1
|
Bian B, Kageshima S, Yano K, Fujiwara T, Kamiya T. Screening Arabidopsis thaliana mutants for low sensitivity to manganese identifies novel alleles of NRAMP1 and PGSIP6. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1795-1803. [PMID: 29365153 PMCID: PMC5888932 DOI: 10.1093/jxb/ery018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/11/2018] [Indexed: 05/09/2023]
Abstract
Manganese (Mn) is an essential micronutrient; however, few genes required for growth under low-Mn conditions have been identified. In this study, we isolated Arabidopsis thaliana mutants sensitive to low-Mn conditions from ethyl methanesulfonate-mutagenized seeds. Among them, we identified the causal genes of two mutants. One mutant (35-34) exhibited a short root phenotype and low Mn concentration in the shoots. The other mutant (30-11) exhibited a small shoot phenotype with Mn concentrations similar to the control. Genetic mapping, allelism tests, and gene complementation tests identified the causal genes as At1g80830 (NRAMP1) for 35-34 and At5g18480 (PGSIP6) for 30-11. NRAMP1 was previously reported to be essential for Mn uptake under low-Mn conditions, thus validating our screening method. PGSIP6 encodes inositol phosphorylceramide glucuronosyltransferase, which is involved in glycosyl inositol phosphorylceramide sphingolipid glycosylation. PGSIP6-green fluorescent protein was localized to the Golgi apparatus, which is consistent with its function in the glycosylation of sphingolipids. Our screening identified a novel gene required for low-Mn tolerance, and we also provide new insights towards understanding the physiological function of PGSIP6.
Collapse
Affiliation(s)
- Bian Bian
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Sae Kageshima
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Kenji Yano
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Takehiro Kamiya
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
2
|
Ishara Silva K, Jagannathan B, Golbeck JH, Lakshmi KV. Elucidating the design principles of photosynthetic electron-transfer proteins by site-directed spin labeling EPR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:548-556. [PMID: 26334844 DOI: 10.1016/j.bbabio.2015.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
Site-directed spin labeling electron paramagnetic resonance (SDSL EPR) spectroscopy is a powerful tool to determine solvent accessibility, side-chain dynamics, and inter-spin distances at specific sites in biological macromolecules. This information provides important insights into the structure and dynamics of both natural and designed proteins and protein complexes. Here, we discuss the application of SDSL EPR spectroscopy in probing the charge-transfer cofactors in photosynthetic reaction centers (RC) such as photosystem I (PSI) and the bacterial reaction center (bRC). Photosynthetic RCs are large multi-subunit proteins (molecular weight≥300 kDa) that perform light-driven charge transfer reactions in photosynthesis. These reactions are carried out by cofactors that are paramagnetic in one of their oxidation states. This renders the RCs unsuitable for conventional nuclear magnetic resonance spectroscopy investigations. However, the presence of native paramagnetic centers and the ability to covalently attach site-directed spin labels in RCs makes them ideally suited for the application of SDSL EPR spectroscopy. The paramagnetic centers serve as probes of conformational changes, dynamics of subunit assembly, and the relative motion of cofactors and peptide subunits. In this review, we describe novel applications of SDSL EPR spectroscopy for elucidating the effects of local structure and dynamics on the electron-transfer cofactors of photosynthetic RCs. Because SDSL EPR Spectroscopy is uniquely suited to provide dynamic information on protein motion, it is a particularly useful method in the engineering and analysis of designed electron transfer proteins and protein networks. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
Collapse
Affiliation(s)
- K Ishara Silva
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180; The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Bharat Jagannathan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802.
| | - K V Lakshmi
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180; The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180.
| |
Collapse
|
3
|
Kern J, Tran R, Alonso-Mori R, Koroidov S, Echols N, Hattne J, Ibrahim M, Gul S, Laksmono H, Sierra RG, Gildea RJ, Han G, Hellmich J, Lassalle-Kaiser B, Chatterjee R, Brewster AS, Stan CA, Glöckner C, Lampe A, DiFiore D, Milathianaki D, Fry AR, Seibert MM, Koglin JE, Gallo E, Uhlig J, Sokaras D, Weng TC, Zwart PH, Skinner DE, Bogan MJ, Messerschmidt M, Glatzel P, Williams GJ, Boutet S, Adams PD, Zouni A, Messinger J, Sauter NK, Bergmann U, Yano J, Yachandra VK. Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy. Nat Commun 2014; 5:4371. [PMID: 25006873 PMCID: PMC4151126 DOI: 10.1038/ncomms5371] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 06/10/2014] [Indexed: 01/07/2023] Open
Abstract
The dioxygen we breathe is formed by light-induced oxidation of water in photosystem II. O2 formation takes place at a catalytic manganese cluster within milliseconds after the photosystem II reaction centre is excited by three single-turnover flashes. Here we present combined X-ray emission spectra and diffraction data of 2-flash (2F) and 3-flash (3F) photosystem II samples, and of a transient 3F' state (250 μs after the third flash), collected under functional conditions using an X-ray free electron laser. The spectra show that the initial O-O bond formation, coupled to Mn reduction, does not yet occur within 250 μs after the third flash. Diffraction data of all states studied exhibit an anomalous scattering signal from Mn but show no significant structural changes at the present resolution of 4.5 Å. This study represents the initial frames in a molecular movie of the structural changes during the catalytic reaction in photosystem II.
