1
|
Feng X, Hu Y, Xie T, Han H, Bonea D, Zeng L, Liu J, Ying W, Mu B, Cai Y, Zhang M, Lu Y, Zhao R, Hua X. Plant-specific cochaperone SSR1 affects root elongation by modulating the mitochondrial iron-sulfur cluster assembly machinery. PLoS Genet 2025; 21:e1011597. [PMID: 39908322 DOI: 10.1371/journal.pgen.1011597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/29/2025] [Indexed: 02/07/2025] Open
Abstract
To elucidate the molecular function of SHORT AND SWOLLEN ROOT1 (SSR1), we screened for suppressors of the ssr1-2 (sus) was performed and identified over a dozen candidates with varying degrees of root growth restoration. Among these, the two most effective suppressors, sus1 and sus2, resulted from G87D and T55M single amino acid substitutions in HSCA2 (At5g09590) and ISU1 (At4g22220), both crucial components of the mitochondrial iron-sulfur (Fe-S) cluster assembly machinery. SSR1 displayed a robust cochaperone-like activity and interacted with HSCA2 and ISU1, facilitating the binding of HSCA2 to ISU1. In comparison to the wild-type plants, ssr1-2 mutants displayed increased iron accumulation in root tips and altered expression of genes responsive to iron deficiency. Additionally, the enzymatic activities of several iron-sulfur proteins and the mitochondrial membrane potential were reduced in ssr1-2 mutants. Interestingly, SSR1 appears to be exclusive to plant lineages and is induced by environmental stresses. Although HSCA2G87D and ISU1T55M can effectively compensate for the phenotypes associated with SSR1 deficiency under favorable conditions, their compensatory effects are significantly diminished under stress. Collectively, SSR1 represents a new and significant component of the mitochondrial Fe-S cluster assembly (ISC) machinery. It may also confer adaptive advantages on plant ISC machinery in response to environmental stress.
Collapse
Affiliation(s)
- Xuanjun Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Yue Hu
- Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Tao Xie
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Huiling Han
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Diana Bonea
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Lijuan Zeng
- Sichuan Keyuan Testing Center of Engineering Technology Co., Ltd; Chengdu, Sichuan, PR China
| | - Jie Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wenhan Ying
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Bona Mu
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Yuanyuan Cai
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Min Zhang
- Institute of Genetics and Developmental Biology, Beijing, China
| | - Yanli Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Rongmin Zhao
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Xuejun Hua
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Singh B, Singh S, Mahato AK, Dikshit HK, Tripathi K, Bhatia S. Delineation of novel genomic loci and putative candidate genes associated with seed iron and zinc content in lentil (Lens culinaris Medik.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111787. [PMID: 37419329 DOI: 10.1016/j.plantsci.2023.111787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
The use of molecular breeding approaches for development of lentil genotypes biofortified with essential micro-nutrients such as iron and zinc, could serve as a promising solution to address the problem of global malnutrition. Thus, genome-wide association study (GWAS) strategy was adopted in this study to identify the genomic regions associated with seed iron and zinc content in lentil. A panel of 95 diverse lentil genotypes, grown across three different geographical locations and evaluated for seed iron and zinc content, exhibited a wide range of variation. Genotyping-by-sequencing (GBS) analysis of the panel identified 33,745 significant single nucleotide polymorphisms (SNPs) that were distributed across all the 7 lentil chromosomes. Association mapping revealed 23 SNPs associated with seed iron content that were distributed across all the chromosomes except chromosome 3. Similarly, 14 SNPs associated with seed zinc content were also identified that were distributed across chromosomes 1, 2, 4, 5 and 6. Further, 80 genes were identified in the proximity of iron associated markers and 36 genes were identified in the proximity of zinc associated markers. Functional annotation of these genes revealed their putative involvement in iron and zinc metabolism. For seed iron content, two highly significant SNPs were found to be located within two putative candidate genes namely iron-sulfur cluster assembly (ISCA) and flavin binding monooxygenase (FMO) respectively. For zinc content, a highly significant SNP was detected in a gene encoding UPF0678 fatty acid-binding protein. Expression analysis of these genes and their putative interacting partners suggests their involvement in iron and zinc metabolism in lentil. Overall, in this study we have identified markers, putative candidate genes and predicted putative interacting protein partners significantly associated with iron and zinc metabolism that could be utilized in future breeding studies of lentil for nutrient biofortification.
