1
|
Zhang C, Li Y, Mei P, Gong Y, Liu D, Ye Y, Wen W, Yao M, Ma C. Developmental-specific regulation promotes the free amino acids accumulation in chlorotic tea plants (Camellia sinensis). JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154371. [PMID: 39461266 DOI: 10.1016/j.jplph.2024.154371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/02/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
Chlorophyll-deficient tea plant exhibits a significantly higher accumulation of free amino acids (FAAs) than normal tea plants. This study focused on the impact of leaf color and the developmental stage on FAAs in six tea germplasms while maintaining all other conditions. The total FAAs content initially increased as the leaf matured during the one-bud-two-leaves (1B2L) and one-bud-three-leaves (1B3L) stages in green germplasms, then decreased or stabilized in the one-bud-four-leaves (1B4L) stage. In contrast, chlorotic germplasms showed continuous FAAs' content increase from 1B2L to 1B4L, thus being significantly positively correlated with total chlorophyll content. Interestingly, ethylamine content decreased with leaf maturation in both chlorotic and green germplasms, thus showing a significant negative correlation with L-theanine content only in chlorotic germplasms. Comparative RNA-seq analysis linked FAAs accumulation in chlorotic germplasm's 1B3L to photosynthesis inhibition and in 1B4L to nitrogen assimilation promotion. Feeding experiments revealed higher L-theanine synthesis and degradation abilities in chlorotic shoots versus green shoots, with synthesis efficiency exceeding degradation efficiency. Overall, this study uncovers a developmental-specific FAAs accumulation pattern in chlorotic germplasms and offers novel insights into the precise regulation by leaf color and developmental stage.
Collapse
Affiliation(s)
- Chenyu Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Yuanyuan Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Piao Mei
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Yang Gong
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Dingding Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Yuanyuan Ye
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Weiwei Wen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Mingzhe Yao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Chunlei Ma
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| |
Collapse
|
2
|
Gao C, Wang Z, Wu W, Zhou Z, Deng X, Chen Z, Sun W. Transcriptome and metabolome reveal the effects of ABA promotion and inhibition on flavonoid and amino acid metabolism in tea plant. TREE PHYSIOLOGY 2024; 44:tpae065. [PMID: 38857368 DOI: 10.1093/treephys/tpae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/16/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Flavonoids (especially anthocyanins and catechins) and amino acids represent a high abundance of health-promoting metabolites. Although we observed abscisic acid accumulation in purple leaves and low levels in albino tea leaves, the specific mechanism behind its impact on flavor compounds remains unclear. In this study, we treated tea leaves with exogenous abscisic acid and abscisic acid biosynthesis inhibitors (Flu), measured physiological indicators and conducted comprehensive transcriptomic and metabolomic analyses to elucidate the potential mechanisms underlying color change. Our results demonstrate that abscisic acid treatment induces purple coloration, while Flu treatment causes discoloration in tea leaves. Metabolomic analysis revealed higher levels of four anthocyanins and six catechins in the group treated with abscisic acid in comparison with the control group. Additionally, there was a notable increase in 15 amino acids in the Flu-treated group. Notably, the levels of flavonoids and amino acids showed an inverse relationship between the two treatments. Transcriptomic comparison between the treatments and the control group revealed upregulation of differentially expressed genes encoding dihydroflavonol reductase and uridine diphosphate-glycose flavonoid glycosyltransferase in the abscisic acid-treated group, leading to the accumulation of identified anthocyanins and catechins. In contrast, differentially expressed genes encoding nitrate reductase and nitrate transporter exhibited elevated expression in the group treated with Flu, consequently facilitating the accumulation of amino acids, specifically L-theanine and L-glutamine. Furthermore, our co-expression network analysis suggests that MYB and bHLH transcription factors may play crucial roles in regulating the expression of differentially expressed genes involved in the biosynthesis of flavonoids and amino acids. This study provides insights for targeted genetic engineering to enhance the nutritional and market value of tea, together with the potential application of purple and albino tea leaves as functional beverages. It also offers guidance for future breeding programs and production.
Collapse
Affiliation(s)
- Chenxi Gao
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Engineering Technology and Research Center of Fujian Tea Industry, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
| | - Zhihui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Engineering Technology and Research Center of Fujian Tea Industry, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
| | - Weiwei Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Engineering Technology and Research Center of Fujian Tea Industry, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
| | - Zhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Engineering Technology and Research Center of Fujian Tea Industry, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
| | - Xuming Deng
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Engineering Technology and Research Center of Fujian Tea Industry, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
| | - Zhidan Chen
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Engineering Technology and Research Center of Fujian Tea Industry, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, East Second Ring Road, Anxi County, Quanzhou, Fujian 362400, China
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Engineering Technology and Research Center of Fujian Tea Industry, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
| |
Collapse
|
3
|
Andrade-Marcial M, Pacheco-Arjona R, Hernández-Castellano S, Che-Aguilar L, De-la-Peña C. Transcriptome analysis reveals molecular mechanisms underlying chloroplast biogenesis in albino Agave angustifolia plantlets. PHYSIOLOGIA PLANTARUM 2024; 176:e14289. [PMID: 38606618 DOI: 10.1111/ppl.14289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 04/13/2024]
Abstract
Albino plants display partial or complete loss of photosynthetic pigments and defective thylakoid membrane development, consequently impairing plastid function and development. These distinctive attributes render albino plants excellent models for investigating chloroplast biogenesis. Despite their potential, limited exploration has been conducted regarding the molecular alterations underlying these phenotypes, extending beyond photosynthetic metabolism. In this study, we present a novel de novo transcriptome assembly of an albino somaclonal variant of Agave angustifolia Haw., which spontaneously emerged during the micropropagation of green plantlets. Additionally, RT-qPCR analysis was employed to validate the expression of genes associated with chloroplast biogenesis, and plastome copy numbers were quantified. This research aims to gain insight into the molecular disruptions affecting chloroplast development and ascertain whether the expression of critical genes involved in plastid development and differentiation is compromised in albino tissues of A. angustifolia. Our transcriptomic findings suggest that albino Agave plastids exhibit high proliferation, activation of the protein import machinery, altered transcription directed by PEP and NEP, dysregulation of plastome expression genes, reduced expression of photosynthesis-associated nuclear genes, disruption in the tetrapyrrole and carotenoid biosynthesis pathway, alterations in the plastid ribosome, and an increased number of plastome copies, among other alterations.
Collapse
Affiliation(s)
| | - Ramón Pacheco-Arjona
- Consejo Nacional de Ciencia y Tecnología- Universidad Autónoma de Yucatán, Facultad de Medicina Veterinaria y Zootecnia, Mérida, México
| | | | - Ligia Che-Aguilar
- Tecnológico Nacional de México. Instituto Tecnológico de Mérida, Mérida, Yucatán, México
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| |
Collapse
|
4
|
Zhang C, Liu H, Wang J, Li Y, Liu D, Ye Y, Huang R, Li S, Chen L, Chen J, Yao M, Ma C. A key mutation in magnesium chelatase I subunit leads to a chlorophyll-deficient mutant of tea (Camellia sinensis). JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:935-946. [PMID: 37904595 DOI: 10.1093/jxb/erad430] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/26/2023] [Indexed: 11/01/2023]
Abstract
Tea (Camellia sinensis) is a highly important beverage crop renowned for its unique flavour and health benefits. Chlorotic mutants of tea, known worldwide for their umami taste and economic value, have gained global popularity. However, the genetic basis of this chlorosis trait remains unclear. In this study, we identified a major-effect quantitative trait locus (QTL), qChl-3, responsible for the chlorosis trait in tea leaves, linked to a non-synonymous polymorphism (G1199A) in the magnesium chelatase I subunit (CsCHLI). Homozygous CsCHLIA plants exhibited an albino phenotype due to defects in magnesium protoporphyrin IX and chlorophylls in the leaves. Biochemical assays revealed that CsCHLI mutations did not affect subcellular localization or interactions with CsCHLIG and CsCHLD. However, combining CsCHLIA with CsCHLIG significantly reduced ATPase activity. RNA-seq analysis tentatively indicated that CsCHLI inhibited photosynthesis and enhanced photoinhibition, which in turn promoted protein degradation and increased the amino acid levels in chlorotic leaves. RT-qPCR and enzyme activity assays confirmed the crucial role of asparagine synthetase and arginase in asparagine and arginine accumulation, with levels increasing over 90-fold in chlorotic leaves. Therefore, this study provides insights into the genetic mechanism underlying tea chlorosis and the relationship between chlorophyll biosynthesis and amino acid metabolism.
Collapse
Affiliation(s)
- Chenyu Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haoran Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Junya Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yuanyuan Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Dingding Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yuanyuan Ye
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Rong Huang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Sujuan Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liang Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jiedan Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Mingzhe Yao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Chunlei Ma
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
5
|
Fan YG, Zhao TT, Xiang QZ, Han XY, Yang SS, Zhang LX, Ren LJ. Multi-Omics Research Accelerates the Clarification of the Formation Mechanism and the Influence of Leaf Color Variation in Tea ( Camellia sinensis) Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:426. [PMID: 38337959 PMCID: PMC10857240 DOI: 10.3390/plants13030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Tea is a popular beverage with characteristic functional and flavor qualities, known to be rich in bioactive metabolites such as tea polyphenols and theanine. Recently, tea varieties with variations in leaf color have been widely used in agriculture production due to their potential advantages in terms of tea quality. Numerous studies have used genome, transcriptome, metabolome, proteome, and lipidome methods to uncover the causes of leaf color variations and investigate their impacts on the accumulation of crucial bioactive metabolites in tea plants. Through a comprehensive review of various omics investigations, we note that decreased expression levels of critical genes in the biosynthesis of chlorophyll and carotenoids, activated chlorophyll degradation, and an impaired photosynthetic chain function are related to the chlorina phenotype in tea plants. For purple-leaf tea, increased expression levels of late biosynthetic genes in the flavonoid synthesis pathway and anthocyanin transport genes are the major and common causes of purple coloration. We have also summarized the influence of leaf color variation on amino acid, polyphenol, and lipid contents and put forward possible causes of these metabolic changes. Finally, this review further proposes the research demands in this field in the future.