Collapse
Affiliation(s)
- Jan Kern
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA,LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Rosalie Tran
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Sergey Koroidov
- Institutionen för Kemi, Kemiskt Biologiskt Centrum, Umeå Universitet, Umeå, Sweden
| | - Nathaniel Echols
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Johan Hattne
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mohamed Ibrahim
- Institut für Biologie, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany,Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität, D-10623 Berlin, Germany
| | - Sheraz Gul
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Hartawan Laksmono
- PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Raymond G. Sierra
- PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Richard J. Gildea
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Guangye Han
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Julia Hellmich
- Institut für Biologie, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany,Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität, D-10623 Berlin, Germany
| | | | - Ruchira Chatterjee
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Aaron S. Brewster
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Claudiu A. Stan
- PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Carina Glöckner
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität, D-10623 Berlin, Germany
| | - Alyssa Lampe
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dörte DiFiore
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität, D-10623 Berlin, Germany
| | | | - Alan R. Fry
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - M. Marvin Seibert
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Jason E. Koglin
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Erik Gallo
- European Synchrotron Radiation Facility, F-38043 Grenoble Cedex, France
| | - Jens Uhlig
- European Synchrotron Radiation Facility, F-38043 Grenoble Cedex, France
| | | | - Tsu-Chien Weng
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Petrus H. Zwart
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - David E. Skinner
- National Energy Research Scientific Computing Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Michael J. Bogan
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA,PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Pieter Glatzel
- European Synchrotron Radiation Facility, F-38043 Grenoble Cedex, France
| | - Garth J. Williams
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Sébastien Boutet
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Paul D. Adams
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Athina Zouni
- Institut für Biologie, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany,Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität, D-10623 Berlin, Germany
| | - Johannes Messinger
- Institutionen för Kemi, Kemiskt Biologiskt Centrum, Umeå Universitet, Umeå, Sweden
| | - Nicholas K. Sauter
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Uwe Bergmann
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA,Corresponding authors. (U.B.), , (J.Y.), (V.K.Y)
| | - Junko Yano
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA,Corresponding authors. (U.B.), , (J.Y.), (V.K.Y)
| | - Vittal K. Yachandra
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA,Corresponding authors. (U.B.), , (J.Y.), (V.K.Y)
| |
Collapse
|
4
|
Gabdulkhakov AG, Dontsova MV. Structural studies on photosystem II of cyanobacteria. BIOCHEMISTRY (MOSCOW) 2014; 78:1524-38. [DOI: 10.1134/s0006297913130105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- A G Gabdulkhakov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|
5
|
Chatterjee R, Coates CS, Milikisiyants S, Lee CI, Wagner A, Poluektov OG, Lakshmi KV. High-Frequency Electron Nuclear Double-Resonance Spectroscopy Studies of the Mechanism of Proton-Coupled Electron Transfer at the Tyrosine-D Residue of Photosystem II. Biochemistry 2013; 52:4781-90. [DOI: 10.1021/bi3012093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ruchira Chatterjee
- Department of Chemistry and
Chemical Biology and The Baruch ’60 Center for Biochemical
Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Christopher S. Coates
- Department of Chemistry and
Chemical Biology and The Baruch ’60 Center for Biochemical
Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Sergey Milikisiyants
- Department of Chemistry and
Chemical Biology and The Baruch ’60 Center for Biochemical
Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Cheng-I Lee
- Department of Life Science, National Chung Cheng University, 168 University Road,
Min-Hsiung, Chia-Yi 621, Taiwan
| | - Arlene Wagner
- Chemical Sciences and Engineering
Division, Argonne National Laboratory,
9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Oleg G. Poluektov
- Chemical Sciences and Engineering
Division, Argonne National Laboratory,
9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - K. V. Lakshmi
- Department of Chemistry and
Chemical Biology and The Baruch ’60 Center for Biochemical
Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
6
|
Vassiliev S, Zaraiskaya T, Bruce D. Molecular dynamics simulations reveal highly permeable oxygen exit channels shared with water uptake channels in photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1148-55. [PMID: 23816955 DOI: 10.1016/j.bbabio.2013.06.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/14/2013] [Accepted: 06/18/2013] [Indexed: 11/28/2022]
Abstract
Photosystem II (PSII) catalyzes the oxidation of water in the conversion of light energy into chemical energy in photosynthesis. Water delivery and oxygen removal from the oxygen evolving complex (OEC), buried deep within PSII, are critical requirements to facilitate the reaction and minimize reactive oxygen damage. It has often been assumed that water and oxygen travel through separate channels within PSII, as demonstrated in cytochrome c oxidase. This study describes all-atom molecular dynamics simulations of PSII designed to investigate channels by fully characterizing the distribution and permeation of both water and oxygen. Interestingly, most channels found in PSII were permeable to both oxygen and water, however individual channels exhibited different energetic barriers for the two solutes. Several routes for oxygen diffusion within PSII with low energy permeation barriers were found, ensuring its fast removal from the OEC. In contrast, all routes for water showed significant energy barriers, corresponding to a much slower permeation rate for water through PSII. Two major factors were responsible for this selectivity: (1) hydrogen bonds between water and channel amino acids, and (2) steric restraints. Our results reveal the presence of a shared network of channels in PSII optimized to both facilitate the quick removal of oxygen and effectively restrict the water supply to the OEC to help stabilize and protect it from small water soluble inhibitors.
Collapse
Affiliation(s)
- Serguei Vassiliev
- Department of Biology, Brock University, 500 Glenridge Ave, St. Catharines L2S 3A1, Canada.
| | | | | |
Collapse
|
7
|
Vassiliev S, Zaraiskaya T, Bruce D. Exploring the energetics of water permeation in photosystem II by multiple steered molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1671-8. [DOI: 10.1016/j.bbabio.2012.05.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/28/2012] [Accepted: 05/30/2012] [Indexed: 11/29/2022]
|
8
|
Li Z, Xing F, Xing D. Characterization of target site of aluminum phytotoxicity in photosynthetic electron transport by fluorescence techniques in tobacco leaves. PLANT & CELL PHYSIOLOGY 2012; 53:1295-309. [PMID: 22611177 DOI: 10.1093/pcp/pcs076] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Aluminum (Al) toxicity limits crop yield in acidic soil through affecting diverse metabolic processes, especially photosynthesis. The aim of this work was to examine the effect of Al on photosynthetic electron transport in vivo as determined by chlorophyll fluorescence and delayed fluorescence of tobacco leaves. Results showed that Al treatment inhibited the photosynthetic rate and electron transfer, and decreased photosystem (PS) II photochemical activity in a time- and concentration-dependent manner, which could not be obviously alleviated by the addition of the reactive oxygen species (ROS) scavenger ascorbic acid (AsA). These results suggested that photosynthetic electron transfer chain components, especially PSII, might be directly damaged by Al instead of in an ROS-dependent manner. Furthermore, the fluorescence imaging and biochemical analysis exhibited that Al, after entering the cells, could accumulate in the chloroplasts, which paralleled the decreased content of Fe in the chloroplast. The changes in the chlorophyll fluorescence decay curve, the delayed fluorescence decay curve and the chlorophyll fluorescence parameters indicated that Al, through interacting with or replacing the non-heme iron between Q(A) and Q(B), caused the inhibition of electron transfer between Q(A) and Q(B), resulting in PSII photochemical damage and inhibition of the photosynthetic rate. In summary, our results characterized the target site of Al phytotoxicity in photosynthetic electron transport, providing new insight into the mechanism of Al phytotoxicity-induced chloroplast dysfunction and photosynthetic damage.
Collapse
Affiliation(s)
- Zhe Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | | | | |
Collapse
|
9
|
Burkhardt A, Warmer M, Panneerselvam S, Wagner A, Zouni A, Glöckner C, Reimer R, Hohenberg H, Meents A. Fast high-pressure freezing of protein crystals in their mother liquor. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:495-500. [PMID: 22505429 PMCID: PMC3325829 DOI: 10.1107/s1744309112009670] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/05/2012] [Indexed: 01/09/2023]
Abstract
High-pressure freezing (HPF) is a method which allows sample vitrification without cryoprotectants. In the present work, protein crystals were cooled to cryogenic temperatures at a pressure of 210 MPa. In contrast to other HPF methods published to date in the field of cryocrystallography, this protocol involves rapid sample cooling using a standard HPF device. The fast cooling rates allow HPF of protein crystals directly in their mother liquor without the need for cryoprotectants or external reagents. HPF was first attempted with hen egg-white lysozyme and cubic insulin crystals, yielding good to excellent diffraction quality. Non-cryoprotected crystals of the membrane protein photosystem II have been successfully cryocooled for the first time. This indicates that the presented HPF method is well suited to the vitrification of challenging systems with large unit cells and weak crystal contacts.
