1
|
Súnico V, Piunti I, Bhattacharjee M, Mezzetti B, Caballero JL, Muñoz-Blanco J, Ricci A, Sabbadini S. Overview on Current Selectable Marker Systems and Novel Marker Free Approaches in Fruit Tree Genetic Engineering. Int J Mol Sci 2024; 25:11902. [PMID: 39595971 PMCID: PMC11594270 DOI: 10.3390/ijms252211902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Selectable marker genes are useful for recognizing which cells have integrated specific sequences in their genome after genetic transformation processes. They are especially important for fruit trees genetic transformation to individuate putatively genetically modified events, because most of the protocols used to genetic engineer these species are often unsuccessful or with low efficiency. Traditional selectable marker genes, mainly of bacterial origin, confer antibiotics/herbicides-resistance or metabolic advantages to transformed cells. Genes that allow the visual recognition of engineered tissues without using any selective agent, such as morphogenic regulators and reporter genes, are also used as selection tools to in vitro identify genetically modified regenerated lines. As final step, genetic engineered plants should be tested in field conditions, where selectable marker genes are no longer necessary, and strongly unpopular especially for the commercial development of the new products. Thus, different approaches, mainly based on the use of site-specific recombinases and/or editing nucleases, are being now used to recover marker-free fruit crops. This review describes and comments the most used and suitable selection tools of interest, particularly for fruit tree genetic engineering. Lastly, a spotlight highlights the biosafety aspects related to the use of selectable marker genes exploited for fruit species genetic engineering.
Collapse
Affiliation(s)
- Victoria Súnico
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (V.S.); (I.P.); (B.M.)
- Plant Biotechnology and Pharmacognosy Research Group (BIO-278), Department of Biochemistry and Molecular Biology, Severo Ochoa Building-C6, University of Cordoba, UCO-CeiA3, 14071 Cordoba, Spain; (J.L.C.); (J.M.-B.)
| | - Irene Piunti
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (V.S.); (I.P.); (B.M.)
| | - Mamta Bhattacharjee
- DBT-NECAB, Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat 785013, Assam, India;
| | - Bruno Mezzetti
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (V.S.); (I.P.); (B.M.)
| | - José L. Caballero
- Plant Biotechnology and Pharmacognosy Research Group (BIO-278), Department of Biochemistry and Molecular Biology, Severo Ochoa Building-C6, University of Cordoba, UCO-CeiA3, 14071 Cordoba, Spain; (J.L.C.); (J.M.-B.)
| | - Juan Muñoz-Blanco
- Plant Biotechnology and Pharmacognosy Research Group (BIO-278), Department of Biochemistry and Molecular Biology, Severo Ochoa Building-C6, University of Cordoba, UCO-CeiA3, 14071 Cordoba, Spain; (J.L.C.); (J.M.-B.)
| | - Angela Ricci
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (V.S.); (I.P.); (B.M.)
| | - Silvia Sabbadini
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (V.S.); (I.P.); (B.M.)
| |
Collapse
|
2
|
Hu C, Liu F, Sheng O, Yang Q, Dou T, Dong T, Li C, Gao H, He W, Liu S, Deng G, Yi G, Bi F. Efficient and transgene-free genome editing in banana using a REG-2 promoter-driven gene-deletion system. MOLECULAR HORTICULTURE 2023; 3:16. [PMID: 37789476 PMCID: PMC10514973 DOI: 10.1186/s43897-023-00065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/07/2023] [Indexed: 10/05/2023]
Affiliation(s)
- Chunhua Hu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Fan Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Ou Sheng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Qiaosong Yang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Tongxin Dou
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Tao Dong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Chunyu Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Huijun Gao
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Weidi He
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Siwen Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Guiming Deng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Ganjun Yi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China.
| | - Fangcheng Bi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China.
