMCID: PMC3626606 DOI: 10.1186/1471-2229-13-56] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 03/18/2013] [Indexed: 05/29/2023]
Abstract
BACKGROUND Miniature inverted-repeat transposable elements (MITEs) are expected to play important roles in evolution of genes and genome in plants, especially in the highly duplicated plant genomes. Various MITE families and their roles in plants have been characterized. However, there have been fewer studies of MITE families and their potential roles in evolution of the recently triplicated Brassica genome. RESULTS We identified a new MITE family, BRAMI-1, belonging to the Stowaway super-family in the Brassica genome. In silico mapping revealed that 697 members are dispersed throughout the euchromatic regions of the B. rapa pseudo-chromosomes. Among them, 548 members (78.6%) are located in gene-rich regions, less than 3 kb from genes. In addition, we identified 516 and 15 members in the 470 Mb and 15 Mb genomic shotgun sequences currently available for B. oleracea and B. napus, respectively. The resulting estimated copy numbers for the entire genomes were 1440, 1464 and 2490 in B. rapa, B. oleracea and B. napus, respectively. Concurrently, only 70 members of the related Arabidopsis ATTIRTA-1 MITE family were identified in the Arabidopsis genome. Phylogenetic analysis revealed that BRAMI-1 elements proliferated in the Brassica genus after divergence from the Arabidopsis lineage. MITE insertion polymorphism (MIP) was inspected for 50 BRAMI-1 members, revealing high levels of insertion polymorphism between and within species of Brassica that clarify BRAMI-1 activation periods up to the present. Comparative analysis of the 71 genes harbouring the BRAMI-1 elements with their non-insertion paralogs (NIPs) showed that the BRAMI-1 insertions mainly reside in non-coding sequences and that the expression levels of genes with the elements differ from those of their NIPs. CONCLUSION A Stowaway family MITE, named as BRAMI-1, was gradually amplified and remained present in over than 1400 copies in each of three Brassica species. Overall, 78% of the members were identified in gene-rich regions, and it is assumed that they may contribute to the evolution of duplicated genes in the highly duplicated Brassica genome. The resulting MIPs can serve as a good source of DNA markers for Brassica crops because the insertions are highly dispersed in the gene-rich euchromatin region and are polymorphic between or within species.
Collapse
Affiliation(s)
- Perumal Sampath
- Dept. of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Sang-Choon Lee
- Dept. of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Jonghoon Lee
- Dept. of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Nur Kholilatul Izzah
- Dept. of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Beom-Soon Choi
- National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Mina Jin
- National Academy of Agricultural Science, Rural Development Administration, 150 Suinro, Suwon, 441-707, Republic of Korea
| | - Beom-Seok Park
- National Academy of Agricultural Science, Rural Development Administration, 150 Suinro, Suwon, 441-707, Republic of Korea
| | - Tae-Jin Yang
- Dept. of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| |
Collapse
|
20
|
Sarilar V, Palacios PM, Rousselet A, Ridel C, Falque M, Eber F, Chèvre AM, Joets J, Brabant P, Alix K. Allopolyploidy has a moderate impact on restructuring at three contrasting transposable element insertion sites in resynthesized Brassica napus allotetraploids. THE NEW PHYTOLOGIST 2013; 198:593-604. [PMID: 23384044 DOI: 10.1111/nph.12156] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/19/2012] [Indexed: 05/02/2023]
Abstract
The role played by whole-genome duplication (WGD) in evolution and adaptation is particularly well illustrated in allopolyploids, where WGD is concomitant with interspecific hybridization. This 'Genome Shock', usually accompanied by structural and functional modifications, has been associated with the activation of transposable elements (TEs). However, the impact of allopolyploidy on TEs has been studied in only a few polyploid species, and not in Brassica, which has been marked by recurrent polyploidy events. Here, we developed sequence-specific amplification polymorphism (SSAP) markers for three contrasting TEs, and compared profiles between resynthesized Brassica napus allotetraploids and their diploid Brassica progenitors. To evaluate restructuring at TE insertion sites, we scored changes in SSAP profiles and analysed a large set of differentially amplified SSAP bands. No massive structural changes associated with the three TEs surveyed were detected. However, several transposition events, specific to the youngest TE originating from the B. oleracea genome, were identified. Our study supports the hypothesis that TE responses to allopolyploidy are highly specific. The changes observed in SSAP profiles lead us to hypothesize that they may partly result from changes in DNA methylation, questioning the role of epigenetics during the formation of a new allopolyploid genome.