Collapse
Affiliation(s)
- Anja Burkhardt
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Shinopoulos KE, Brudvig GW. Cytochrome b₅₅₉ and cyclic electron transfer within photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:66-75. [PMID: 21864501 DOI: 10.1016/j.bbabio.2011.08.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/06/2011] [Accepted: 08/08/2011] [Indexed: 11/18/2022]
Abstract
Cytochrome b₅₅₉ (Cyt b₅₅₉), β-carotene (Car), and chlorophyll (Chl) cofactors participate in the secondary electron-transfer pathways in photosystem II (PSII), which are believed to protect PSII from photodamage under conditions in which the primary electron-donation pathway leading to water oxidation is inhibited. Among these cofactors, Cyt b₅₅₉ is preferentially photooxidized under conditions in which the primary electron-donation pathway is blocked. When Cyt b₅₅₉ is preoxidized, the photooxidation of several of the 11 Car and 35 Chl molecules present per PSII is observed. In this review, the discovery of the secondary electron donors, their structures and electron-transfer properties, and progress in the characterization of the secondary electron-transfer pathways are discussed. This article is part of a Special Issue entitled: Photosystem II.
Collapse
|
11
|
Stich TA, Yeagle GJ, Service RJ, Debus RJ, Britt RD. Ligation of D1-His332 and D1-Asp170 to the manganese cluster of photosystem II from Synechocystis assessed by multifrequency pulse EPR spectroscopy. Biochemistry 2011; 50:7390-404. [PMID: 21790179 DOI: 10.1021/bi2010703] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Multifrequency electron spin-echo envelope modulation (ESEEM) spectroscopy is used to ascertain the nature of the bonding interactions of various active site amino acids with the Mn ions that compose the oxygen-evolving cluster (OEC) in photosystem II (PSII) from the cyanobacterium Synechocystis sp. PCC 6803 poised in the S(2) state. Spectra of natural isotopic abundance PSII ((14)N-PSII), uniformly (15)N-labeled PSII ((15)N-PSII), and (15)N-PSII containing (14)N-histidine ((14)N-His/(15)N-PSII) are compared. These complementary data sets allow for a precise determination of the spin Hamiltonian parameters of the postulated histidine nitrogen interaction with the Mn ions of the OEC. These results are compared to those from a similar study on PSII isolated from spinach. Upon mutation of His332 of the D1 polypeptide to a glutamate residue, all isotopically sensitive spectral features vanish. Additional K(a)- and Q-band ESEEM experiments on the D1-D170H site-directed mutant give no indication of new (14)N-based interactions.
Collapse
Affiliation(s)
- Troy A Stich
- Department of Chemistry, University of California at Davis, Davis, California 95616, United States
| | | | | | | | | |
Collapse
|
12
|
Aksmann A, Shutova T, Samuelsson G, Tukaj Z. The mechanism of anthracene interaction with photosynthetic apparatus: a study using intact cells, thylakoid membranes and PS II complexes isolated from Chlamydomonas reinhardtii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 104:205-210. [PMID: 21632024 DOI: 10.1016/j.aquatox.2011.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/26/2011] [Accepted: 04/30/2011] [Indexed: 05/30/2023]
Abstract
Intact cells of Chlamydomonas reinhardtii as well as isolated thylakoid membranes and photosystem II complexes were used to examine a possible mechanism of anthracene (ANT) interaction with the photosynthetic apparatus. Since ANT concentrations above 1 mM were required to significantly inhibit the rate of oxygen evolution in PS II membrane fragments it may indicate that the toxicant did not directly interact with this photosystem. On the other hand, stimulation of oxygen uptake by ANT-treated thylakoids suggested that ANT could either act as an artificial electron acceptor in the photosynthetic electron transport chain or function as an uncoupler. Electron transfer from excited chlorophyll to ANT is impossible due to the very low reduction potential of ANT and therefore we propose that toxic concentrations of ANT increase the thylakoid membrane permeability and thereby function as an uncoupler, enhancing electron transport in vitro. Hence, its unspecific interference with photosynthetic membranes in vitro suggests that the inhibitory effect observed on intact cell photosynthesis is caused by uncoupling of phosphorylation.
Collapse
Affiliation(s)
- Anna Aksmann
- Department of Plant Physiology, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| | | | | | | |
Collapse
|
13
|
Kusunoki M. S1-state Mn4Ca complex of Photosystem II exists in equilibrium between the two most-stable isomeric substates: XRD and EXAFS evidence. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:100-10. [DOI: 10.1016/j.jphotobiol.2011.03.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/21/2011] [Accepted: 03/02/2011] [Indexed: 10/18/2022]
|
14
|
Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P. The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis. ChemCatChem 2010. [DOI: 10.1002/cctc.201000126] [Citation(s) in RCA: 1320] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Broser M, Gabdulkhakov A, Kern J, Guskov A, Müh F, Saenger W, Zouni A. Crystal structure of monomeric photosystem II from Thermosynechococcus elongatus at 3.6-a resolution. J Biol Chem 2010; 285:26255-62. [PMID: 20558739 DOI: 10.1074/jbc.m110.127589] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The membrane-embedded photosystem II core complex (PSIIcc) uses light energy to oxidize water in photosynthesis. Information about the spatial structure of PSIIcc obtained from x-ray crystallography was so far derived from homodimeric PSIIcc of thermophilic cyanobacteria. Here, we report the first crystallization and structural analysis of the monomeric form of PSIIcc with high oxygen evolution capacity, isolated from Thermosynechococcus elongatus. The crystals belong to the space group C222(1), contain one monomer per asymmetric unit, and diffract to a resolution of 3.6 A. The x-ray diffraction pattern of the PSIIcc-monomer crystals exhibit less anisotropy (dependence of resolution on crystal orientation) compared with crystals of dimeric PSIIcc, and the packing of the molecules within the unit cell is different. In the monomer, 19 protein subunits, 35 chlorophylls, two pheophytins, the non-heme iron, the primary plastoquinone Q(A), two heme groups, 11 beta-carotenes, 22 lipids, seven detergent molecules, and the Mn(4)Ca cluster of the water oxidizing complex could be assigned analogous to the dimer. Based on the new structural information, the roles of lipids and protein subunits in dimer formation of PSIIcc are discussed. Due to the lack of non-crystallographic symmetry and the orientation of the membrane normal of PSIIcc perpendicular ( approximately 87 degrees ) to the crystallographic b-axis, further information about the structure of the Mn(4)Ca cluster is expected to become available from orientation-dependent spectroscopy on this new crystal form.