Collapse
Affiliation(s)
- Yan-Gen Fan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Ting-Ting Zhao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Qin-Zeng Xiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Xiao-Yang Han
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Shu-Sen Yang
- Yipinming Tea Planting Farmers Specialized Cooperative, Longnan 746400, China;
| | - Li-Xia Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Li-Jun Ren
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| |
Collapse
|
6
|
Li Y, Zhang C, Ma C, Chen L, Yao M. Transcriptome and Biochemical Analyses of a Chlorophyll-Deficient Bud Mutant of Tea Plant ( Camellia sinensis). Int J Mol Sci 2023; 24:15070. [PMID: 37894753 PMCID: PMC10606798 DOI: 10.3390/ijms242015070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Tea leaf-color mutants have attracted increasing attention due to their accumulation of quality-related biochemical components. However, there is limited understanding of the molecular mechanisms behind leaf-color bud mutation in tea plants. In this study, a chlorina tea shoot (HY) and a green tea shoot (LY) from the same tea plant were investigated using transcriptome and biochemical analyses. The results showed that the chlorophyll a, chlorophyll b, and total chlorophyll contents in the HY were significantly lower than the LY's, which might have been caused by the activation of several genes related to chlorophyll degradation, such as SGR and CLH. The down-regulation of the CHS, DFR, and ANS involved in flavonoid biosynthesis might result in the reduction in catechins, and the up-regulated GDHA and GS2 might bring about the accumulation of glutamate in HY. RT-qPCR assays of nine DEGs confirmed the RNA-seq results. Collectively, these findings provide insights into the molecular mechanism of the chlorophyll deficient-induced metabolic change in tea plants.
Collapse
Affiliation(s)
| | | | | | | | - Mingzhe Yao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (Y.L.); (C.Z.); (C.M.); (L.C.)
| |
Collapse
|
7
|
Robson JK, Ferguson JN, McAusland L, Atkinson JA, Tranchant-Dubreuil C, Cubry P, Sabot F, Wells DM, Price AH, Wilson ZA, Murchie EH. Chlorophyll fluorescence-based high-throughput phenotyping facilitates the genetic dissection of photosynthetic heat tolerance in African (Oryza glaberrima) and Asian (Oryza sativa) rice. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5181-5197. [PMID: 37347829 PMCID: PMC10498015 DOI: 10.1093/jxb/erad239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/20/2023] [Indexed: 06/24/2023]
Abstract
Rising temperatures and extreme heat events threaten rice production. Half of the global population relies on rice for basic nutrition, and therefore developing heat-tolerant rice is essential. During vegetative development, reduced photosynthetic rates can limit growth and the capacity to store soluble carbohydrates. The photosystem II (PSII) complex is a particularly heat-labile component of photosynthesis. We have developed a high-throughput chlorophyll fluorescence-based screen for photosynthetic heat tolerance capable of screening hundreds of plants daily. Through measuring the response of maximum PSII efficiency to increasing temperature, this platform generates data for modelling the PSII-temperature relationship in large populations in a small amount of time. Coefficients from these models (photosynthetic heat tolerance traits) demonstrated high heritabilities across African (Oryza glaberrima) and Asian (Oryza sativa, Bengal Assam Aus Panel) rice diversity sets, highlighting valuable genetic variation accessible for breeding. Genome-wide association studies were performed across both species for these traits, representing the first documented attempt to characterize the genetic basis of photosynthetic heat tolerance in any species to date. A total of 133 candidate genes were highlighted. These were significantly enriched with genes whose predicted roles suggested influence on PSII activity and the response to stress. We discuss the most promising candidates for improving photosynthetic heat tolerance in rice.
Collapse
Affiliation(s)
- Jordan K Robson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - John N Ferguson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- School of Life Sciences, University of Essex, Colchester, UK
| | - Lorna McAusland
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Jonathan A Atkinson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | | - Phillipe Cubry
- Institut de Recherche pour le Developpement, 911 Av. Agropolis, 34394 Montpellier, France
| | - François Sabot
- Institut de Recherche pour le Developpement, 911 Av. Agropolis, 34394 Montpellier, France
| | - Darren M Wells
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Adam H Price
- Institut de Recherche pour le Developpement, 911 Av. Agropolis, 34394 Montpellier, France
| | - Zoe A Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Erik H Murchie
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
8
|
Andrade-Marcial M, Ruíz-May E, Elizalde-Contreras JM, Pacheco N, Herrera-Pool E, De-la-Peña C. Proteome of Agave angustifolia Haw.: Uncovering metabolic alterations, over-accumulation of amino acids, and compensatory pathways in chloroplast-deficient albino plantlets. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107902. [PMID: 37506650 DOI: 10.1016/j.plaphy.2023.107902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/04/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Amino acids (AA) are essential molecules for plant physiology, acting as precursor molecules for proteins and other organic compounds. Chloroplasts play a vital role in AA metabolism, yet little is known about the impact on AA metabolism of albino plants' lack of chloroplasts. In this study, we conducted a quantitative proteome analysis on albino and variegated somaclonal variants of Agave angustifolia Haw. to investigate metabolic alterations in chloroplast-deficient plants, with a focus on AA metabolic pathways. We identified 82 enzymes involved in AA metabolism, with 32 showing differential accumulation between the somaclonal variants. AaCM, AaALS, AaBCAT, AaIPMS1, AaSHMT, AaAST, AaCGS, and AaMS enzymes were particularly relevant in chloroplast-deficient Agave plantlets. Both variegated and albino phenotypes exhibited excessive synthesis of AA typically associated with chloroplasts (aromatic AAs, BCAAs, Asp, Lys, Pro and Met). Consistent trends were observed for AaBCAT and AaCM at mRNA and protein levels in albino plantlets. These findings highlight the critical activation and reprogramming of AA metabolic pathways in plants lacking chloroplasts. This study contributes to unraveling the intricate relationship between AA metabolism and chloroplast absence, offering insights into survival mechanisms of albino plants.
Collapse
Affiliation(s)
- M Andrade-Marcial
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México
| | - E Ruíz-May
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, 91070, Xalapa, Veracruz, México
| | - J M Elizalde-Contreras
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, 91070, Xalapa, Veracruz, México
| | - N Pacheco
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Unidad Sureste, Tablaje Catastral 31264 Km 5.5 Carretera Sierra Papacal-Chuburná Puerto, Parque Científico Tecnológico de Yucatán, CP, 97302, Mérida, Yucatán, México
| | - E Herrera-Pool
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Unidad Sureste, Tablaje Catastral 31264 Km 5.5 Carretera Sierra Papacal-Chuburná Puerto, Parque Científico Tecnológico de Yucatán, CP, 97302, Mérida, Yucatán, México
| | - C De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México.
| |
Collapse
|
9
|
Zhang X, Han Y, Han X, Zhang S, Xiong L, Chen T. Peptide chain release factor DIG8 regulates plant growth by affecting ROS-mediated sugar transportation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1172275. [PMID: 37063204 PMCID: PMC10102589 DOI: 10.3389/fpls.2023.1172275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Chloroplasts have important roles in photosynthesis, stress sensing and retrograde signaling. However, the relationship between chloroplast peptide chain release factor and ROS-mediated plant growth is still unclear. In the present study, we obtained a loss-of-function mutant dig8 by EMS mutation. The dig8 mutant has few lateral roots and a pale green leaf phenotype. By map-based cloning, the DIG8 gene was located on AT3G62910, with a point mutation leading to amino acid substitution in functional release factor domain. Using yeast-two-hybrid and BiFC, we confirmed DIG8 protein was characterized locating in chloroplast by co-localization with plastid marker and interacting with ribosome-related proteins. Through observing by transmission electron microscopy, quantifying ROS content and measuring the transport efficiency of plasmodesmata in dig8 mutant, we found that abnormal thylakoid stack formation and chloroplast dysfunction in the dig8 mutant caused increased ROS activity leading to callose deposition and lower PD permeability. A local sugar supplement partially alleviated the growth retardation phenotype of the mutant. These findings shed light on chloroplast peptide chain release factor-affected plant growth by ROS stress.
Collapse
Affiliation(s)
- Xiangxiang Zhang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Yuliang Han
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Xiao Han
- College of Life Sciences, Fuzhou University, Fuzhou, China
| | - Siqi Zhang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Liming Xiong
- Department of Biology, Hong Kong Baptist University, Kowloon Tang, Hong Kong, Hong Kong SAR, China
| | - Tao Chen
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
10
|
Contrasting Metabolisms in Green and White Leaf Sectors of Variegated Pelargonium zonale—An Integrative Transcriptomic and Metabolomic Study. Int J Mol Sci 2023; 24:ijms24065288. [PMID: 36982362 PMCID: PMC10048803 DOI: 10.3390/ijms24065288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
The photosynthetically active green leaf (GL) and non-active white leaf (WL) tissues of variegated Pelargonium zonale provide an excellent model system for studying processes associated with photosynthesis and sink-source interactions, enabling the same microenvironmental conditions. By combining differential transcriptomics and metabolomics, we identified the main differences between these two metabolically contrasting tissues. Genes related to photosynthesis and associated pigments, the Calvin–Benson cycle, fermentation, and glycolysis were strongly repressed in WL. On the other hand, genes related to nitrogen and protein metabolism, defence, cytoskeletal components (motor proteins), cell division, DNA replication, repair and recombination, chromatin remodelling, and histone modifications were upregulated in WL. A content of soluble sugars, TCA intermediates, ascorbate, and hydroxybenzoic acids was lower, while the concentration of free amino acids (AAs), hydroxycinnamic acids, and several quercetin and kaempferol glycosides was higher in WL than in GL. Therefore, WL presents a carbon sink and depends on photosynthetic and energy-generating processes in GL. Furthermore, the upregulated nitrogen metabolism in WL compensates for the insufficient energy from carbon metabolism by providing alternative respiratory substrates. At the same time, WL serves as nitrogen storage. Overall, our study provides a new genetic data resource for the use of this excellent model system and for ornamental pelargonium breeding and contributes to uncovering molecular mechanisms underlying variegation and its adaptive ecological value.