| |
Collapse
|
3
|
Confirmation of 'Pollen- and Seed-Specific Gene Deletor' System Efficiency for Transgene Excision from Transgenic Nicotiana tabacum under Field Conditions. Int J Mol Sci 2023; 24:ijms24021160. [PMID: 36674672 PMCID: PMC9866632 DOI: 10.3390/ijms24021160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023] Open
Abstract
The commercial application of genetically modified plants has been seriously impeded by public concern surrounding the potential risks posed by such plants to the ecosystem and human health. Previously, we have developed a 'pollen- and seed-specific Gene Deletor' system that automatically excised all transgenes from the pollen and seeds of greenhouse-grown transgenic Nicotiana tabacum. In this study, we conducted seven field experiments over three consecutive years to evaluate the stability of transgene excision under field conditions. Our results showed that transgenes were stably excised from transgenic Nicotiana tabacum under field conditions with 100% efficiency. The stability of transgene excision was confirmed based on PCR, as well as the GUS staining patterns of various organs (roots, leaves, petiole, stem, flower, fruit, and seeds) from transgenic N. tabacum. In six transgenic lines (D4, D10, D31, D56, and D43), the transgenes were stably deleted in the T0 and T1 generations. Thus, the 'Gene Deletor' system is an efficient and reliable method to reduce pollen- and seed-mediated unintentional gene flow. This system might help to alleviate the food safety concerns associated with transgenic crops.
Collapse
|
4
|
Ye X, Vaghchhipawala Z, Williams EJ, Fu C, Liu J, Lu F, Hall EL, Guo SX, Frank L, Gilbertson LA. Cre-mediated autoexcision of selectable marker genes in soybean, cotton, canola and maize transgenic plants. PLANT CELL REPORTS 2023; 42:45-55. [PMID: 36316413 DOI: 10.1007/s00299-022-02935-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Efficient selectable marker gene autoexcision in transgenic plants of soybean, cotton, canola, and maize is achieved by effective Cre recombinase expression. Selectable marker genes are often required for efficient generation of transgenic plants in plant transformation but are not desired once the transgenic events are obtained. We have developed Cre/loxP autoexcision systems to remove selectable marker genes in soybean, cotton, canola and maize. We tested a set of vectors with diverse promoters and identified promising promoters to drive cre expression for each of the four crops. We evaluated both the efficiency of generating primary transgenic events with low transgene copy numbers, and the frequency of marker-free progeny in the next generation. The best performing vectors gave no obvious decrease in the transformation frequency in each crop and generated homozygous marker-free progeny in the next generation. We found that effective expression of Cre recombinase for marker gene autoexcision can be species dependent. Among the vectors tested, the best autoexcision frequency (41%) in soybean transformation came from using the soybean RSP1 promoter for cre expression. The cre gene expressed by soybean RSP1 promoter with an Arabidopsis AtpE intron delivered the best autoexcision frequency (69%) in cotton transformation. The cre gene expressed by the embryo-specific eUSP88 promoter from Vicia faba conferred the best marker excision frequency (32%) in canola transformation. Finally, the cre gene expressed by the rice CDC45-1 promoter resulted in 44% autoexcision in maize transformation. The Cre/loxP recombinase system enables the generation of selectable marker-free transgenic plants for commercial product development in four agriculturally important crops and provides further improvement opportunities for more specific and better marker excision efficiency.
Collapse
Affiliation(s)
- Xudong Ye
- Bayer Crop Science, 700 Chesterfield Pkwy, St. Louis, MO, 63017, USA.