Collapse
Affiliation(s)
- Matthias Broser
- Institute of Chemistry, Max Volmer Laboratory of Biophysical Chemistry, Technische Universität Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Liebisch P, Dau H. Linear Dichroism in the XANES of Partially Oriented Samples: Theory and Application to the Photosynthetic Manganese Complex. Chemphyschem 2010; 11:1236-47. [DOI: 10.1002/cphc.200900954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Drath M, Baier K, Forchhammer K. An alternative methionine aminopeptidase, MAP-A, is required for nitrogen starvation and high-light acclimation in the cyanobacterium Synechocystis sp. PCC 6803. MICROBIOLOGY-SGM 2009; 155:1427-1439. [PMID: 19359320 DOI: 10.1099/mic.0.026351-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Methionine aminopeptidases (MetAPs or MAPs, encoded by map genes) are ubiquitous and pivotal enzymes for protein maturation in all living organisms. Whereas most bacteria harbour only one map gene, many cyanobacterial genomes contain two map paralogues, the genome of Synechocystis sp. PCC 6803 even three. The physiological function of multiple map paralogues remains elusive so far. This communication reports for the first time differential MetAP function in a cyanobacterium. In Synechocystis sp. PCC 6803, the universally conserved mapC gene (sll0555) is predominantly expressed in exponentially growing cells and appears to be a housekeeping gene. By contrast, expression of mapA (slr0918) and mapB (slr0786) genes increases during stress conditions. The mapB paralogue is only transiently expressed, whereas the widely distributed mapA gene appears to be the major MetAP during stress conditions. A mapA-deficient Synechocystis mutant shows a subtle impairment of photosystem II properties even under non-stressed conditions. In particular, the binding site for the quinone Q(B) is affected, indicating specific N-terminal methionine processing requirements of photosystem II components. MAP-A-specific processing becomes essential under certain stress conditions, since the mapA-deficient mutant is severely impaired in surviving conditions of prolonged nitrogen starvation and high light exposure.
Collapse
Affiliation(s)
- Miriam Drath
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Giessen, 35392 Giessen, Germany
| | - Kerstin Baier
- Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Karl Forchhammer
- Institut für Mikrobiologie, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany.,Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Giessen, 35392 Giessen, Germany
| |
Collapse
|
18
|
García-Cerdán JG, Sveshnikov D, Dewez D, Jansson S, Funk C, Schröder WP. Antisense Inhibition of the PsbX Protein Affects PSII Integrity in the Higher Plant Arabidopsis thaliana. ACTA ACUST UNITED AC 2008; 50:191-202. [DOI: 10.1093/pcp/pcn188] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
19
|
Cser K, Deák Z, Telfer A, Barber J, Vass I. Energetics of Photosystem II charge recombination in Acaryochloris marina studied by thermoluminescence and flash-induced chlorophyll fluorescence measurements. PHOTOSYNTHESIS RESEARCH 2008; 98:131-40. [PMID: 18839331 DOI: 10.1007/s11120-008-9373-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 09/17/2008] [Indexed: 05/08/2023]
Abstract
We studied the charge recombination characteristics of Photosystem II (PSII) redox components in whole cells of the chlorophyll (Chl) d-dominated cyanobacterium, Acaryochloris marina, by flash-induced chlorophyll fluorescence and thermoluminescence measurements. Flash-induced chlorophyll fluorescence decay was retarded in the mus and ms time ranges and accelerated in the s time range in Acaryochloris marina relative to that in the Chl a-containing cyanobacterium, Synechocystis PCC 6803. In the presence of 3-(3,4-dichlorophenyl)-1, 1-dimethylurea, which blocks the Q(B) site, the relaxation of fluorescence decay arising from S(2)Q(A)(-) recombination was somewhat faster in Acaryochloris marina than in Synechocystis PCC 6803. Thermoluminescence intensity of the so called B band, arising from the recombination of the S(2)Q(B)(-) charge separated state, was enhanced significantly (2.5 fold) on the basis of equal amounts of PSII in Acaryochloris marina as compared with Synechocystis 6803. Our data show that the energetics of charge recombination is modified in Acaryochloris marina leading to a approximately 15 meV decrease of the free energy gap between the Q(A) and Q(B) acceptors. In addition, the total free energy gap between the ground state and the excited state of the reaction center chlorophyll is at least approximately 25-30 meV smaller in Acaryochloris marina, suggesting that the primary donor species cannot consist entirely of Chl a in Acaryochloris marina, and there is a contribution from Chl d as well.
Collapse
Affiliation(s)
- Krisztián Cser
- Institute of Plant Biology, Biological Resarch Center, Szeged, Hungary
| | | | | | | | | |
Collapse
|
20
|
Iida S, Kobiyama A, Ogata T, Murakami A. The D1 and D2 proteins of dinoflagellates: unusually accumulated mutations which influence on PSII photoreaction. PHOTOSYNTHESIS RESEARCH 2008; 98:415-25. [PMID: 18855112 DOI: 10.1007/s11120-008-9378-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 10/02/2008] [Indexed: 05/10/2023]
Abstract
Plastid encoded genes of the dinoflagellates are rapidly evolving and most divergent. The importance of unusually accumulated mutations on structure of PSII core protein and photosynthetic function was examined in the dinoflagellates, Symbiodinium sp. and Alexandrium tamarense. Full-length cDNA sequences of psbA (D1 protein) and psbD (D2 protein) were obtained and compared with the other oxygen-evolving photoautotrophs. Twenty-three amino acid positions (7%) for the D1 protein and 34 positions (10%) for the D2 were mutated in the dinoflagellates, although amino acid residues at these positions were conserved in cyanobacteria, the other algae, and plant. Many mutations were likely to distribute in the N-terminus and the D-E interhelical loop of the D1 protein and helix B of D2 protein, while the remaining regions were well conserved. The different structural properties in these mutated regions were supported by hydropathy profiles. The chlorophyll fluorescence kinetics of the dinoflagellates was compared with Synechocystis sp. PCC6803 in relation to the altered protein structure.