Collapse
|
11
|
Chen Z, Lin S, Chen T, Han M, Yang T, Wang Y, Bao S, Shen Z, Wan X, Zhang Z. Haem Oxygenase 1 is a potential target for creating etiolated/albino tea plants ( Camellia sinensis) with high theanine accumulation. HORTICULTURE RESEARCH 2023; 10:uhac269. [PMID: 37533676 PMCID: PMC10390853 DOI: 10.1093/hr/uhac269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/01/2022] [Indexed: 08/04/2023]
Abstract
Theanine content is highly correlated with sensory quality and health benefits of tea infusion. The tender shoots of etiolated and albino tea plants contain higher theanine than the normal green tea plants and are valuable materials for high quality green tea processing. However, why these etiolated or albino tea plants can highly accumulate theanine is largely unknown. In this study, we observed an Arabidopsis etiolated mutant hy1-100 (mutation in Haem Oxygenase 1, HO1) that accumulated higher levels of glutamine (an analog of theanine). We therefore identified CsHO1 in tea plants and found CsHO1 is conserved in amino acid sequences and subcellular localization with its homologs in other plants. Importantly, CsHO1 expression in the new shoots was much lower in an etiolated tea plants 'Huangkui' and an albino tea plant 'Huangshan Baicha' than that in normal green tea plants. The expression levels of CsHO1 were negatively correlated with theanine contents in these green, etiolated and albino shoots. Moreover, CsHO1 expression levels in various organs and different time points were also negatively correlated with theanine accumulation. The hy1-100 was hypersensitive to high levels of theanine and accumulated more theanine under theanine feeding, and these phenotypes were rescued by the expression of CsHO1 in this mutant. Transient knockdown CsHO1 expression in the new shoots of tea plant using antisense oligonucleotides (asODN) increased theanine accumulation. Collectively, these results demonstrated CsHO1 negatively regulates theanine accumulation in tea plants, and that low expression CsHO1 likely contributes to the theanine accumulation in etiolated/albino tea plants.
Collapse
Affiliation(s)
| | | | - Tingting Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Mengxue Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhougao Shen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | | |
Collapse
|
12
|
Integration of Metabolomics and Transcriptomics Reveal the Mechanism Underlying Accumulation of Flavonols in Albino Tea Leaves. Molecules 2022; 27:molecules27185792. [PMID: 36144526 PMCID: PMC9501457 DOI: 10.3390/molecules27185792] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/11/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Albino tea plants (Camellia sinensis) have been reported to possess highly inhibited metabolism of flavonoids compared to regular green tea leaves, which improves the quality of the tea made from these leaves. However, the mechanisms underlying the metabolism of catechins and flavonols in albino tea leaves have not been well elucidated. In this study, we analyzed a time series of leaf samples in the greening process from albino to green in a thermosensitive leaf-color tea mutant using metabolomics and transcriptomics. The total content of polyphenols dramatically decreased, while flavonols (such as rutin) were highly accumulated in albino leaves compared to in green leaves. After treatment with increasing environment temperature, total polyphenols and catechins were increased in albino mutant tea leaves; however, flavonols (especially ortho-dihydroxylated B-rings such as rutin) were decreased. Meanwhile, weighted gene co-expression network analysis of RNA-seq data suggested that the accumulation of flavonols was highly correlated with genes related to reactive oxygen species scavenging. Histochemical localization further demonstrated that this specific accumulation of flavonols might be related to their biological functions in stress tolerance. These findings suggest that the temperature-stimulated accumulation of total polyphenols and catechins in albino mutant tea leaves was highly induced by enhanced photosynthesis and accumulation of its products, while the initial accumulation and temperature inhibition of flavonols in albino mutant tea leaves were associated with metabolism related to oxidative stress. In conclusion, our results indicate that the biosynthesis of flavonoids could be driven by many different factors, including antioxidation and carbon skeleton storage, under favorable and unfavorable circumstances, respectively. This work provides new insights into the drivers of flavonoid biosynthesis in albino tea leaves, which will further help to increase tea quality by improving cultivation measures.
Collapse
|
13
|
Andrade-Marcial M, Pacheco-Arjona R, Góngora-Castillo E, De-la-Peña C. Chloroplastic pentatricopeptide repeat proteins (PPR) in albino plantlets of Agave angustifolia Haw. reveal unexpected behavior. BMC PLANT BIOLOGY 2022; 22:352. [PMID: 35850575 PMCID: PMC9295523 DOI: 10.1186/s12870-022-03742-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pentatricopeptide repeat (PPR) proteins play an essential role in the post-transcriptional regulation of genes in plastid genomes. Although important advances have been made in understanding the functions of these genes, there is little information available on chloroplastic PPR genes in non-model plants and less in plants without chloroplasts. In the present study, a comprehensive and multifactorial bioinformatic strategy was applied to search for putative PPR genes in the foliar and meristematic tissues of green and albino plantlets of the non-model plant Agave angustifolia Haw. RESULTS A total of 1581 PPR transcripts were identified, of which 282 were chloroplastic. Leaf tissue in the albino plantlets showed the highest levels of expression of chloroplastic PPRs. The search for hypothetical targets of 12 PPR sequences in the chloroplast genes of A. angustifolia revealed their action on transcripts related to ribosomes and translation, photosystems, ATP synthase, plastid-encoded RNA polymerase and RuBisCO. CONCLUSIONS Our results suggest that the expression of PPR genes depends on the state of cell differentiation and plastid development. In the case of the albino leaf tissue, which lacks functional chloroplasts, it is possible that anterograde and retrograde signaling networks are severely compromised, leading to a compensatory anterograde response characterized by an increase in the expression of PPR genes.
Collapse
Affiliation(s)
- M Andrade-Marcial
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - R Pacheco-Arjona
- Facultad de Medicina Veterinaria y Zootecnia, Consejo Nacional de Ciencia y Tecnología- Universidad Autónoma de Yucatán, Mérida, Mexico
| | - E Góngora-Castillo
- Consejo Nacional de Ciencia y Tecnología-Unidad De Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - C De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
| |
Collapse
|
14
|
Identifying key genes involved in yellow leaf variation in 'Menghai Huangye' based on biochemical and transcriptomic analysis. Funct Integr Genomics 2022; 22:251-260. [PMID: 35211836 DOI: 10.1007/s10142-022-00829-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/04/2022] [Accepted: 02/14/2022] [Indexed: 01/21/2023]
Abstract
Albino tea plants generally have higher theanine, which causes their tea leaves to taste fresher, and they are an important mutant for the breeding of tea plant varieties. Earlier, we reported an albino germplasm, 'Menghai Huangye' (MHHY), from Yunnan Province and found that it has a lower chlorophyll content during the yellowing stage, but the mechanism underlying low chlorophyll and the yellowing phenotype is still unclear. In this study, the pigment contents of MHHY_May (yellowing, low chlorophyll), MHHY_July (regreening, normal chlorophyll), and YK10_May (green leaves, normal chlorophyll) were determined, and the results showed that the lower chlorophyll content might be an important reason for the formation of the yellowing phenotype of MHHY. Through transcriptome sequencing, we obtained 654 candidates for differentially expressed genes (DEGs), among which 4 genes were related to chlorophyll synthesis, 10 were photosynthesis-related, 34 were HSP family genes, and 19 were transcription factor genes. In addition, we analysed the transcription levels of the key candidate genes in MHHY_May and MHHY_July and found that they are consistent with the expression trends in MHHY_May and YK10_May, which further indicates that the candidate differential genes we identified are likely to be key candidate factors involved in the low chlorophyll content and yellowing of MHHY. In summary, our findings will assist in revealing the low chlorophyll content of MHHY and the formation mechanism of yellowing tea plants and will be applied to the selection and breeding of albino tea cultivars in the future.
Collapse
|
15
|
Meng X, Xu J, Zhang M, Du R, Zhao W, Zeng Q, Tu Z, Chen J, Chen B. Third-generation sequencing and metabolome analysis reveal candidate genes and metabolites with altered levels in albino jackfruit seedlings. BMC Genomics 2021; 22:543. [PMID: 34271866 PMCID: PMC8283932 DOI: 10.1186/s12864-021-07873-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 07/05/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Most plants rely on photosynthesis; therefore, albinism in plants with leaves that are white instead of green causes slow growth, dwarfing, and even death. Although albinism has been characterized in annual model plants, little is known about albino trees. Jackfruit (Artocarpus heterophyllus) is an important tropical fruit tree species. To gain insight into the mechanisms underlying the differential growth and development between albino jackfruit mutants and green seedlings, we analyzed root, stem, and leaf tissues by combining PacBio single-molecule real-time (SMRT) sequencing, high-throughput RNA-sequencing (RNA-seq), and metabolomic analysis. RESULTS We identified 8,202 differentially expressed genes (DEGs), including 225 genes encoding transcription factors (TFs), from 82,572 full-length transcripts. We also identified 298 significantly changed metabolites (SCMs) in albino A. heterophyllus seedlings from a set of 692 metabolites in A. heterophyllus seedlings. Pathway analysis revealed that these DEGs were highly enriched in metabolic pathways such as 'photosynthesis', 'carbon fixation in photosynthetic organisms', 'glycolysis/gluconeogenesis', and 'TCA cycle'. Analysis of the metabolites revealed 76 SCMs associated with metabolic pathways in the albino mutants, including L-aspartic acid, citric acid, succinic acid, and fumaric acid. We selected 225 differentially expressed TF genes, 333 differentially expressed metabolic pathway genes, and 76 SCMs to construct two correlation networks. Analysis of the TF-DEG network suggested that basic helix-loop-helix (bHLH) and MYB-related TFs regulate the expression of genes involved in carbon fixation and energy metabolism to affect light responses or photomorphogenesis and normal growth. Further analysis of the DEG-SCM correlation network and the photosynthetic carbon fixation pathway suggested that NAD-ME2 (encoding a malic enzyme) and L-aspartic acid jointly inhibit carbon fixation in the albino mutants, resulting in reduced photosynthetic efficiency and inhibited plant growth. CONCLUSIONS Our preliminarily screening identified candidate genes and metabolites specifically affected in albino A. heterophyllus seedlings, laying the foundation for further study of the regulatory mechanism of carbon fixation during photosynthesis and energy metabolism. In addition, our findings elucidate the way genes and metabolites respond in albino trees.