| | | | - Edward J Williams
- Bayer Crop Science, 700 Chesterfield Pkwy, St. Louis, MO, 63017, USA
- Wisconsin Crop Innovation Center, 8520 University Green, Middleton, WI, 53562, USA
| | - Changlin Fu
- Bayer Crop Science, 700 Chesterfield Pkwy, St. Louis, MO, 63017, USA
| | - Jinyuan Liu
- Bayer Crop Science, 700 Chesterfield Pkwy, St. Louis, MO, 63017, USA
| | - Fengming Lu
- Bayer Crop Science, 700 Chesterfield Pkwy, St. Louis, MO, 63017, USA
| | - Erin L Hall
- Bayer Crop Science, 700 Chesterfield Pkwy, St. Louis, MO, 63017, USA
| | - Shirley X Guo
- Bayer Crop Science, 700 Chesterfield Pkwy, St. Louis, MO, 63017, USA
| | - LaRee Frank
- Bayer Crop Science, 700 Chesterfield Pkwy, St. Louis, MO, 63017, USA
| | | |
Collapse
|
5
|
Wang X, Yu R, Li J. Using Genetic Engineering Techniques to Develop Banana Cultivars With Fusarium Wilt Resistance and Ideal Plant Architecture. FRONTIERS IN PLANT SCIENCE 2021; 11:617528. [PMID: 33519876 PMCID: PMC7838362 DOI: 10.3389/fpls.2020.617528] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/16/2020] [Indexed: 05/28/2023]
Abstract
Bananas (Musa spp.) are an important fruit crop worldwide. The fungus Fusarium oxysporum f. sp. cubense (Foc), which causes Fusarium wilt, is widely regarded as one of the most damaging plant diseases. Fusarium wilt has previously devastated global banana production and continues to do so today. In addition, due to the current use of high-density banana plantations, desirable banana varieties with ideal plant architecture (IPA) possess high lodging resistance, optimum photosynthesis, and efficient water absorption. These properties may help to increase banana production. Genetic engineering is useful for the development of banana varieties with Foc resistance and ideal plant architecture due to the sterility of most cultivars. However, the sustained immune response brought about by genetic engineering is always accompanied by yield reductions. To resolve this problem, we should perform functional genetic studies of the Musa genome, in conjunction with genome editing experiments, to unravel the molecular mechanisms underlying the immune response and the formation of plant architecture in the banana. Further explorations of the genes associated with Foc resistance and ideal architecture might lead to the development of banana varieties with both ideal architecture and pathogen super-resistance. Such varieties will help the banana to remain a staple food worldwide.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Renbo Yu
- Key Laboratory of Vegetable Research Center, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jingyang Li
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
6
|
Kleidon J, Brinin A, Paul JY, Harding R, Dale J, Dugdale B. Production of selectable marker gene-free Cavendish banana (Musa spp.) using a steroid-inducible recombinase platform. Transgenic Res 2019; 29:81-93. [PMID: 31664611 PMCID: PMC7000516 DOI: 10.1007/s11248-019-00179-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/18/2019] [Indexed: 11/28/2022]
Abstract
Genetic improvement of commercially accepted banana cultivars is strongly reliant on the ability to introduce genes that encode important agro-traits such as disease resistance. In most cases this can only be achieved using a transgenic approach. Public and regulatory acceptance of these events would greatly increase with “clean” single copy integration events free of the selectable marker gene and extraneous vector backbone. This would also allow for the successive addition of new genes and traits as they become available. In this study, we used the pMarker Free 1 (pMF1) vector containing the green fluorescent protein (gfp) reporter gene to assess the effectiveness of steroid-inducible recombination and positive/negative dual selection to regenerate transgenic Cavendish banana plants that were potentially free of the selectable marker gene. By examining the interaction of two different Agrobacterium strains with two different cultivars of Cavendish banana, namely Williams and Grand Naine, we describe a transformation and regeneration strategy that successfully produced marker-free, single transgene copy, gfp-expressing events. The system will provide a useful means of serially improving banana into the future.