Collapse
Affiliation(s)
- Satoko Iida
- Kobe University Research Center for Inland Seas, Awaji, Hyogo 656-2401, Japan
| | | | | | | |
Collapse
|
21
|
Bao H, Zhang C, Kawakami K, Ren Y, Shen JR, Zhao J. Acceptor side effects on the electron transfer at cryogenic temperatures in intact photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1109-15. [DOI: 10.1016/j.bbabio.2008.04.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 04/16/2008] [Accepted: 04/16/2008] [Indexed: 10/22/2022]
|
22
|
Vassiliev S, Bruce D. Toward understanding molecular mechanisms of light harvesting and charge separation in photosystem II. PHOTOSYNTHESIS RESEARCH 2008; 97:75-89. [PMID: 18443918 DOI: 10.1007/s11120-008-9303-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 03/31/2008] [Indexed: 05/26/2023]
Abstract
Conversion of light energy in photosynthesis is extremely fast and efficient, and understanding the nature of this complex photophysical process is challenging. This review describes current progress in understanding molecular mechanisms of light harvesting and charge separation in photosystem II (PSII). Breakthroughs in X-ray crystallography have allowed the development and testing of more detailed kinetic models than have previously been possible. However, due to the complexity of the light conversion processes, satisfactory descriptions remain elusive. Recent advances point out the importance of variations in the photochemical properties of PSII in situ in different thylakoid membrane regions as well as the advantages of combining sophisticated time-resolved spectroscopic experiments with atomic level computational modeling which includes the effects of molecular dynamics.
Collapse
Affiliation(s)
- Serguei Vassiliev
- Department of Biology, Brock University, St. Catharines, ON, Canada L2S 3A1.
| | | |
Collapse
|
23
|
Kern J, Renger G. Photosystem II: structure and mechanism of the water:plastoquinone oxidoreductase. PHOTOSYNTHESIS RESEARCH 2007; 94:183-202. [PMID: 17634752 DOI: 10.1007/s11120-007-9201-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 05/16/2007] [Indexed: 05/07/2023]
Abstract
This mini-review briefly summarizes our current knowledge on the reaction pattern of light-driven water splitting and the structure of Photosystem II that acts as a water:plastoquinone oxidoreductase. The overall process comprises three types of reaction sequences: (a) light-induced charge separation leading to formation of the radical ion pair P680+*QA(-*) ; (b) reduction of plastoquinone to plastoquinol at the QB site via a two-step reaction sequence with QA(-*) as reductant and (c) oxidative water splitting into O2 and four protons at a manganese-containing catalytic site via a four-step sequence driven by P680+* as oxidant and a redox active tyrosine YZ acting as mediator. Based on recent progress in X-ray diffraction crystallographic structure analysis the array of the cofactors within the protein matrix is discussed in relation to the functional pattern. Special emphasis is paid on the structure of the catalytic sites of PQH2 formation (QB-site) and oxidative water splitting (Mn4OxCa cluster). The energetics and kinetics of the reactions taking place at these sites are presented only in a very concise manner with reference to recent up-to-date reviews. It is illustrated that several questions on the mechanism of oxidative water splitting and the structure of the catalytic sites are far from being satisfactorily answered.
Collapse
Affiliation(s)
- Jan Kern
- Institut für Chemie, Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623, Berlin, Germany.
| | | |
Collapse
|
24
|
The psbA gene family responds differentially to light and UVB stress in Gloeobacter violaceus PCC 7421, a deeply divergent cyanobacterium. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1777:130-9. [PMID: 17964531 DOI: 10.1016/j.bbabio.2007.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 09/05/2007] [Accepted: 09/07/2007] [Indexed: 11/26/2022]
Abstract
Gloeobacter violaceus PCC 7421 is a slow-growing cyanobacterium which lacks thylakoid membranes, but whose five-membered psbA gene family encodes three isoform variants of the PsbA (D1) reaction center protein of Photosystem II. Under standard culture conditions Gloeobacter exhibits photosystem II electron transport, but several clear modifications in the redox potential of key cofactors bound by the PsbA protein are manifested in the flash-fluorescence characteristics. In other cyanobacteria dynamic expression of multiple psbA genes and turnover of PsbA isoforms is critical to counter excitation stress. We found that each of Gloeobacter's five psbA genes is expressed, with transcript abundances spanning 4.5 orders of magnitude. psbAI (glr2322) and psbAII (glr0779), encoding identical PsbA:2 form proteins, are constitutively expressed and dominate the psbA transcript pool under control conditions. psbAIII (gll3144) was strongly induced under photoinhibitory high irradiance stress, thereby contributing to a large increase in the psbA transcript pool that allowed cells to maintain their PsbA protein pools and then recover from irradiance stress, within one cellular generation. In contrast, under comparable photoinhibition provoked by UVB the cells were unable to maintain their psbA transcript and PsbA protein pools, and showed limited subsequent recovery. psbAIV (glr1706) and psbAV (glr2656), encoding two divergent PsbA isoforms, showed consistent trace expression but were never quantitatively significant contributors to the psbA transcript pool.
Collapse
|
25
|
Collomb MN, Mantel C, Romain S, Duboc C, Leprêtre JC, Pécaut J, Deronzier A. Redox-Induced μ-Acetato and μ-Oxo Core Interconversions in Dinuclear Manganese Tris(2-methylpyridyl)amine (tpa) Complexes: Isolation and Characterization of [Mn2III(μ-O)(μ-O2CCH3)(tpa)2]3+. Eur J Inorg Chem 2007. [DOI: 10.1002/ejic.200601089] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Dau H, Haumann M. Time-resolved X-ray spectroscopy leads to an extension of the classical S-state cycle model of photosynthetic oxygen evolution. PHOTOSYNTHESIS RESEARCH 2007; 92:327-43. [PMID: 17333506 DOI: 10.1007/s11120-007-9141-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 01/16/2007] [Indexed: 05/14/2023]
Abstract
In oxygenic photosynthesis, a complete water oxidation cycle requires absorption of four photons by the chlorophylls of photosystem II (PSII). The photons can be provided successively by applying short flashes of light. Already in 1970, Kok and coworkers [Photochem Photobiol 11:457-475, 1970] developed a basic model to explain the flash-number dependence of O2 formation. The third flash applied to dark-adapted PSII induces the S3-->S4-->S0 transition, which is coupled to dioxygen formation at a protein-bound Mn4Ca complex. The sequence of events leading to dioxygen formation and the role of Kok's enigmatic S4-state are only incompletely understood. Recently we have shown by time-resolved X-ray spectroscopy that in the S3-->S0 transition an interesting intermediate is formed, prior to the onset of O-O bond formation [Haumann et al. Science 310:1019-1021, 2005]. The experimental results of the time-resolved X-ray experiments are discussed. The identity of the reaction intermediate is considered and the question is addressed how the novel intermediate is related to the S4-state proposed in 1970 by Bessel Kok. This leads us to an extension of the classical S-state cycle towards a basic model which describes sequence and interplay of electron and proton abstraction events at the donor side of PSII [Dau and Haumann, Science 312:1471-1472, 2006].