Collapse
Affiliation(s)
- Xiangxu Meng
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, 570228, Haikou, People's Republic of China
- Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Institute of Tropical Agriculture and Forestry, School of Forestry, Hainan University, 570228, Haikou, People's Republic of China
| | - Jiahong Xu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, 570228, Haikou, People's Republic of China
- Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Institute of Tropical Agriculture and Forestry, School of Forestry, Hainan University, 570228, Haikou, People's Republic of China
| | - Maoning Zhang
- School of Agricultural Sciences, Zhengzhou University, 450001, Zhengzhou, People's Republic of China
| | - Ruyue Du
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, 570228, Haikou, People's Republic of China
- Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Institute of Tropical Agriculture and Forestry, School of Forestry, Hainan University, 570228, Haikou, People's Republic of China
| | - Wenxiu Zhao
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, 570228, Haikou, People's Republic of China
- Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Institute of Tropical Agriculture and Forestry, School of Forestry, Hainan University, 570228, Haikou, People's Republic of China
| | - Qing Zeng
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, 570228, Haikou, People's Republic of China
- Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Institute of Tropical Agriculture and Forestry, School of Forestry, Hainan University, 570228, Haikou, People's Republic of China
| | - Zhihua Tu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, 570228, Haikou, People's Republic of China
- Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Institute of Tropical Agriculture and Forestry, School of Forestry, Hainan University, 570228, Haikou, People's Republic of China
| | - Jinhui Chen
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, 570228, Haikou, People's Republic of China.
- Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Institute of Tropical Agriculture and Forestry, School of Forestry, Hainan University, 570228, Haikou, People's Republic of China.
| | - Beibei Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, 524088, Zhanjiang, People's Republic of China.
| |
Collapse
|
16
|
Li Y, Li W, Hu D, Shen P, Zhang G, Zhu Y. Comparative analysis of the metabolome and transcriptome between green and albino zones of variegated leaves from Hydrangea macrophylla 'Maculata' infected by hydrangea ringspot virus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:195-210. [PMID: 33120111 DOI: 10.1016/j.plaphy.2020.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/10/2020] [Indexed: 05/24/2023]
Abstract
In nature, many different factors cause plants to present variegated leaves. The purpose of this study was to reveal the changes in the green and albino leaves of Hydrangea macrophylla 'Maculata'. It was found that in the albino zone, the leaves became thinner, the chloroplast structure disappeared, and a large number of leucoplasts replaced chloroplasts. In addition, the albino zone of the leaves contained almost no chlorophyll and showed no function related to transforming and utilizing light energy, and more intense oxidative stress was observed in the albino zone of the leaves than in the green zone. RNA-seq analysis showed that the chlorophyll synthesis pathway of the albino zone of leaves was blocked. Upregulated expression of the hydrangea ringspot virus (HdRSV) coat protein (CP) gene was detected in albino tissue by RT-qPCR. Finally, combined UPLC-MS/MS and RNA-seq analyses revealed metabolic changes involving multiple pathways in albino leaf tissue, centered on the TCA cycle. We hypothesize that HdRSV may alter energy metabolism in the albino zone of leaves, including increased lipid metabolism, reduced sugar metabolism, and increased synthesis of amino acids and the viral capsid protein from ribosomes.
Collapse
Affiliation(s)
- Yurong Li
- College of Landscape Architecture, Sichuan Agricultural University, No.211 Huimin Road, Wenjiang District, Chengdu, 611130, China.
| | - Wenji Li
- College of Landscape Architecture, Sichuan Agricultural University, No.211 Huimin Road, Wenjiang District, Chengdu, 611130, China.
| | - Di Hu
- The Fine Arts College of Sichuan Normal University, No.1819 ChengLong Avenue, Longquanyi District, Chengdu, 610101, China.
| | - Ping Shen
- College of Landscape Architecture, Sichuan Agricultural University, No.211 Huimin Road, Wenjiang District, Chengdu, 611130, China.
| | - Guohua Zhang
- Rice Research Institute of Sichuan Agricultural University, No.211 Huimin Road, Wenjiang District, Chengdu, 611130, China.
| | - Yuan Zhu
- College of Landscape Architecture, Nanjing Forestry University, No.159 Longpan Road, Xuanwu District, Nanjing, 210042, China.
| |
Collapse
|
17
|
Venneman J, Vandermeersch L, Walgraeve C, Audenaert K, Ameye M, Verwaeren J, Steppe K, Van Langenhove H, Haesaert G, Vereecke D. Respiratory CO 2 Combined With a Blend of Volatiles Emitted by Endophytic Serendipita Strains Strongly Stimulate Growth of Arabidopsis Implicating Auxin and Cytokinin Signaling. FRONTIERS IN PLANT SCIENCE 2020; 11:544435. [PMID: 32983211 PMCID: PMC7492573 DOI: 10.3389/fpls.2020.544435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/14/2020] [Indexed: 05/17/2023]
Abstract
Rhizospheric microorganisms can alter plant physiology and morphology in many different ways including through the emission of volatile organic compounds (VOCs). Here we demonstrate that VOCs from beneficial root endophytic Serendipita spp. are able to improve the performance of in vitro grown Arabidopsis seedlings, with an up to 9.3-fold increase in plant biomass. Additional changes in VOC-exposed plants comprised petiole elongation, epidermal cell and leaf area expansion, extension of the lateral root system, enhanced maximum quantum efficiency of photosystem II (Fv/Fm), and accumulation of high levels of anthocyanin. Notwithstanding that the magnitude of the effects was highly dependent on the test system and cultivation medium, the volatile blends of each of the examined strains, including the references S. indica and S. williamsii, exhibited comparable plant growth-promoting activities. By combining different approaches, we provide strong evidence that not only fungal respiratory CO2 accumulating in the headspace, but also other volatile compounds contribute to the observed plant responses. Volatile profiling identified methyl benzoate as the most abundant fungal VOC, released especially by Serendipita cultures that elicit plant growth promotion. However, under our experimental conditions, application of methyl benzoate as a sole volatile did not affect plant performance, suggesting that other compounds are involved or that the mixture of VOCs, rather than single molecules, accounts for the strong plant responses. Using Arabidopsis mutant and reporter lines in some of the major plant hormone signal transduction pathways further revealed the involvement of auxin and cytokinin signaling in Serendipita VOC-induced plant growth modulation. Although we are still far from translating the current knowledge into the implementation of Serendipita VOCs as biofertilizers and phytostimulants, volatile production is a novel mechanism by which sebacinoid fungi can trigger and control biological processes in plants, which might offer opportunities to address agricultural and environmental problems in the future.
Collapse
Affiliation(s)
- Jolien Venneman
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Lore Vandermeersch
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Christophe Walgraeve
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Maarten Ameye
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jan Verwaeren
- Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Herman Van Langenhove
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Geert Haesaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Danny Vereecke
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Jin M, Wang H, Liu H, Xia Y, Ruan S, Huang Y, Qiu J, Du S, Xu L. Oxidative stress response and proteomic analysis reveal the mechanisms of toxicity of imidazolium-based ionic liquids against Arabidopsis thaliana. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114013. [PMID: 32000025 DOI: 10.1016/j.envpol.2020.114013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/29/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Ionic liquids (ILs) are extensively used in various fields, posing a potential threat in the ecosystem because of their high stability, excellent solubility, and biological toxicity. In this study, the toxicity mechanism of three ILs, 1-octyl-3-methylimidazolium chloride ([C8MIM]Cl), 1-decyl-3-methylimidazolium chloride ([C10MIM]Cl), and 1-dodecyl-3-methylimidazolium chloride ([C12MIM]Cl) on Arabidopsis thaliana were revealed. Reactive oxygen species (ROS) level increased with higher concentration and longer carbon chain length of ILs, which led to the increase of malondialdehyde (MDA) content and antioxidase activity, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and peroxidase (POD) activities. SOD, CAT, and GPX activities decreased in high ILs concentration due to the excessive ROS. Differentially expressed protein was analyzed based on Gene ontology (GO) and KEGG pathways analysis. 70, 45, 84 up-regulated proteins, and 72, 104, 79 down-regulated proteins were identified in [C8MIM]Cl, [C10MIM]Cl, and [C12MIM]Cl treatment, respectively (fold change ≥ 1.5 with ≥95% confidence). Cellular aldehyde metabolic process, mitochondrial and mitochondrial respiratory chains, glutathione transferase and oxidoreductase activity were enriched as up-regulated proteins as the defense mechanism of A. thaliana to resist external stresses. Chloroplast, photosynthetic membrane and thylakoid, structural constituent of ribosome, and transmembrane transport were enriched as the down-regulated protein. Compared with the control, 8 and 14 KEGG pathways were identified forup-regulated and down-regulated proteins, respectively, in three IL treatments. Metabolic pathways, carbon metabolism, biosynthesis of amino acids, porphyrin and chlorophyll metabolism were significantly down-regulated. The GO terms annotation demonstrated the oxidative stress response and effects on photosynthesis of A. thaliana in ILs treatment from biological process, cellular component, and molecular function categories.