Collapse
Affiliation(s)
- Baljinder Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi 110067, India
| | - Sangeeta Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi 110067, India
| | - Ajay Kumar Mahato
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi 110067, India
| | - Harsh Kumar Dikshit
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Kuldeep Tripathi
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi 110067, India.
| |
Collapse
|
3
|
Pagani MA, Gomez-Casati DF. Advances in Iron Retrograde Signaling Mechanisms and Uptake Regulation in Photosynthetic Organisms. Methods Mol Biol 2023; 2665:121-145. [PMID: 37166598 DOI: 10.1007/978-1-0716-3183-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Iron (Fe) is an essential metal for the growth and development of different organisms, including plants and algae. This metal participates in different biological processes, among which are cellular respiration and photosynthesis. Fe is found associated with heme groups and as part of inorganic Fe-S groups as cofactors of numerous cellular proteins. Although Fe is abundant in soils, it is often not bioavailable due to soil pH. For this reason, photosynthetic organisms have developed different strategies for the uptake, the sensing of Fe intracellular levels but also different mechanisms that maintain and regulate adequate concentrations of this metal in response to physiological needs. This work focuses on discussing recent advances in the characterization of the mechanisms of Fe homeostasis and Fe retrograde signaling in photosynthetic organisms.
Collapse
Affiliation(s)
- Maria A Pagani
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina.
| | - Diego F Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
4
|
Przybyla-Toscano J, Christ L, Keech O, Rouhier N. Iron-sulfur proteins in plant mitochondria: roles and maturation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2014-2044. [PMID: 33301571 DOI: 10.1093/jxb/eraa578] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/05/2020] [Indexed: 05/22/2023]
Abstract
Iron-sulfur (Fe-S) clusters are prosthetic groups ensuring electron transfer reactions, activating substrates for catalytic reactions, providing sulfur atoms for the biosynthesis of vitamins or other cofactors, or having protein-stabilizing effects. Hence, metalloproteins containing these cofactors are essential for numerous and diverse metabolic pathways and cellular processes occurring in the cytoplasm. Mitochondria are organelles where the Fe-S cluster demand is high, notably because the activity of the respiratory chain complexes I, II, and III relies on the correct assembly and functioning of Fe-S proteins. Several other proteins or complexes present in the matrix require Fe-S clusters as well, or depend either on Fe-S proteins such as ferredoxins or on cofactors such as lipoic acid or biotin whose synthesis relies on Fe-S proteins. In this review, we have listed and discussed the Fe-S-dependent enzymes or pathways in plant mitochondria including some potentially novel Fe-S proteins identified based on in silico analysis or on recent evidence obtained in non-plant organisms. We also provide information about recent developments concerning the molecular mechanisms involved in Fe-S cluster synthesis and trafficking steps of these cofactors from maturation factors to client apoproteins.
Collapse
Affiliation(s)
- Jonathan Przybyla-Toscano
- Université de Lorraine, INRAE, IAM, Nancy, France
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Loïck Christ
- Université de Lorraine, INRAE, IAM, Nancy, France
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | | |
Collapse
|
5
|
Gomez-Casati DF, Busi MV, Barchiesi J, Pagani MA, Marchetti-Acosta NS, Terenzi A. Fe-S Protein Synthesis in Green Algae Mitochondria. PLANTS 2021; 10:plants10020200. [PMID: 33494487 PMCID: PMC7911964 DOI: 10.3390/plants10020200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/28/2022]
Abstract
Iron and sulfur are two essential elements for all organisms. These elements form the Fe-S clusters that are present as cofactors in numerous proteins and protein complexes related to key processes in cells, such as respiration and photosynthesis, and participate in numerous enzymatic reactions. In photosynthetic organisms, the ISC and SUF Fe-S cluster synthesis pathways are located in organelles, mitochondria, and chloroplasts, respectively. There is also a third biosynthetic machinery in the cytosol (CIA) that is dependent on the mitochondria for its function. The genes and proteins that participate in these assembly pathways have been described mainly in bacteria, yeasts, humans, and recently in higher plants. However, little is known about the proteins that participate in these processes in algae. This review work is mainly focused on releasing the information on the existence of genes and proteins of green algae (chlorophytes) that could participate in the assembly process of Fe-S groups, especially in the mitochondrial ISC and CIA pathways.
Collapse
Affiliation(s)
- Diego F. Gomez-Casati
- Correspondence: (D.F.G.-C.); (M.V.B.); Tel.: +54-341-4391955 (ext. 113) (D.F.G.-C. & M.V.B.)
| | - Maria V. Busi
- Correspondence: (D.F.G.-C.); (M.V.B.); Tel.: +54-341-4391955 (ext. 113) (D.F.G.-C. & M.V.B.)