Collapse
Affiliation(s)
- Holger Dau
- FB Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| | | |
Collapse
|
27
|
Kusunoki M. Mono-manganese mechanism of the photosytem II water splitting reaction by a unique Mn4Ca cluster. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:484-92. [PMID: 17490604 DOI: 10.1016/j.bbabio.2007.03.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 03/19/2007] [Accepted: 03/27/2007] [Indexed: 11/26/2022]
Abstract
The molecular mechanism of the water oxidation reaction in photosystem II (PSII) of green plants remains a great mystery in life science. This reaction is known to take place in the oxygen evolving complex (OEC) incorporating four manganese, one calcium and one chloride cofactors, that is light-driven to cycle four intermediates, designated S(0) through S(4), to produce four protons, five electrons and lastly one molecular oxygen, for indispensable resources in biosphere. Recent advancements of X-ray crystallography models established the existence of a catalytic Mn(4)Ca cluster ligated by seven protein amino acids, but its functional structure is not yet resolved. The (18)O exchange rates of two substrate water molecules were recently measured for four S(i)-state samples (i=0-3) leading to (34)O(2) and (36)O(2) formations, revealing asymmetric substrate binding sites significantly depending on the S(i)-state. In this paper, we present a chemically complete model for the Mn(4)Ca cluster and its surrounding enzyme field, which we found out from some possible models by using the hybrid density functional theoretic geometry optimization method to confirm good agreements with the 3.0 A resolution PSII model [B. Loll, J. Kern, W. Saenger, A. Zouni , J. Biesiadka, Nature 438 (2005) 1040-1044] and the S-state dependence of (18)O exchange rates [W. Hillier and T. Wydrzynski, Phys. Chem. Chem. Phys. 6 (2004) 4882-4889]. Furthermore, we have verified that two substrate water molecules are bound to asymmetric cis-positions on the terminal Mn ion being triply bridged (mu-oxo, mu-carboxylato, and a hydrogen bond) to the Mn(3)CaO(3)(OH) core, by developing a generalized theory of (18)O exchange kinetics in OEC to obtain an experimental evidence for the cross exchange pathway from the slow to the fast exchange process. Some important experimental data will be discussed in terms of this model and its possible tautomers, to suggest that a cofactor, Cl(-) ion, may be bound to CP43-Arg357 nearby Ca(2+) ion and that D1-His337 may be used to trap a released proton only in the S(2)-state.
Collapse
Affiliation(s)
- Masami Kusunoki
- Department of Physics, School of Science and Technology, Meiji University, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.
| |
Collapse
|
28
|
Yamashita E, Zhang H, Cramer WA. Structure of the cytochrome b6f complex: quinone analogue inhibitors as ligands of heme cn. J Mol Biol 2007; 370:39-52. [PMID: 17498743 PMCID: PMC1993820 DOI: 10.1016/j.jmb.2007.04.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 04/01/2007] [Accepted: 04/04/2007] [Indexed: 11/24/2022]
Abstract
A native structure of the cytochrome b(6)f complex with improved resolution was obtained from crystals of the complex grown in the presence of divalent cadmium. Two Cd(2+) binding sites with different occupancy were determined: (i) a higher affinity site, Cd1, which bridges His143 of cytochrome f and the acidic residue, Glu75, of cyt b(6); in addition, Cd1 is coordinated by 1-2 H(2)O or 1-2 Cl(-); (ii) a second site, Cd2, of lower affinity for which three identified ligands are Asp58 (subunit IV), Glu3 (PetG subunit) and Glu4 (PetM subunit). Binding sites of quinone analogue inhibitors were sought to map the pathway of transfer of the lipophilic quinone across the b(6)f complex and to define the function of the novel heme c(n). Two sites were found for the chromone ring of the tridecyl-stigmatellin (TDS) quinone analogue inhibitor, one near the p-side [2Fe-2S] cluster. A second TDS site was found on the n-side of the complex facing the quinone exchange cavity as an axial ligand of heme c(n). A similar binding site proximal to heme c(n) was found for the n-side inhibitor, NQNO. Binding of these inhibitors required their addition to the complex before lipid used to facilitate crystallization. The similar binding of NQNO and TDS as axial ligands to heme c(n) implies that this heme utilizes plastoquinone as a natural ligand, thus defining an electron transfer complex consisting of hemes b(n), c(n), and PQ, and the pathway of n-side reduction of the PQ pool. The NQNO binding site explains several effects associated with its inhibitory action: the negative shift in heme c(n) midpoint potential, the increased amplitude of light-induced heme b(n) reduction, and an altered EPR spectrum attributed to interaction between hemes c(n) and b(n). A decreased extent of heme c(n) reduction by reduced ferredoxin in the presence of NQNO allows observation of the heme c(n) Soret band in a chemical difference spectrum.
Collapse
|
29
|
Heinnickel M, Golbeck JH. Heliobacterial photosynthesis. PHOTOSYNTHESIS RESEARCH 2007; 92:35-53. [PMID: 17457690 DOI: 10.1007/s11120-007-9162-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 03/23/2007] [Indexed: 05/15/2023]
Abstract
Heliobacteria contain Type I reaction centers (RCs) and a homodimeric core, but unlike green sulfur bacteria, they do not contain an extended antenna system. Given their simplicity, the heliobacterial RC (HbRC) should be ideal for the study of a prototypical homodimeric RC. However, there exist enormous gaps in our knowledge, particularly with regard to the nature of the secondary and tertiary electron acceptors. To paraphrase S. Neerken and J. Amesz (2001 Biochim Biophys Acta 1507:278-290): with the sole exception of primary charge separation, little progress has been made in recent years on the HbRC, either with respect to the polypeptide composition, or the nature of the electron acceptor chain, or the kinetics of forward and backward electron transfer. This situation, however, has changed. First, the low molecular mass polypeptide that contains the terminal FA and FB iron-sulfur clusters has been identified. The change in the lifetime of the flash-induced kinetics from 75 ms to 15 ms on its removal shows that the former arises from the P798+ [FA/FB]- recombination, and the latter from P798+ FX- recombination. Second, FX has been identified in HbRC cores by EPR and Mössbauer spectroscopy, and shown to be a [4Fe-4S]1+,2+ cluster with a ground spin state of S=3/2. Since all of the iron in HbRC cores is in the FX cluster, a ratio of approximately 22 Bchl g/P798 could be calculated from chemical assays of non-heme iron and Bchl g. Third, the N-terminal amino acid sequence of the FA/FB-containing polypeptide led to the identification and cloning of its gene. The expressed protein can be rebound to isolated HbRC cores, thereby regaining both the 75 ms kinetic phase resulting from P798+ [FA/FB]- recombination and the light-induced EPR resonances of FA- and FB-. The gene was named 'pshB' and the protein 'PshB' in keeping with the accepted nomenclature for Type I RCs. This article reviews the current state of knowledge on the structure and function of the HbRC.