Collapse
Affiliation(s)
- Jennifer Kleidon
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Anthony Brinin
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Jean-Yves Paul
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Robert Harding
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - James Dale
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Benjamin Dugdale
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
7
|
Wang B, Zhang Y, Zhao J, Dong M, Zhang J. Heat-Shock-Induced Removal of Transgenes Using the Gene-Deletor System in Hybrid Aspen ( Populus tremula × P. tremuloides). Genes (Basel) 2018; 9:genes9100484. [PMID: 30297683 PMCID: PMC6210648 DOI: 10.3390/genes9100484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/23/2018] [Accepted: 10/01/2018] [Indexed: 11/19/2022] Open
Abstract
To evaluate the efficacy of the gene-deletor system in aspen, we evaluated the system for foreign gene removal in a hybrid aspen clone, INRA 353-53 (Populus tremula × P. tremuloides). The recombinase flipping DNA (FLP) gene was under the control of the heat-inducible promoter of Gmhsp17.6-L, and the β-glucuronidase (gusA) gene which was under the control of the 35S promoter and were constructed using the gene-deletor system in the pCaLFGmFNLFG vector. Six transgenic plants and their sublines were heated at 42 °C for 8 h and gene deletion was verified by polymerase chain reaction (PCR). Three lines exhibited partial transgene deletion while the remaining three lines did not delete. Transgenic lines were evaluated by Southern-blot analyses, verifying that the six transgenic plant lines all had a single copy of transfer DNA (t-DNA). Two partial-deletion lines and two non-deletion lines were analysed for methylation and expression of promoter and recombinase. Hardly any methylation was detected in the Gmhsp17.6-L promoter or recombinase FLP gene sequences, however, the expression of the promoter and recombinase was increased significantly in the partial-deletion compared with the non-deletion line after heat-shock treatment. These results suggest that the excision efficiency had no direct relationship with methylation status of the Gmhsp17.6-L promoter and FLP recombinase, yet was affected by the expression of the Gmhsp17.6-L and FLP after heat-shock treatment.
Collapse
Affiliation(s)
- Beibei Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Tree and Ornamental Plants of Ministry of Education, Key Laboratory of Forest Trees and Ornamental Plants Biological Engineering of State Forestry Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
- Beijing Academy of Forestry and Pomology Sciences, Beijing 100093, China.
| | - Yan Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Tree and Ornamental Plants of Ministry of Education, Key Laboratory of Forest Trees and Ornamental Plants Biological Engineering of State Forestry Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Jian Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Tree and Ornamental Plants of Ministry of Education, Key Laboratory of Forest Trees and Ornamental Plants Biological Engineering of State Forestry Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Mingliang Dong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Tree and Ornamental Plants of Ministry of Education, Key Laboratory of Forest Trees and Ornamental Plants Biological Engineering of State Forestry Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Jinfeng Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Tree and Ornamental Plants of Ministry of Education, Key Laboratory of Forest Trees and Ornamental Plants Biological Engineering of State Forestry Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
8
|
Pradhan S, Chakraborty A, Sikdar N, Chakraborty S, Bhattacharyya J, Mitra J, Manna A, Dutta Gupta S, Sen SK. Marker-free transgenic rice expressing the vegetative insecticidal protein (Vip) of Bacillus thuringiensis shows broad insecticidal properties. PLANTA 2016; 244:789-804. [PMID: 27165311 DOI: 10.1007/s00425-016-2535-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/15/2016] [Indexed: 06/05/2023]
Abstract
Genetically engineered rice lines with broad insecticidal properties against major lepidopteran pests were generated using a synthetic, truncated form of vegetative insecticidal protein (Syn vip3BR) from Bacillus thuringiensis. The selectable marker gene and the redundant transgene(s) were eliminated through Cre/ lox mediated recombination and genetic segregation to make consumer friendly Bt -rice. For sustainable resistance against lepidopteran insect pests, chloroplast targeted synthetic version of bioactive core component of a vegetative insecticidal protein (Syn vip3BR) of Bacillus thuringiensis was expressed in rice under the control of green-tissue specific ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit gene promoter. The transgenic plants (in Oryza sativa indica Swarna cultivar) showed high insect mortality rate in vitro against major rice pests, yellow stem borer (Scirpophaga incertulas), rice leaf folder (Cnaphalocrocis medinalis) and rice horn caterpillar (Melanitis leda ismene) in T1 generation, indicating insecticidal potency of Syn vip3BR. Under field conditions, the T1 plants showed considerable resistance against leaf folders and stem borers. The expression cassette (vip-lox-hpt-lox) as well as another vector with chimeric cre recombinase gene under constitutive rice ubiquitin1 gene promoter was designed for the elimination of selectable marker hygromycin phosphotransferase (hptII) gene. Crossing experiments were performed between T1 plants with single insertion site of vip-lox-hpt-lox T-DNA and one T1 plant with moderate expression of cre recombinase with linked bialaphos resistance (syn bar) gene. Marker gene excision was achieved in hybrids with up to 41.18 % recombination efficiency. Insect resistant transgenic lines, devoid of selectable marker and redundant transgene(s) (hptII + cre-syn bar), were established in subsequent generation through genetic segregation.