| | | | | | | | | |
Collapse
|
6
|
Balparda M, Armas AM, Estavillo GM, Roschzttardtz H, Pagani MA, Gomez-Casati DF. The PAP/SAL1 retrograde signaling pathway is involved in iron homeostasis. PLANT MOLECULAR BIOLOGY 2020; 102:323-337. [PMID: 31900819 DOI: 10.1007/s11103-019-00950-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/16/2019] [Indexed: 05/24/2023]
Abstract
There is a link between PAP/SAL retrograde pathway, ethylene signaling and Fe metabolism in Arabidopsis. Nuclear gene expression is regulated by a diversity of retrograde signals that travel from organelles to the nucleus in a lineal or classical model. One such signal molecule is 3'-phosphoadenisine-5'-phosphate (PAP) and it's in vivo levels are regulated by SAL1/FRY1, a phosphatase enzyme located in chloroplast and mitochondria. This metabolite inhibits the action of a group of exorribonucleases which participate in post-transcriptional gene expression regulation. Transcriptome analysis of Arabidopsis thaliana mutant plants in PAP-SAL1 pathway revealed that the ferritin genes AtFER1, AtFER3, and AtFER4 are up-regulated. In this work we studied Fe metabolism in three different mutants of the PAP/SAL1 retrograde pathway. Mutant plants showed increased Fe accumulation in roots, shoots and seeds when grown in Fe-sufficient condition, and a constitutive activation of the Strategy I Fe uptake genes. As a consequence, they grew more vigorously than wild type plants in Fe-deficient medium. However, when mutant plants grown in Fe-deficient conditions were sprayed with Fe in their leaves, they were unable to deactivate root Fe uptake. Ethylene synthesis inhibition revert the constitutive Fe uptake phenotype. We propose that there is a link between PAP/SAL pathway, ethylene signaling and Fe metabolism.
Collapse
Affiliation(s)
- Manuel Balparda
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Alejandro M Armas
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | | | - Hannetz Roschzttardtz
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María A Pagani
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| | - Diego F Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
7
|
Armas AM, Balparda M, Turowski VR, Busi MV, Pagani MA, Gomez-Casati DF. Altered levels of mitochondrial NFS1 affect cellular Fe and S contents in plants. PLANT CELL REPORTS 2019; 38:981-990. [PMID: 31065779 DOI: 10.1007/s00299-019-02419-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/29/2019] [Indexed: 05/18/2023]
Abstract
The ISC Fe-S cluster biosynthetic pathway would play a key role in the regulation of iron and sulfur homeostasis in plants. The Arabidopsis thaliana mitochondrial cysteine desulfurase AtNFS1 has an essential role in cellular ISC Fe-S cluster assembly, and this pathway is one of the main sinks for iron (Fe) and sulfur (S) in the plant. In different plant species it has been reported a close relationship between Fe and S metabolisms; however, the regulation of both nutrient homeostasis is not fully understood. In this study, we have characterized AtNFS1 overexpressing and knockdown mutant Arabidopsis plants. Plants showed alterations in the ISC Fe-S biosynthetic pathway genes and in the activity of Fe-S enzymes. Genes involved in Fe and S uptakes, assimilation, and regulation were up-regulated in overexpressing plants and down-regulated in knockdown plants. Furthermore, the plant nutritional status in different tissues was in accordance with those gene activities: overexpressing lines accumulated increased amounts of Fe and S and mutant plant had lower contents of S. In summary, our results suggest that the ISC Fe-S cluster biosynthetic pathway plays a crucial role in the homeostasis of Fe and S in plants, and that it may be important in their regulation.
Collapse
Affiliation(s)
- Alejandro M Armas
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Manuel Balparda
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Valeria R Turowski
- Instituto de Investigaciones Biotecnológicas, IIB-INTECH, CONICET-UNSAM, Chascomús, Argentina
| | - Maria V Busi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Maria A Pagani
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Diego F Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, 2000, Rosario, Argentina.
| |
Collapse
|
8
|
The Adaptive Mechanism of Plants to Iron Deficiency via Iron Uptake, Transport, and Homeostasis. Int J Mol Sci 2019; 20:ijms20102424. [PMID: 31100819 PMCID: PMC6566170 DOI: 10.3390/ijms20102424] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 01/31/2023] Open
Abstract
Iron is an essential element for plant growth and development. While abundant in soil, the available Fe in soil is limited. In this regard, plants have evolved a series of mechanisms for efficient iron uptake, allowing plants to better adapt to iron deficient conditions. These mechanisms include iron acquisition from soil, iron transport from roots to shoots, and iron storage in cells. The mobilization of Fe in plants often occurs via chelating with phytosiderophores, citrate, nicotianamine, mugineic acid, or in the form of free iron ions. Recent work further elucidates that these genes’ response to iron deficiency are tightly controlled at transcriptional and posttranscriptional levels to maintain iron homeostasis. Moreover, increasing evidences shed light on certain factors that are identified to be interconnected and integrated to adjust iron deficiency. In this review, we highlight the molecular and physiological bases of iron acquisition from soil to plants and transport mechanisms for tolerating iron deficiency in dicotyledonous plants and rice.