Collapse
Affiliation(s)
- Mark Heinnickel
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
30
|
Dau H, Haumann M. Eight steps preceding O-O bond formation in oxygenic photosynthesis--a basic reaction cycle of the Photosystem II manganese complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:472-83. [PMID: 17442260 DOI: 10.1016/j.bbabio.2007.02.022] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 02/16/2007] [Accepted: 02/28/2007] [Indexed: 10/23/2022]
Abstract
In oxygenic photosynthesis, water is split at a Mn(4)Ca complex bound to the proteins of photosystem II (PSII). Powered by four quanta of visible light, four electrons and four protons are removed from two water molecules before dioxygen is released. By this process, water becomes an inexhaustible source of the protons and electrons needed for primary biomass formation. On the basis of structural and spectroscopic data, we recently have introduced a basic reaction cycle of water oxidation which extends the classical S-state cycle [B. Kok, B. Forbush, M. McGloin, Cooperation of charges in photosynthetic O2 evolution- I. A linear four-step mechanism, Photochem. Photobiol. 11 (1970) 457-475] by taking into account also the role and sequence of deprotonation events [H. Dau, M. Haumann, Reaction cycle of photosynthetic water oxidation in plants and cyanobacteria, Science 312 (2006) 1471-1472]. We propose that the outwardly convoluted and irregular events of the classical S-state cycle are governed by a simple underlying principle: protons and electrons are removed strictly alternately from the Mn complex. Starting in I(0), eight successive steps of alternate proton and electron removal lead to I(8) and only then the O-O bond is formed. Thus not only four oxidizing equivalents, but also four bases are accumulated prior to the onset of dioxygen formation. After reviewing the kinetic properties of the individual S-state transition, we show that the proposed basic model explains a large body of experimental results straightforwardly. Furthermore we discuss how the I-cycle model addresses the redox-potential problem of PSII water oxidation and we propose that the accumulated bases facilitate dioxygen formation by acting as proton acceptors.
Collapse
Affiliation(s)
- Holger Dau
- Freie Universität Berlin, FB PhysikArnimallee 14, D-14195 Berlin, Germany.
| | | |
Collapse
|
31
|
Abstract
Crystal structures and their implications for function are described for the energy transducing hetero-oligomeric dimeric cytochrome b6f complex of oxygenic photosynthesis from the thermophilic cyanobacterium, Mastigocladus laminosus, and the green alga, Chlamydomonas reinhardtii. The complex has a cytochrome b core and a central quinone exchange cavity, defined by the two monomers that are very similar to those in the respiratory cytochrome bc1 complex. The pathway of quinol/quinone (Q/QH2) transfer emphasizes the labyrinthine internal structure of the complex, including an 11x12 A portal through which Q/QH2, containing a 45-carbon isoprenoid chain, must pass. Three prosthetic groups are present in the b6f complex that are not found in the related bc1 complex: a chlorophyll (Chl) a, a beta-carotene, and a structurally unique covalently bound heme that does not possess amino acid side chains as axial ligands. It is hypothesized that this heme, exposed to the cavity and a neighboring plastoquinone and close to the positive surface potential of the complex, can function in cyclic electron transport via anionic ferredoxin.
Collapse
Affiliation(s)
- William A Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2054, USA.
| | | | | | | | | |
Collapse
|
32
|
Dudekula S, Fragata M. Investigation of the electron transfer site of p-benzoquinone in isolated photosystem II particles and thylakoid membranes using α- and β-cyclodextrins. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2006; 85:177-83. [PMID: 16934484 DOI: 10.1016/j.jphotobiol.2006.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 07/02/2006] [Accepted: 07/19/2006] [Indexed: 11/22/2022]
Abstract
The electron transfer sites of p-benzoquinone (pBQ) and 2,6-dichloro-p-benzoquinone (DCBQ) were investigated in thylakoid membranes and isolated photosystem II (PSII) particles from barley (Hordeum vulgare) using alpha- and beta-cyclodextrins (CD) at concentrations up to 16 mM. In CD-treated thylakoid membranes incubated with DCBQ the electron transport through PSII, estimated as oxygen evolution (OE), is largely enhanced according to a S-shaped (sigmoidal) dose-response curve displaying a sharp inflection point, or transition. The maxima percent OE enhancement at cyclodextrin concentrations above 14 mM are about 100% (alpha-CD) and 190% (beta-CD). On the contrary, in thylakoid membrane preparations incubated with pBQ as electron acceptor one observes an OE inhibition of about 30% which might result from the depletion of the thylakoid membrane of its plastoquinone content. It was also found that in isolated PSII particles incubated with either pBQ or DCBQ the cyclodextrins induce only a small OE enhancement. Moreover, the observation in CD-treated thylakoid membranes incubated with pBQ of a residual, non-inhibited oxygen-evolving activity of about 70% puts a twofold question. That is, either the plastoquinone depletion was not complete, or, pBQ binds to electron acceptor sites of different nature. From this and data published in the literature, it is concluded that in the thylakoid membrane (i) DCBQ binds to Q(B), as is generally accepted, and (ii) pBQ binds to the plastoquinol molecules in the PQ pool and most likely also to Q(B), thereby in accord with Satoh et al.'s model [K. Satoh, M. Ohhashi, Y. Kashino, H. Koike, Plant Cell Physiol. 36 (1995) 597-605]. An attractive alternative hypothesis is the direct interaction of pBQ with the non-haem Fe(2+) between Q(A) and Q(B).
Collapse
Affiliation(s)
- S Dudekula
- Center for Cellular and Molecular Biology, Habsiguda, Hyderabad 500007, Andhrapradesh, India
| | | |
Collapse
|
33
|
Yao D, Kieselbach T, Komenda J, Promnares K, Prieto MAH, Tichy M, Vermaas W, Funk C. Localization of the small CAB-like proteins in photosystem II. J Biol Chem 2006; 282:267-76. [PMID: 17105726 DOI: 10.1074/jbc.m605463200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cyanobacterial small CAB-like proteins (SCPs) consist of one-helix proteins that resemble transmembrane regions of the light-harvesting proteins of plants. To determine whether these proteins are associated with protein complexes in the thylakoid membrane, an abundant member of the SCP family, ScpD, was marked with a His tag, and proteins co-isolating with His-tagged ScpD were identified. These proteins included the major Photosystem (PS) II components as well as FtsH, which is involved in degradation of the PSII complex. To ascertain specific interaction between ScpD and the PSII complex, the His-tagged protein fraction was subjected to two-dimensional blue native/SDS-PAGE. Again, PSII components were co-isolated with ScpD-His, and ScpD-His was found to interact most strongly with CP47. ScpD association was most prominent with the monomeric form of PSII, suggesting ScpD association with PSII that is repaired. Using antibodies that recognize both ScpC and ScpD, we found the ScpC protein, which is very similar in primary structure to ScpD, to also co-isolate with the PSII complex. In contrast, ScpE did not co-isolate with a major protein complex in thylakoids. A fourth member of the SCP family, ScpB, could not be immunodetected, but was found by mass spectrometry in samples co-isolating with ScpD-His. Therefore, ScpB may be associated with ScpD as well. No association between SCPs and PSI could be demonstrated. On the basis of these and other data presented, we suggest that members of the SCP family can associate with damaged PSII and can serve as a temporary pigment reservoir while PSII components are being replaced.