Collapse
Affiliation(s)
- Subrata Pradhan
- Advanced Laboratory for Plant Genetic Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Anirban Chakraborty
- Advanced Laboratory for Plant Genetic Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Narattam Sikdar
- Advanced Laboratory for Plant Genetic Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Saikat Chakraborty
- Advanced Laboratory for Plant Genetic Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Jagannath Bhattacharyya
- Advanced Laboratory for Plant Genetic Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Joy Mitra
- Advanced Laboratory for Plant Genetic Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Anulina Manna
- Advanced Laboratory for Plant Genetic Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Snehasish Dutta Gupta
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Soumitra Kumar Sen
- Advanced Laboratory for Plant Genetic Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
9
|
Discovery of Nigri/nox and Panto/pox site-specific recombinase systems facilitates advanced genome engineering. Sci Rep 2016; 6:30130. [PMID: 27444945 PMCID: PMC4957104 DOI: 10.1038/srep30130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/27/2016] [Indexed: 12/21/2022] Open
Abstract
Precise genome engineering is instrumental for biomedical research and holds great promise for future therapeutic applications. Site-specific recombinases (SSRs) are valuable tools for genome engineering due to their exceptional ability to mediate precise excision, integration and inversion of genomic DNA in living systems. The ever-increasing complexity of genome manipulations and the desire to understand the DNA-binding specificity of these enzymes are driving efforts to identify novel SSR systems with unique properties. Here, we describe two novel tyrosine site-specific recombination systems designated Nigri/nox and Panto/pox. Nigri originates from Vibrio nigripulchritudo (plasmid VIBNI_pA) and recombines its target site nox with high efficiency and high target-site selectivity, without recombining target sites of the well established SSRs Cre, Dre, Vika and VCre. Panto, derived from Pantoea sp. aB, is less specific and in addition to its native target site, pox also recombines the target site for Dre recombinase, called rox. This relaxed specificity allowed the identification of residues that are involved in target site selectivity, thereby advancing our understanding of how SSRs recognize their respective DNA targets.
Collapse
|
10
|
Meinke G, Bohm A, Hauber J, Pisabarro MT, Buchholz F. Cre Recombinase and Other Tyrosine Recombinases. Chem Rev 2016; 116:12785-12820. [PMID: 27163859 DOI: 10.1021/acs.chemrev.6b00077] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tyrosine-type site-specific recombinases (T-SSRs) have opened new avenues for the predictable modification of genomes as they enable precise genome editing in heterologous hosts. These enzymes are ubiquitous in eubacteria, prevalent in archaea and temperate phages, present in certain yeast strains, but barely found in higher eukaryotes. As tools they find increasing use for the generation and systematic modification of genomes in a plethora of organisms. If applied in host organisms, they enable precise DNA cleavage and ligation without the gain or loss of nucleotides. Criteria directing the choice of the most appropriate T-SSR system for genetic engineering include that, whenever possible, the recombinase should act independent of cofactors and that the target sequences should be long enough to be unique in a given genome. This review is focused on recent advancements in our mechanistic understanding of simple T-SSRs and their application in developmental and synthetic biology, as well as in biomedical research.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Andrew Bohm
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Joachim Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology , 20251 Hamburg, Germany
| | | | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus TU Dresden , 01307 Dresden, Germany
| |
Collapse
|
11
|
Polóniová Z, Jopčík M, Matušíková I, Libantová J, Moravčíková J. The pollen- and embryo-specific Arabidopsis DLL promoter bears good potential for application in marker-free Cre/loxP self-excision strategy. PLANT CELL REPORTS 2015; 34:469-81. [PMID: 25504050 DOI: 10.1007/s00299-014-1726-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/10/2014] [Accepted: 12/03/2014] [Indexed: 06/04/2023]
Abstract
KEY MESSAGE Marker-free transgenic plants can be generated with high efficiency by using the Cre/ lox P self-excision system controlled by the pollen- and embryo-specific Arabidopsis DLL promoter. In this work, we aimed to study the feasibility of using the pollen- and embryo-specific DLL promoter of the At4g16160 gene from Arabidopsis thaliana in a Cre/loxP self-excision strategy. A Cre/loxP self-excision cassette controlled by the DLL promoter was introduced into the tobacco genome via Agrobacterium-mediated transformation. No evidence for premature activation of the Cre/loxP system was observed in primary transformants. The efficiency of nptII removal during pollen and embryo development was investigated in transgenic T1 progenies derived from eight self- and four cross-pollinated T0 lines, respectively. Segregation and rooting assays were performed to select recombined T1 plants. Molecular analyses of these plants confirmed the excision event in all analysed T0 lines and marker-free transgenic T1 plants were obtained with efficiency of up to 96.2%. The Arabidopsis DLL promoter appears to be a strong candidate to drive Cre-mediated recombination not only in tobacco as a model plant, but also in other plant species.
Collapse
Affiliation(s)
- Zuzana Polóniová
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Akademicka 2, P.O. Box 39A, 95 007, Nitra, Slovak Republic,
| | | | | | | | | |
Collapse
|
12
|
Jia H, Wang N. Xcc-facilitated agroinfiltration of citrus leaves: a tool for rapid functional analysis of transgenes in citrus leaves. PLANT CELL REPORTS 2014; 33:1993-2001. [PMID: 25146436 DOI: 10.1007/s00299-014-1673-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/14/2014] [Accepted: 08/04/2014] [Indexed: 05/21/2023]
Abstract
Xanthomonas citri subsp. citri pretreatment before agroinfiltration could significantly promote transient expression in citrus leaves which were previously recalcitrant to agroinfiltration. Transient expression via agroinfiltration is widely used in biotechnology but remains problematic in many economically important plants. Xanthomonas citri subsp. citri (Xcc)-facilitated agroinfiltration was employed to promote transient protein expression in Valencia sweet orange leaves, which are recalcitrant to agroinfiltration. However, it is unclear whether Xcc-facilitated agroinfiltration has broad application, i.e., whether Xcc-facilitated agroinfiltration could be used on other citrus varieties. In addition, we intended to investigate whether Xcc-facilitated agroinfiltration could be used to hasten transgene function assays, e.g., Cre/lox system and Cas9/sgRNA system. In this report, Xcc-facilitated agroinfiltration was further exploited to enhance β-glucuronidase (GUS) expression in five citrus varieties. Xcc-facilitated agroinfiltration also significantly increased GFP expression in six citrus varieties tested. Both GUS and GFP assays indicated that Xcc-facilitated agroinfiltration had the best performance in grapefruit. After Xcc-facilitated agroinfiltration was carried out in grapefruit, protoplast analysis of the transformed cells indicated that there were more than 20 % leaf cells expressing GFP. In grapefruit, usefulness of Xcc-facilitated agroinfiltration was assayed in three case studies: (1) fast functional analysis of Cre/lox system, (2) the heat shock regulation of HSP70B promoter derived from Arabidopsis, and (3) Cas9/sgRNA-mediated genome modification.
Collapse
Affiliation(s)
- Hongge Jia
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, Fl, USA
| | | |
Collapse
|