Collapse
|
9
|
García MJ, Corpas FJ, Lucena C, Alcántara E, Pérez-Vicente R, Zamarreño ÁM, Bacaicoa E, García-Mina JM, Bauer P, Romera FJ. A Shoot Fe Signaling Pathway Requiring the OPT3 Transporter Controls GSNO Reductase and Ethylene in Arabidopsis thaliana Roots. FRONTIERS IN PLANT SCIENCE 2018; 9:1325. [PMID: 30254659 PMCID: PMC6142016 DOI: 10.3389/fpls.2018.01325] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/23/2018] [Indexed: 05/12/2023]
Abstract
Ethylene, nitric oxide (NO) and glutathione (GSH) increase in Fe-deficient roots of Strategy I species where they participate in the up-regulation of Fe acquisition genes. However, S-nitrosoglutathione (GSNO), derived from NO and GSH, decreases in Fe-deficient roots. GSNO content is regulated by the GSNO-degrading enzyme S-nitrosoglutathione reductase (GSNOR). On the other hand, there are several results showing that the regulation of Fe acquisition genes does not solely depend on hormones and signaling molecules (such as ethylene or NO), which would act as activators, but also on the internal Fe content of plants, which would act as a repressor. Moreover, different results suggest that total Fe in roots is not the repressor of Fe acquisition genes, but rather the repressor is a Fe signal that moves from shoots to roots through the phloem [hereafter named LOng Distance Iron Signal (LODIS)]. To look further in the possible interactions between LODIS, ethylene and GSNOR, we compared Arabidopsis WT Columbia and LODIS-deficient mutant opt3-2 plants subjected to different Fe treatments that alter LODIS content. The opt3-2 mutant is impaired in the loading of shoot Fe into the phloem and presents constitutive expression of Fe acquisition genes. In roots of both Columbia and opt3-2 plants we determined 1-aminocyclopropane-1-carboxylic acid (ACC, ethylene precursor), expression of ethylene synthesis and signaling genes, and GSNOR expression and activity. The results obtained showed that both 'ethylene' (ACC and the expression of ethylene synthesis and signaling genes) and 'GSNOR' (expression and activity) increased in Fe-deficient WT Columbia roots. Additionally, Fe-sufficient opt3-2 roots had higher 'ethylene' and 'GSNOR' than Fe-sufficient WT Columbia roots. The increase of both 'ethylene' and 'GSNOR' was not related to the total root Fe content but to the absence of a Fe shoot signal (LODIS), and was associated with the up-regulation of Fe acquisition genes. The possible relationship between GSNOR(GSNO) and ethylene is discussed.
Collapse
Affiliation(s)
- María J. García
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Francisco J. Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council, Granada, Spain
| | - Carlos Lucena
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Esteban Alcántara
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Ángel M. Zamarreño
- Department of Environmental Biology, Faculty of Sciences, University of Navarra, Pamplona, Spain
| | - Eva Bacaicoa
- Department of Environmental Biology, Faculty of Sciences, University of Navarra, Pamplona, Spain
| | - José M. García-Mina
- Department of Environmental Biology, Faculty of Sciences, University of Navarra, Pamplona, Spain
| | - Petra Bauer
- Institute of Botany, University of Düsseldorf, Düsseldorf, Germany
| | - Francisco J. Romera
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
10
|
Jeong J, Merkovich A, Clyne M, Connolly EL. Directing iron transport in dicots: regulation of iron acquisition and translocation. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:106-113. [PMID: 28689052 DOI: 10.1016/j.pbi.2017.06.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/15/2017] [Accepted: 06/19/2017] [Indexed: 05/03/2023]
Abstract
Iron is essential for plant growth and development, but excess iron is cytotoxic. While iron is abundant in soil, it is often a limiting nutrient for plant growth. Consequentially, plants have evolved mechanisms to tightly regulate iron uptake, trafficking and storage. Recent work has contributed to a more comprehensive picture of iron uptake, further elucidating molecular and physiological processes that aid in solubilization of iron and modulation of the root system architecture in response to iron availability. Recent progress in understanding the regulators of the iron deficiency response and iron translocation from root to shoots, and especially to seeds are noteworthy. The molecular bases of iron sensing and signaling are gradually emerging, as well.
Collapse
Affiliation(s)
- Jeeyon Jeong
- Department of Biology, Amherst College, Amherst, MA 01002, United States
| | - Aleks Merkovich
- Department of Biology, Amherst College, Amherst, MA 01002, United States
| | - Madeline Clyne
- Department of Biology, Amherst College, Amherst, MA 01002, United States
| | - Erin L Connolly
- Department of Plant Science, Penn State University, University Park, PA 16802, United States.
| |
Collapse
|