Collapse
Affiliation(s)
- Mingkang Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Huan Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China.
| | - Yilu Xia
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Songlin Ruan
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| | - Yuqing Huang
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| | - Jieren Qiu
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| | - Shaoting Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Linglin Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| |
Collapse
|
19
|
Yamashita H, Kambe Y, Ohshio M, Kunihiro A, Tanaka Y, Suzuki T, Nakamura Y, Morita A, Ikka T. Integrated Metabolome and Transcriptome Analyses Reveal Etiolation-Induced Metabolic Changes Leading to High Amino Acid Contents in a Light-Sensitive Japanese Albino Tea Cultivar. FRONTIERS IN PLANT SCIENCE 2020; 11:611140. [PMID: 33537046 PMCID: PMC7847902 DOI: 10.3389/fpls.2020.611140] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/15/2020] [Indexed: 05/16/2023]
Abstract
Plant albinism causes the etiolation of leaves because of factors such as deficiency of chloroplasts or chlorophylls. In general, albino tea leaves accumulate higher free amino acid (FAA) contents than do conventional green tea leaves. To explore the metabolic changes of etiolated leaves (EL) in the light-sensitive Japanese albino tea cultivar "Koganemidori," we performed integrated metabolome and transcriptome analyses by comparing EL with green leaves induced by bud-sport mutation (BM) or shading treatments (S-EL). Comparative omics analyses indicated that etiolation-induced molecular responses were independent of the light environment and were largely influenced by the etiolation itself. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment and pathway analyses revealed the downregulation of genes involved in chloroplast development and chlorophyll biosynthesis and upregulation of protein degradation-related pathways, such as the ubiquitin-proteasome system and autophagy in EL. Metabolome analysis showed that most quantified FAAs in EL were highly accumulated compared with those in BM and S-EL. Genes involved in the tricarboxylic acid (TCA) cycle, nitrogen assimilation, and the urea cycle, including the drastically downregulated Arginase-1 homolog, which functions in nitrogen excretion for recycling, showed lower expression levels in EL. The high FAA contents in EL might result from the increased FAA pool and nitrogen source contributed by protein degradation, low N consumption, and stagnation of the urea cycle rather than through enhanced amino acid biosynthesis.
Collapse
Affiliation(s)
- Hiroto Yamashita
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
- United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Yuka Kambe
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Megumi Ohshio
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Aya Kunihiro
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Yasuno Tanaka
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
- United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Toshikazu Suzuki
- Tea Research Center, Shizuoka Prefectural Research Institute of Agriculture and Forestry, Shizuoka, Japan
| | - Yoriyuki Nakamura
- Graduate Division of Nutritional and Environmental Science, Tea Science Center, University of Shizuoka, Shizuoka, Japan
| | - Akio Morita
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
- Institute for Tea Science, Shizuoka University, Shizuoka, Japan
| | - Takashi Ikka
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
- Institute for Tea Science, Shizuoka University, Shizuoka, Japan
- *Correspondence: Takashi Ikka,
| |
Collapse
|
20
|
Schwacke R, Ponce-Soto GY, Krause K, Bolger AM, Arsova B, Hallab A, Gruden K, Stitt M, Bolger ME, Usadel B. MapMan4: A Refined Protein Classification and Annotation Framework Applicable to Multi-Omics Data Analysis. MOLECULAR PLANT 2019; 12:879-892. [PMID: 30639314 DOI: 10.1016/j.molp.2019.01.003] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/14/2018] [Accepted: 01/01/2019] [Indexed: 05/18/2023]
Abstract
Genome sequences from over 200 plant species have already been published, with this number expected to increase rapidly due to advances in sequencing technologies. Once a new genome has been assembled and the genes identified, the functional annotation of their putative translational products, proteins, using ontologies is of key importance as it places the sequencing data in a biological context. Furthermore, to keep pace with rapid production of genome sequences, this functional annotation process must be fully automated. Here we present a redesigned and significantly enhanced MapMan4 framework, together with a revised version of the associated online Mercator annotation tool. Compared with the original MapMan, the new ontology has been expanded almost threefold and enforces stricter assignment rules. This framework was then incorporated into Mercator4, which has been upgraded to reflect current knowledge across the land plant group, providing protein annotations for all embryophytes with a comparably high quality. The annotation process has been optimized to allow a plant genome to be annotated in a matter of minutes. The output results continue to be compatible with the established MapMan desktop application.
Collapse
Affiliation(s)
- Rainer Schwacke
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, Germany
| | - Gabriel Y Ponce-Soto
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, Germany
| | - Kirsten Krause
- Department of Arctic and Marine Biology, The Arctic University of Norway, Biology Building, 9037 Tromsø, Norway
| | - Anthony M Bolger
- Institute for Botany and Molecular Genetics, BioEconomy Science Center, Worringer Weg, RWTH Aachen University, 52074 Aachen, Germany
| | - Borjana Arsova
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, Germany
| | - Asis Hallab
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, Germany
| | - Kristina Gruden
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| | - Mark Stitt
- Max Planck Institute for Molecular Plant Physiology, Department of Systems Regulation, 14476 Potsdam-Golm, Germany
| | - Marie E Bolger
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, Germany.
| | - Björn Usadel
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, Germany; Institute for Botany and Molecular Genetics, BioEconomy Science Center, Worringer Weg, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
21
|
Zhu L, Wang D, Sun J, Mu Y, Pu W, Ma B, Ren F, Yan W, Zhang Z, Li G, Li Y, Pan Y. Phenotypic and proteomic characteristics of sorghum (Sorghum bicolor) albino lethal mutant sbe6-a1. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:400-410. [PMID: 30981156 DOI: 10.1016/j.plaphy.2019.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/01/2019] [Indexed: 05/27/2023]
Abstract
Leaf color mutants are ideal materials for chloroplast development and photosynthetic mechanism research. Here, we characterized an EMS (ethyl methane sulfonate)-mutagenized sorghum (Sorghum bicolor) mutant, sbe6-a1, in which the severe disruption in chloroplast structure and a chlorophyll deficiency promote an albino leaf phenotype and lead to premature death. The proteomic analyses of mutant and its progenitor wild-type (WT) were performed using a Q Exactive plus Orbitrap mass spectrometer and 4,233 proteins were accurately quantitated. The function analysis showed that most of up-regulated proteins in mutant sbe6-a1 had not been well characterized. GO-enrichment analysis of the differentially abundant proteins (DAPs) showed that up-regulated DAPs were significantly enriched in catabolic process and located in mitochondria, while down regulated DAPs were located in chloroplasts and participated in photosynthesis and some other processes. KEGG pathway-enrichment analyses indicated that the degradation and metabolic pathways of fatty acids, as well as some amino acids and secondary metabolites, were significantly enhanced in the mutant sbe6-a1, while photosynthesis-related pathways, some secondary metabolites' biosynthesis and ribosomal pathways were significantly inhibited. Analysis also shows that some DAPs, such as FBAs, MDHs, PEPC, ATP synthase, CABs, CHLM, PRPs, pathogenesis-related protein, sHSP, ACP2 and AOX may be closely associated with the albino phenotype. Our analysis will promote the understanding of the molecular phenomena that result in plant albino phenotypes.
Collapse
Affiliation(s)
- Li Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Daoping Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jiusheng Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Research Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, PR China
| | - Yongying Mu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Weijun Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Bo Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Fuli Ren
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Wenxiu Yan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Zhiguo Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Guiying Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yubin Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Yinghong Pan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; The National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, PR China.
| |
Collapse
|
22
|
Dong F, Hu J, Shi Y, Liu M, Zhang Q, Ruan J. Effects of nitrogen supply on flavonol glycoside biosynthesis and accumulation in tea leaves (Camellia sinensis). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 138:48-57. [PMID: 30849677 DOI: 10.1016/j.plaphy.2019.02.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/09/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Widely distributed in tea plants, the flavonoid flavonol and its glycosylated derivatives have important roles in determining tea quality. However, the biosynthesis and accumulation of these compounds has not been fully studied, especially in response to nitrogen (N) supply. In the present study, 'Longjing 43' potted tea seedlings were subjected to N deficiency (0g/pot), normal N (4g/pot) or excess N (16g/pot). Quantitative analyses using Ultra Performance Liquid Chromatography-Triple Quadrupole Mass Spectrometry (UPLC-QqQ-MS/MS) revealed that most flavonol glycosides (e.g., Quercetin-3-glucoside, Kaempferol-3-rgalactoside and Kaempferol-3-glucosyl-rhamnsoyl-glucoside) accumulated to the highest levels when treated with normal N. Results from metabolomics using Gas Chromatography-Mass Spectrometer (GC-MS) suggested that the levels of carbohydrate substrates of flavonol glycosides (e.g., sucrose, sucrose-6-phosphate, D-fructose 1,6-bisphosphate and glucose-1-phosphate) were positively correlated with flavonol glycoside content in response to N availability. Furthermore, Quantitative Real-time PCR analysis of 28 genes confirmed that genes related to flavonoid (e.g., flavonol synthase 1, flavonol 3-O-galactosyltransferase) and carbohydrate (e.g., sucrose phosphate synthase, sucrose synthase and glucokinase) metabolism have important roles in regulating the biosynthesis and accumulation of flavonol glycosides. Collectively, our results suggest that normal N levels promote the biosynthesis of flavonol glycosides through gene regulation and the accumulation of substrate carbohydrates, while abnormal N availability has inhibitory effects, especially excess N.