Collapse
Affiliation(s)
- Véronique Sarilar
- AgroParisTech, 16 rue Claude Bernard, F-75231 Paris Cedex 05, France
- CNRS, UMR 0320/8120 Génétique Végétale, Ferme du Moulon, F-91190 Gif-sur-Yvette, France
| | - Paulina Martinez Palacios
- Université Paris-Sud, UMR 0320/8120 Génétique Végétale, Ferme du Moulon, F-91190 Gif-sur-Yvette, France
| | - Agnès Rousselet
- INRA, UMR 0320/8120 Génétique Végétale, Ferme du Moulon, F-91190 Gif-sur-Yvette, France
| | - Céline Ridel
- INRA, UMR 0320/8120 Génétique Végétale, Ferme du Moulon, F-91190 Gif-sur-Yvette, France
| | - Matthieu Falque
- INRA, UMR 0320/8120 Génétique Végétale, Ferme du Moulon, F-91190 Gif-sur-Yvette, France
| | - Frédérique Eber
- INRA, UMR 1349 IGEPP, BP 35327, F-35653 Le Rheu Cedex, France
| | | | - Johann Joets
- INRA, UMR 0320/8120 Génétique Végétale, Ferme du Moulon, F-91190 Gif-sur-Yvette, France
| | - Philippe Brabant
- AgroParisTech, 16 rue Claude Bernard, F-75231 Paris Cedex 05, France
- UMR 0320/8120 Génétique Végétale, Ferme du Moulon, F-91190 Gif-sur-Yvette, France
| | - Karine Alix
- AgroParisTech, 16 rue Claude Bernard, F-75231 Paris Cedex 05, France
- UMR 0320/8120 Génétique Végétale, Ferme du Moulon, F-91190 Gif-sur-Yvette, France
| |
Collapse
|
21
|
Fattash I, Rooke R, Wong A, Hui C, Luu T, Bhardwaj P, Yang G. Miniature inverted-repeat transposable elements: discovery, distribution, and activity. Genome 2013; 56:475-86. [PMID: 24168668 DOI: 10.1139/gen-2012-0174] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Eukaryotic organisms have dynamic genomes, with transposable elements (TEs) as a major contributing factor. Although the large autonomous TEs can significantly shape genomic structures during evolution, genomes often harbor more miniature nonautonomous TEs that can infest genomic niches where large TEs are rare. In spite of their cut-and-paste transposition mechanisms that do not inherently favor copy number increase, miniature inverted-repeat transposable elements (MITEs) are abundant in eukaryotic genomes and exist in high copy numbers. Based on the large number of MITE families revealed in previous studies, accurate annotation of MITEs, particularly in newly sequenced genomes, will identify more genomes highly rich in these elements. Novel families identified from these analyses, together with the currently known families, will further deepen our understanding of the origins, transposase sources, and dramatic amplification of these elements.
Collapse
Affiliation(s)
- Isam Fattash
- a Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Wei L, Xiao M, An Z, Ma B, Mason AS, Qian W, Li J, Fu D. New insights into nested long terminal repeat retrotransposons in Brassica species. MOLECULAR PLANT 2013; 6:470-482. [PMID: 22930733 DOI: 10.1093/mp/sss081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Long terminal repeat (LTR) retrotransposons, one of the foremost types of transposons, continually change or modify gene function and reorganize the genome through bursts of dramatic proliferation. Many LTR-TEs preferentially insert within other LTR-TEs, but the cause and evolutionary significance of these nested LTR-TEs are not well understood. In this study, a total of 1.52Gb of Brassica sequence containing 2020 bacterial artificial chromosomes (BACs) was scanned, and six bacterial artificial chromosome (BAC) clones with extremely nested LTR-TEs (LTR-TEs density: 7.24/kb) were selected for further analysis. The majority of the LTR-TEs in four of the six BACs were found to be derived from the rapid proliferation of retrotransposons originating within the BAC regions, with only a few LTR-TEs originating from the proliferation and insertion of retrotransposons from outside the BAC regions approximately 5-23Mya. LTR-TEs also preferably inserted into TA-rich repeat regions. Gene prediction by Genescan identified 207 genes in the 0.84Mb of total BAC sequences. Only a few genes (3/207) could be matched to the Brassica expressed sequence tag (EST) database, indicating that most genes were inactive after retrotransposon insertion. Five of the six BACs were putatively centromeric. Hence, nested LTR-TEs in centromere regions are rapidly duplicated, repeatedly inserted, and act to suppress activity of genes and to reshuffle the structure of the centromeric sequences. Our results suggest that LTR-TEs burst and proliferate on a local scale to create nested LTR-TE regions, and that these nested LTR-TEs play a role in the formation of centromeres.
Collapse
Affiliation(s)
- Lijuan Wei
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Yaakov B, Kashkush K. Mobilization of Stowaway-like MITEs in newly formed allohexaploid wheat species. PLANT MOLECULAR BIOLOGY 2012; 80:419-27. [PMID: 22933118 DOI: 10.1007/s11103-012-9957-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/16/2012] [Indexed: 05/02/2023]
Abstract
Transposable elements (TEs) dominate the genetic capacity of most eukaryotes, especially plants, where they can account for up to 90 % of the genome, such as in wheat. The relationship between TEs and their hosts and the role of TEs in organismal biology are poorly understood. In this study, we have applied next generation sequencing, together with a transposon display technique in order to test whether a Stowaway-like MITE, termed Minos, transposes following allopolyploidization events in wheat. We have generated a 454-pyrosequencing database of Minos-specific amplicons (transposon display products) from a newly formed wheat allohexaploid and its parental lines and retrieved hundreds of novel MITE insertions in the allohexaploid. Clear mobilization of Minos was also seen by site-specific PCR analysis and sequence validation. In addition, using real-time qPCR analysis we observed an insignificant change in the relative quantity of Minos from the expected value of merging the two parental genomes, indicating that, despite its activation, no significant burst in Minos copy number can be seen in the newly formed allohexaploid. Interestingly, we found that CCGG sites surrounding Minos underwent massive hypermethylation following the allohexaploidization process. Our data suggest that MITEs have maintained their capacity for activity throughout the evolution of wheat and might be epigenetically deregulated in the first generations following allopolyploidization.
Collapse
Affiliation(s)
- Beery Yaakov
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | | |
Collapse
|
24
|
Parisod C, Senerchia N. Responses of Transposable Elements to Polyploidy. PLANT TRANSPOSABLE ELEMENTS 2012. [DOI: 10.1007/978-3-642-31842-9_9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|