Collapse
Affiliation(s)
- Fang Dong
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory for Plant Biology and Resource Application of Tea, The Ministry of Agriculture, Hangzhou, 310008, China
| | - Jianhui Hu
- College of Horticulture, Qingdao Agricultural University, Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao, China
| | - Yuanzhi Shi
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory for Plant Biology and Resource Application of Tea, The Ministry of Agriculture, Hangzhou, 310008, China
| | - Meiya Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory for Plant Biology and Resource Application of Tea, The Ministry of Agriculture, Hangzhou, 310008, China
| | - Qunfeng Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory for Plant Biology and Resource Application of Tea, The Ministry of Agriculture, Hangzhou, 310008, China.
| | - Jianyun Ruan
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory for Plant Biology and Resource Application of Tea, The Ministry of Agriculture, Hangzhou, 310008, China
| |
Collapse
|
23
|
Transcriptome Profile of the Variegated Ficus microcarpa c.v. Milky Stripe Fig Leaf. Int J Mol Sci 2019; 20:ijms20061338. [PMID: 30884842 PMCID: PMC6470861 DOI: 10.3390/ijms20061338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 12/12/2022] Open
Abstract
Photosynthetic properties and transcriptomic profiles of green and white sectors of Ficus microcarpa (c.v. milky stripe fig) leaves were examined in naturally variegated plants. An anatomic analysis indicated that chloroplasts of the white sectors contained a higher abundance of starch granules and lacked stacked thylakoids. Moreover, no photosynthetic rate was detected in the white sectors. Transcriptome profile and differential expressed gene (DEG) analysis showed that genes encoding PSII core proteins were down-regulated in the white sectors. In genes related to chlorophyll metabolism, no DEGs were identified in the biosynthesis pathway of chlorophyll. However, genes encoding the first step of chlorophyll breakdown were up-regulated. The repression of genes involved in N-assimilation suggests that the white sectors were deprived of N. The mutation in the transcription factor mitochondrial transcription termination factor (mTERF) suggests that it induces colorlessness in leaves of the milky stripe fig.
Collapse
|
24
|
Widely targeted metabolome and transcriptome landscapes of Allium fistulosum-A. cepa chromosome addition lines revealed a flavonoid hot spot on chromosome 5A. Sci Rep 2019; 9:3541. [PMID: 30837538 PMCID: PMC6400954 DOI: 10.1038/s41598-019-39856-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/30/2019] [Indexed: 12/24/2022] Open
Abstract
Here, we report a comprehensive analysis of the widely targeted metabolome and transcriptome profiles of Allium fistulosum L. (FF) with the single extra chromosome of shallot [A. cepa L. Aggregatum group (AA)] to clarify the novel gene functions in flavonoid biosynthesis. An exhaustive metabolome analysis was performed using the selected reaction monitoring mode of liquid chromatography–tandem quadrupole mass spectrometry, revealing a specific accumulation of quercetin, anthocyanin and flavone glucosides in AA and FF5A. The addition of chromosome 5A from the shallot to A. fistulosum induced flavonoid accumulation in the recipient species, which was associated with the upregulation of several genes including the dihydroflavonol 4-reductase, chalcone synthase, flavanone 3-hydroxylase, UDP-glucose flavonoid-3-O-glucosyltransferase, anthocyanin 5-aromatic acyltransferase-like, pleiotropic drug resistance-like ATP binding cassette transporter, and MYB14 transcriptional factor. Additionally, an open access Allium Transcript Database (Allium TDB, http://alliumtdb.kazusa.or.jp) was generated by using RNA-Seq data from different genetic stocks including the A. fistulosum–A. cepa monosomic addition lines. The functional genomic approach presented here provides an innovative means of targeting the gene responsible for flavonoid biosynthesis in A. cepa. The understanding of flavonoid compounds and biosynthesis-related genes would facilitate the development of noble Allium varieties with unique chemical constituents and, subsequently, improved plant stress tolerance and human health benefits.
Collapse
|
25
|
Cao P, Ren Y, Liu X, Zhang T, Zhang P, Xiao L, Zhang F, Liu S, Jiang L, Wan J. Purine nucleotide biosynthetic gene GARS controls early chloroplast development in rice (Oryza sativa L.). PLANT CELL REPORTS 2019; 38:183-194. [PMID: 30499032 DOI: 10.1007/s00299-018-2360-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
GARS encodes an enzyme catalyzing the second step of purine nucleotide biosynthesis and plays an important role to maintain the development of chloroplasts in juvenile plants by affecting the expression of plastid-encoded genes. A series of rice white striped mutants were previously described. In this research, we characterized a novel gars mutant with white striped leaves at the seedling stage. By positional cloning, we identified the mutated gene, which encodes a glycinamide ribonucleotide synthetase (GARS) that catalyzes the second step of purine nucleotide biosynthesis. Thylakoid membranes were less abundant in the albinic sectors of mutant seedling leaves compared to the wild type. The expression levels of genes involved in chlorophyll synthesis and photosynthesis were changed. Contents of ATP, ADP, AMP, GTP and GDP, which are crucial for plant growth and development, were decreased in the mutant seedlings. Complementation and CrispR tests confirmed the role of the GARS allele, which was expressed in all rice tissues, especially in the leaves. GARS protein displayed a typical chloroplast location pattern in rice protoplasts. Our results indicated that GARS was involved in chloroplast development at early leaf development by affecting the expression of plastid-encoded genes.
Collapse
Affiliation(s)
- Penghui Cao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yakun Ren
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianyu Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lianjie Xiao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fulin Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
26
|
Lu M, Han J, Zhu B, Jia H, Yang T, Wang R, Deng WW, Zhang ZZ. Significantly increased amino acid accumulation in a novel albino branch of the tea plant (Camellia sinensis). PLANTA 2019; 249:363-376. [PMID: 30209617 DOI: 10.1007/s00425-018-3007-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/05/2018] [Indexed: 05/08/2023]
Abstract
A normal tea plant with one albino branch was discovered. RNA sequencing, albinism phenotype and ultrastructural observations provided a valuable understanding of the albino mechanism in tea plants. Tea plants with a specific color (white or yellow) have been studied extensively. A normal tea plant (Camellia sinensis cv. quntizhong) with one albino branch was discovered in a local tea plantation in Huangshan, Anhui, China. The pure albino leaves on this special branch had accumulated a fairly high content of amino acids, especially theanine (45.31 mg/g DW), and had a low concentration of polyphenols and an extremely low chlorophyll (Chl) content compared with control leaves. Ultrastructural observation of an albino leaf revealed no chloroplasts, whereas it was viable in the control leaf. RNA sequencing and differentially expressed gene (DEG) analysis were performed on the albino leaves and on control leaves from a normal green branch. The related genes involved in theanine and polyphenol biosynthesis were also investigated in this study. DEG expression patterns in Chl biosynthesis or degradation, carotenoid biosynthesis or degradation, chloroplast development, and biosynthesis were influenced in the albino leaves. Chloroplast deletion in albino leaves had probably destroyed the balance of carbon and nitrogen metabolism, leading to a high accumulation of free amino acids and a low concentration of polyphenols in the albino leaves. The obtained results can provide insight into the mechanism underlying this special albino branch phenotype, and are a valuable contribution toward understanding the albino mechanism in tea plants.
Collapse
Affiliation(s)
- Mengqian Lu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Jieyun Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Biying Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Huiyan Jia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Rangjian Wang
- Tea Research Institute, Fujian Academy of Agricultural Science, Hutouyang, Shekou, Fuan, 355015, Fujian, China
| | - Wei-Wei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| | - Zheng-Zhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| |
Collapse
|
27
|
iTRAQ-Based Quantitative Proteomics Analysis Reveals the Mechanism Underlying the Weakening of Carbon Metabolism in Chlorotic Tea Leaves. Int J Mol Sci 2018; 19:ijms19123943. [PMID: 30544636 PMCID: PMC6321456 DOI: 10.3390/ijms19123943] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 01/02/2023] Open
Abstract
To uncover mechanism of highly weakened carbon metabolism in chlorotic tea (Camellia sinensis) plants, iTRAQ (isobaric tags for relative and absolute quantification)-based proteomic analyses were employed to study the differences in protein expression profiles in chlorophyll-deficient and normal green leaves in the tea plant cultivar “Huangjinya”. A total of 2110 proteins were identified in “Huangjinya”, and 173 proteins showed differential accumulations between the chlorotic and normal green leaves. Of these, 19 proteins were correlated with RNA expression levels, based on integrated analyses of the transcriptome and proteome. Moreover, the results of our analysis of differentially expressed proteins suggested that primary carbon metabolism (i.e., carbohydrate synthesis and transport) was inhibited in chlorotic tea leaves. The differentially expressed genes and proteins combined with photosynthetic phenotypic data indicated that 4-coumarate-CoA ligase (4CL) showed a major effect on repressing flavonoid metabolism, and abnormal developmental chloroplast inhibited the accumulation of chlorophyll and flavonoids because few carbon skeletons were provided as a result of a weakened primary carbon metabolism. Additionally, a positive feedback mechanism was verified at the protein level (Mg chelatase and chlorophyll b reductase) in the chlorophyll biosynthetic pathway, which might effectively promote the accumulation of chlorophyll b in response to the demand for this pigment in the cells of chlorotic tea leaves in weakened carbon metabolism.
Collapse
|
28
|
Abstract
A variety of chemicals produced by plants, often referred to as 'phytochemicals', have been used as medicines, food, fuels and industrial raw materials. Recent advances in the study of genomics and metabolomics in plant science have accelerated our understanding of the mechanisms, regulation and evolution of the biosynthesis of specialized plant products. We can now address such questions as how the metabolomic diversity of plants is originated at the levels of genome, and how we should apply this knowledge to drug discovery, industry and agriculture. Our research group has focused on metabolomics-based functional genomics over the last 15 years and we have developed a new research area called 'Phytochemical Genomics'. In this review, the development of a research platform for plant metabolomics is discussed first, to provide a better understanding of the chemical diversity of plants. Then, representative applications of metabolomics to functional genomics in a model plant, Arabidopsis thaliana, are described. The extension of integrated multi-omics analyses to non-model specialized plants, e.g., medicinal plants, is presented, including the identification of novel genes, metabolites and networks for the biosynthesis of flavonoids, alkaloids, sulfur-containing metabolites and terpenoids. Further, functional genomics studies on a variety of medicinal plants is presented. I also discuss future trends in pharmacognosy and related sciences.
Collapse
Affiliation(s)
- Kazuki Saito
- Graduate School of Pharmaceutical Sciences, Chiba University.,RIKEN Center for Sustainable Resource Science
| |
Collapse
|
29
|
Yin J, Gosney MJ, Dilkes BP, Mickelbart MV. Dark period transcriptomic and metabolic profiling of two diverse Eutrema salsugineum accessions. PLANT DIRECT 2018; 2:e00032. [PMID: 31245703 PMCID: PMC6508522 DOI: 10.1002/pld3.32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/01/2017] [Accepted: 12/08/2017] [Indexed: 05/16/2023]
Abstract
Eutrema salsugineum is a model species for the study of plant adaptation to abiotic stresses. Two accessions of E. salsugineum, Shandong (SH) and Yukon (YK), exhibit contrasting morphology and biotic and abiotic stress tolerance. Transcriptome profiling and metabolic profiling from tissue samples collected during the dark period were used to investigate the molecular and metabolic bases of these contrasting phenotypes. RNA sequencing identified 17,888 expressed genes, of which 157 were not in the published reference genome, and 65 of which were detected for the first time. Differential expression was detected for only 31 genes. The RNA sequencing data contained 14,808 single nucleotide polymorphisms (SNPs) in transcripts, 3,925 of which are newly identified. Among the differentially expressed genes, there were no obvious candidates for the physiological or morphological differences between SH and YK. Metabolic profiling indicated that YK accumulates free fatty acids and long-chain fatty acid derivatives as compared to SH, whereas sugars are more abundant in SH. Metabolite levels suggest that carbohydrate and respiratory metabolism, including starch degradation, is more active during the first half of the dark period in SH. These metabolic differences may explain the greater biomass accumulation in YK over SH. The accumulation of 56% of the identified metabolites was lower in F1 hybrids than the mid-parent averages and the accumulation of 17% of the metabolites in F1 plants transgressed the level in both parents. Concentrations of several metabolites in F1 hybrids agree with previous studies and suggest a role for primary metabolism in heterosis. The improved annotation of the E. salsugineum genome and newly identified high-quality SNPs will permit accelerated studies using the standing variation in this species to elucidate the mechanisms of its diverse adaptations to the environment.
Collapse
Affiliation(s)
- Jie Yin
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteINUSA
| | - Michael J. Gosney
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteINUSA
| | - Brian P. Dilkes
- Department of BiochemistryPurdue UniversityWest LafayetteINUSA
| | - Michael V. Mickelbart
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteINUSA
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteINUSA
| |
Collapse
|
30
|
Mikuriya S, Kasai M, Nakashima K, Natasia, Hase Y, Yamada T, Abe J, Kanazawa A. Frequent generation of mutants with coincidental changes in multiple traits via ion-beam irradiation in soybean. Genes Genet Syst 2018; 92:153-161. [PMID: 28674272 DOI: 10.1266/ggs.16-00034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ion beams are powerful mutagens that can induce novel mutants in plants. We previously established a system for producing a mutant population of soybean via ion-beam irradiation, isolated plants that had chlorophyll deficiency, and maintained their progeny via self-fertilization. Here we report the characterization of the progeny plants in terms of chlorophyll content, flowering time and isoflavone content in seeds. Chlorophyll deficiency in the leaf tissues was linked with reduced levels of isoflavones, the major flavonoid compounds accumulated in soybean seeds, which suggested the involvement of metabolic changes associated with the chlorophyll deficiency. Intriguingly, flowering time was frequently altered in plants that had a reduced level of chlorophyll in the leaf tissues. Plant lines that flowered either earlier or later than the wild-type plants were detected. The observed coincidental changes were presumed to be attributable to the following origins: structural changes of DNA segments leading to the loss of multiple gene functions, or indirect effects of mutations that affect one of these traits, which were manifested as phenotypic changes in the background of the duplicated composition of the soybean genome.
Collapse
Affiliation(s)
- Shun Mikuriya
- Research Faculty of Agriculture, Hokkaido University
| | - Megumi Kasai
- Research Faculty of Agriculture, Hokkaido University
| | | | - Natasia
- Research Faculty of Agriculture, Hokkaido University
| | - Yoshihiro Hase
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology
| | | | - Jun Abe
- Research Faculty of Agriculture, Hokkaido University
| | | |
Collapse
|
31
|
Cho SY, Kwon YK, Nam M, Vaidya B, Kim SR, Lee S, Kwon J, Kim D, Hwang GS. Integrated profiling of global metabolomic and transcriptomic responses to viral hemorrhagic septicemia virus infection in olive flounder. FISH & SHELLFISH IMMUNOLOGY 2017; 71:220-229. [PMID: 29017947 DOI: 10.1016/j.fsi.2017.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/30/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
Viral hemorrhagic septicemia virus (VHSV) is one of the most serious viral pathogen that infects farmed fish. In this study, we measured the replication of VHSV increased steadily at 9, 24, 72, and 120 h after infection and progression of necrosis was observed at 72 hpi. We performed transcriptomic and metabolomics profiling of kidney tissues collected at each infection time using Illumina HiSeq2000 and ultra-performance liquid chromatography/quadrupole time-of-flight mass spectroscopy to investigate the mechanisms of VHSV infection in the kidneys of olive flounder. A total of 13,862 mRNA molecules and 72 metabolites were selected to identify the mechanisms of infection and they were integrated using KEGG pathway database. Six KEGG metabolic pathways, including carbohydrate metabolism, amino acid metabolism, lipid metabolism, transport and catabolism, metabolism of cofactors and vitamins, and energy metabolism, were significantly suppressed, whereas the immune system was activated by VHSV infection. A decrease in levels of amino acids such as valine, leucine, and isoleucine, as well as in their derivative carnitines, was observed after VHSV infection. In addition, an increase in arachidonic acid level was noted. Integrated analysis of transcriptome and metabolome using KEGG pathway database revealed four types of responses in the kidneys of olive flounder to VHSV infection. Among these, the mechanisms related to the immune system and protein synthesis were activated, whereas ATP synthesis and the antioxidant system activity were suppressed. This is the first study describing the mechanisms of metabolic responses to VHSV infection in olive flounder. The results suggest that the suppression of ATP synthesis and antioxidant systems, such as glutathione and peroxisome signaling, could be the cause of necrosis, whereas the activation of the immune system could result in the inflammation of kidney tissue in VHSV-infected olive flounder.
Collapse
Affiliation(s)
- Se-Young Cho
- Biological Disaster Analysis Team, Korea Basic Science Institute, Daejeon 169-148, Republic of Korea
| | - Yong-Kook Kwon
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
| | - Miso Nam
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea; Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bipin Vaidya
- Bioenergy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Seok Ryel Kim
- West Sea Fisheries Research Institute, National Fisheries Research and Development Institute, Incheon 400-420, Republic of Korea
| | - Sunghoon Lee
- EONE-DIAGNOMICS Genome Center, Incheon 406-840, Republic of Korea
| | - Joseph Kwon
- Biological Disaster Analysis Team, Korea Basic Science Institute, Daejeon 169-148, Republic of Korea.
| | - Duwoon Kim
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea.
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea; Department of Chemistry and Nano Science, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Zhang Q, Liu M, Ruan J. Metabolomics analysis reveals the metabolic and functional roles of flavonoids in light-sensitive tea leaves. BMC PLANT BIOLOGY 2017; 17:64. [PMID: 28320327 PMCID: PMC5359985 DOI: 10.1186/s12870-017-1012-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/09/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND As the predominant secondary metabolic pathway in tea plants, flavonoid biosynthesis increases with increasing temperature and illumination. However, the concentration of most flavonoids decreases greatly in light-sensitive tea leaves when they are exposed to light, which further improves tea quality. To reveal the metabolism and potential functions of flavonoids in tea leaves, a natural light-sensitive tea mutant (Huangjinya) cultivated under different light conditions was subjected to metabolomics analysis. RESULTS The results showed that chlorotic tea leaves accumulated large amounts of flavonoids with ortho-dihydroxylated B-rings (e.g., catechin gallate, quercetin and its glycosides etc.), whereas total flavonoids (e.g., myricetrin glycoside, epigallocatechin gallate etc.) were considerably reduced, suggesting that the flavonoid components generated from different metabolic branches played different roles in tea leaves. Furthermore, the intracellular localization of flavonoids and the expression pattern of genes involved in secondary metabolic pathways indicate a potential photoprotective function of dihydroxylated flavonoids in light-sensitive tea leaves. CONCLUSIONS Our results suggest that reactive oxygen species (ROS) scavenging and the antioxidation effects of flavonoids help chlorotic tea plants survive under high light stress, providing new evidence to clarify the functional roles of flavonoids, which accumulate to high levels in tea plants. Moreover, flavonoids with ortho-dihydroxylated B-rings played a greater role in photo-protection to improve the acclimatization of tea plants.
Collapse
Affiliation(s)
- Qunfeng Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310058 China
- Key Laboratory for Plant Biology and Resource Application of Tea, the Ministry of Agriculture, South Meiling Road 9, Hangzhou, Zhejiang 310008 China
| | - Meiya Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310058 China
- Key Laboratory for Plant Biology and Resource Application of Tea, the Ministry of Agriculture, South Meiling Road 9, Hangzhou, Zhejiang 310008 China
| | - Jianyun Ruan
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310058 China
- Key Laboratory for Plant Biology and Resource Application of Tea, the Ministry of Agriculture, South Meiling Road 9, Hangzhou, Zhejiang 310008 China
| |
Collapse
|
33
|
Makabe S, Motohashi R, Nakamura I. Growth increase of Arabidopsis by forced expression of rice 45S rRNA gene. PLANT CELL REPORTS 2017; 36:243-254. [PMID: 27864606 DOI: 10.1007/s00299-016-2075-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
Forced expression of rice 45S rRNA gene conferred ca. 2-fold increase of above-ground growth in transgenic Arabidopsis . This growth increase was probably brought by cell proliferation, not by cell enlargement. Recent increase in carbon dioxide emissions is causing global climate change. The use of plant biomass as alternative energy source is one way to reduce these emissions. Therefore, reinforcement of plant biomass production is an urgent key issue to overcome both depletion of fossil energies and emission of carbon dioxide. Here, we created transgenic Arabidopsis with a 2-fold increase in above-ground growth by forced expression of the rice 45S rRNA gene using the maize ubiquitin promoter. Although the size of guard cells and ploidy of leaf-cells were similar between transgenic and control plants, numbers of stomata and pavement cells were much increased in the transgenic leaf. This data suggested that cell number, not cell expansion, was responsible for the growth increase, which might be brought by the forced expression of exogenous and full-length 45S rRNA gene. The expression level of rice 45S rRNA transcripts was very low, possibly triggering unknown machinery to enhance cell proliferation. Although microarray analysis showed enhanced expression of ethylene-responsive transcription factors, these factors might respond to ethylene induced by abiotic/biotic stresses or genomic incompatibility, which might be involved in the expression of species-specific internal transcribed spacer (ITS) sequences within rice 45S rRNA transcripts. Further analysis of the mechanism underlying the growth increase will contribute to understanding the regulation of the cell proliferation and the mechanism of hybrid vigor.
Collapse
Affiliation(s)
- So Makabe
- Plant Cell Technology Laboratory, Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan
| | - Reiko Motohashi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka, Shizuoka, 422-8529, Japan
| | - Ikuo Nakamura
- Plant Cell Technology Laboratory, Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan.
| |
Collapse
|
34
|
Zhang Q, Liu M, Ruan J. Integrated Transcriptome and Metabolic Analyses Reveals Novel Insights into Free Amino Acid Metabolism in Huangjinya Tea Cultivar. FRONTIERS IN PLANT SCIENCE 2017; 8:291. [PMID: 28321230 PMCID: PMC5337497 DOI: 10.3389/fpls.2017.00291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/17/2017] [Indexed: 05/02/2023]
Abstract
The chlorotic tea variety Huangjinya, a natural mutant, contains enhanced levels of free amino acids in its leaves, which improves the drinking quality of its brewed tea. Consequently, this chlorotic mutant has a higher economic value than the non-chlorotic varieties. However, the molecular mechanisms behind the increased levels of free amino acids in this mutant are mostly unknown, as are the possible effects of this mutation on the overall metabolome and biosynthetic pathways in tea leaves. To gain further insight into the effects of chlorosis on the global metabolome and biosynthetic pathways in this mutant, Huangjinya plants were grown under normal and reduced sunlight, resulting in chlorotic and non-chlorotic leaves, respectively; their leaves were analyzed using transcriptomics as well as targeted and untargeted metabolomics. Approximately 5,000 genes (8.5% of the total analyzed) and ca. 300 metabolites (14.5% of the total detected) were significantly differentially regulated, thus indicating the occurrence of marked effects of light on the biosynthetic pathways in this mutant plant. Considering primary metabolism, including that of sugars, amino acids, and organic acids, significant changes were observed in the expression of genes involved in both nitrogen (N) and carbon metabolism. The suite of changes not only generated an increase in amino acids, including glutamic acid, glutamine, and theanine, but it also elevated the levels of free ammonium, citrate, and α-ketoglutarate, and lowered the levels of mono- and di-saccharides and of caffeine as compared with the non-chlorotic leaves. Taken together, our results suggest that the increased levels of amino acids in the chlorotic vs. non-chlorotic leaves are likely due to increased protein catabolism and/or decreased glycolysis and diminished biosynthesis of nitrogen-containing compounds other than amino acids, including chlorophyll, purines, nucleotides, and alkaloids.
Collapse
Affiliation(s)
- Qunfeng Zhang
- Tea Research Institute, Chinese Academy of Agricultural SciencesHangzhou, China
- Key Laboratory for Plant Biology and Resource Application of Tea, The Ministry of AgricultureHangzhou, China
| | - Meiya Liu
- Tea Research Institute, Chinese Academy of Agricultural SciencesHangzhou, China
- Key Laboratory for Plant Biology and Resource Application of Tea, The Ministry of AgricultureHangzhou, China
| | - Jianyun Ruan
- Tea Research Institute, Chinese Academy of Agricultural SciencesHangzhou, China
- Key Laboratory for Plant Biology and Resource Application of Tea, The Ministry of AgricultureHangzhou, China
- *Correspondence: Jianyun Ruan
| |
Collapse
|
35
|
Li Q, Fang C, Duan Z, Liu Y, Qin H, Zhang J, Sun P, Li W, Wang G, Tian Z. Functional conservation and divergence of GmCHLI genes in polyploid soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:584-596. [PMID: 27459730 DOI: 10.1111/tpj.13282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/17/2016] [Accepted: 07/21/2016] [Indexed: 05/15/2023]
Abstract
Polyploidy is prevalent in nature. As the fate of duplicated genes becomes more complicated when the encoded proteins function as oligomers, functional investigations into duplicated oligomer-encoding genes in polyploid genomes will facilitate our understanding of how traits are expressed. In this study, we identified GmCHLI1, a gene encoding the I subunit of magnesium (Mg)-chelatase, which functions in hexamers as responsible for the semi-dominant etiolation phenotype in soybean. Four GmCHLI copies derived from two polyploidy events were identified in the soybean genome. Further investigation with regard to expression patterns indicated that these four copies have diverged into two pairs; mutation in the other copy of the pair that includes GmCHLI1 also resulted in a chlorophyll-deficient phenotype. Protein interaction assays showed that these four GmCHLIs can interact with each other, but stronger interactions were found with mutated subunits. The results indicate that, in polyploidy, deficiency in each copy of duplicated oligomer-encoding genes could result in a mutant phenotype due to hetero-oligomer formation, which is different from the model of allelic dosage or functional redundancy. In addition, we interestingly found an increase in isoflavonoids in the heterozygous etiolated plants, which might be useful for improving soybean seed quality.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Chao Fang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zongbiao Duan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Hao Qin
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jixiang Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Peng Sun
- Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Wenbin Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
36
|
Liang C, Cheng S, Zhang Y, Sun Y, Fernie AR, Kang K, Panagiotou G, Lo C, Lim BL. Transcriptomic, proteomic and metabolic changes in Arabidopsis thaliana leaves after the onset of illumination. BMC PLANT BIOLOGY 2016; 16:43. [PMID: 26865323 PMCID: PMC4750186 DOI: 10.1186/s12870-016-0726-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 01/28/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Light plays an important role in plant growth and development. In this study, the impact of light on physiology of 20-d-old Arabidopsis leaves was examined through transcriptomic, proteomic and metabolomic analysis. Since the energy-generating electron transport chains in chloroplasts and mitochondria are encoded by both nuclear and organellar genomes, sequencing total RNA after removal of ribosomal RNAs provides essential information on transcription of organellar genomes. The changes in the levels of ADP, ATP, NADP(+), NADPH and 41 metabolites upon illumination were also quantified. RESULTS Upon illumination, while the transcription of the genes encoded by the plastid genome did not change significantly, the transcription of nuclear genes encoding different functional complexes in the photosystem are differentially regulated whereas members of the same complex are co-regulated with each other. The abundance of mRNAs and proteins encoded by all three genomes are, however, not always positively correlated. One such example is the negative correlation between mRNA and protein abundances of the photosystem components, which reflects the importance of post-transcriptional regulation in plant physiology. CONCLUSION This study provides systems-wide datasets which allow plant researchers to examine the changes in leaf transcriptomes, proteomes and key metabolites upon illumination and to determine whether there are any correlations between changes in transcript and protein abundances of a particular gene or pathway upon illumination. The integration of data of the organelles and the photosystems, Calvin-Benson cycle, carbohydrate metabolism, glycolysis, the tricarboxylic acid cycle and respiratory chain, thereby provides a more complete picture to the changes in plant physiology upon illumination than has been attained to date.
Collapse
Affiliation(s)
- Chao Liang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Shifeng Cheng
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Youjun Zhang
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| | - Yuzhe Sun
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| | - Kang Kang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Gianni Panagiotou
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Boon Leong Lim
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
37
|
Fahlgren N, Feldman M, Gehan MA, Wilson MS, Shyu C, Bryant DW, Hill ST, McEntee CJ, Warnasooriya SN, Kumar I, Ficor T, Turnipseed S, Gilbert KB, Brutnell TP, Carrington JC, Mockler TC, Baxter I. A Versatile Phenotyping System and Analytics Platform Reveals Diverse Temporal Responses to Water Availability in Setaria. MOLECULAR PLANT 2015; 8:1520-35. [PMID: 26099924 DOI: 10.1016/j.molp.2015.06.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 05/28/2015] [Accepted: 06/08/2015] [Indexed: 05/18/2023]
Abstract
Phenotyping has become the rate-limiting step in using large-scale genomic data to understand and improve agricultural crops. Here, the Bellwether Phenotyping Platform for controlled-environment plant growth and automated multimodal phenotyping is described. The system has capacity for 1140 plants, which pass daily through stations to record fluorescence, near-infrared, and visible images. Plant Computer Vision (PlantCV) was developed as open-source, hardware platform-independent software for quantitative image analysis. In a 4-week experiment, wild Setaria viridis and domesticated Setaria italica had fundamentally different temporal responses to water availability. While both lines produced similar levels of biomass under limited water conditions, Setaria viridis maintained the same water-use efficiency under water replete conditions, while Setaria italica shifted to less efficient growth. Overall, the Bellwether Phenotyping Platform and PlantCV software detected significant effects of genotype and environment on height, biomass, water-use efficiency, color, plant architecture, and tissue water status traits. All ∼ 79,000 images acquired during the course of the experiment are publicly available.
Collapse
Affiliation(s)
- Noah Fahlgren
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | | | - Malia A Gehan
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | | | - Christine Shyu
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | | | - Steven T Hill
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | | | | | - Indrajit Kumar
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Tracy Ficor
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | | | | | | | | | - Todd C Mockler
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Ivan Baxter
- USDA-ARS, Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
| |
Collapse
|