Collapse
Affiliation(s)
- Danny Yao
- Department of Biochemistry, Umeå University, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Schwenkert S, Umate P, Dal Bosco C, Volz S, Mlçochová L, Zoryan M, Eichacker LA, Ohad I, Herrmann RG, Meurer J. PsbI affects the stability, function, and phosphorylation patterns of photosystem II assemblies in tobacco. J Biol Chem 2006; 281:34227-38. [PMID: 16920705 DOI: 10.1074/jbc.m604888200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosystem II (PSII) core complexes consist of CP47, CP43, D1, D2 proteins and of several low molecular weight integral membrane polypeptides, such as the chloroplast-encoded PsbE, PsbF, and PsbI proteins. To elucidate the function of PsbI in the photosynthetic process as well as in the biogenesis of PSII in higher plants, we generated homoplastomic knock-out plants by replacing most of the tobacco psbI gene with a spectinomycin resistance cartridge. Mutant plants are photoautotrophically viable under green house conditions but sensitive to high light irradiation. Antenna proteins of PSII accumulate to normal amounts, but levels of the PSII core complex are reduced by 50%. Bioenergetic and fluorescence studies uncovered that PsbI is required for the stability but not for the assembly of dimeric PSII and supercomplexes consisting of PSII and the outer antenna (PSII-LHCII). Thermoluminescence emission bands indicate that the presence of PsbI is required for assembly of a fully functional Q(A) binding site. We show that phosphorylation of the reaction center proteins D1 and D2 is light and redox-regulated in the wild type, but phosphorylation is abolished in the mutant, presumably due to structural alterations of PSII when PsbI is deficient. Unlike wild type, phosphorylation of LHCII is strongly increased in the dark due to accumulation of reduced plastoquinone, whereas even upon state II light phosphorylation is decreased in delta psbI. These data attest that phosphorylation of D1/D2, CP43, and LHCII is regulated differently.
Collapse
Affiliation(s)
- Serena Schwenkert
- Department Biology I, Botany, Ludwig-Maximilians-University Munich, Menzingerstrasse 67, 80638 Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lima A, Lima S, Wong JH, Phillips RS, Buchanan BB, Luan S. A redox-active FKBP-type immunophilin functions in accumulation of the photosystem II supercomplex in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2006; 103:12631-6. [PMID: 16894144 PMCID: PMC1567930 DOI: 10.1073/pnas.0605452103] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photosystem II (PSII) catalyzes the first of two photosynthetic reactions that convert sunlight into chemical energy. Native PSII is a supercomplex consisting of core and light-harvesting chlorophyll proteins. Although the structure of PSII has been resolved by x-ray crystallography, the mechanism underlying its assembly is poorly understood. Here, we report that an immunophilin of the chloroplast thylakoid lumen is required for accumulation of the PSII supercomplex in Arabidopsis thaliana. The immunophilin, FKBP20-2, belongs to the FK-506 binding protein (FKBP) subfamily that functions as peptidyl-prolyl isomerases (PPIases) in protein folding. FKBP20-2 has a unique pair of cysteines at the C terminus and was found to be reduced by thioredoxin (Trx) (itself reduced by NADPH by means of NADP-Trx reductase). The FKBP20-2 protein, which contains only two of the five amino acids required for catalysis, showed a low level of PPIase activity that was unaffected on reduction by Trx. Genetic disruption of the FKBP20-2 gene resulted in reduced plant growth, consistent with the observed lower rate of PSII activity determined by fluorescence (using leaves) and oxygen evolution (using isolated chloroplasts). Analysis of isolated thylakoid membranes with blue native gels and immunoblots showed that accumulation of the PSII supercomplex was compromised in mutant plants, whereas the levels of monomer and dimer building blocks were elevated compared with WT. The results provide evidence that FKBP20-2 participates specifically in the accumulation of the PSII supercomplex in the chloroplast thylakoid lumen by means of a mechanism that has yet to be determined.
Collapse
Affiliation(s)
- Amparo Lima
- *Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720; and Departments of
| | | | - Joshua H. Wong
- *Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720; and Departments of
| | - Robert S. Phillips
- Chemistry and
- Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| | - Bob B. Buchanan
- *Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720; and Departments of
| | - Sheng Luan
- *Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720; and Departments of
| |
Collapse
|
36
|
Mamedov MD, Tyunyatkina AA, Siletsky SA, Semenov AY. Voltage changes involving photosystem II quinone–iron complex turnover. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2006; 35:647-54. [PMID: 16708211 DOI: 10.1007/s00249-006-0069-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/10/2006] [Accepted: 04/20/2006] [Indexed: 11/28/2022]
Abstract
An electrometrical technique was used to investigate proton-coupled electron transfer between the primary plastoquinone acceptor Q (A) (-) and the oxidized non-heme iron Fe(3+) on the acceptor side of photosystem II core particles incorporated into phospholipid vesicles. The sign of the transmembrane electric potential difference Deltapsi (negative charging of the proteoliposome interior) indicates that the iron-quinone complex faces the interior surface of the proteoliposome membrane. Preoxidation of the non-heme iron was achieved by addition of potassium ferricyanide entrapped into proteoliposomes. Besides the fast unresolvable kinetic phase (tau approximately 0.1 micro s) of Deltapsi generation related to electron transfer between the redox-active tyrosine Y(Z) and Q(A), an additional phase in the submillisecond time domain (tau approximately 0.1 ms at 23 degrees C, pH 7.0) and relative amplitude approximately 20% of the amplitude of the fast phase was observed under exposure to the first flash. This phase was absent under the second laser flash, as well as upon the first flash in the presence of DCMU, an inhibitor of electron transfer between Q(A) and the secondary quinone Q(B). The rate of the additional electrogenic phase is decreased by about one-half in the presence of D(2)O and is reduced with the temperature decrease. On the basis of the above observations we suggest that the submillisecond electrogenic reaction induced by the first flash is due to the vectorial transfer of a proton from external aqueous phase to an amino acid residue(s) in the vicinity of the non-heme iron. The possible role of the non-heme iron in cyclic electron transfer in photosystem II complex is discussed.
Collapse
Affiliation(s)
- M D Mamedov
- A N Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992, Moscow, Leninskie Gory, Russia.
| | | | | | | |
Collapse
|
37
|
Iverson TM. Evolution and unique bioenergetic mechanisms in oxygenic photosynthesis. Curr Opin Chem Biol 2006; 10:91-100. [PMID: 16504567 DOI: 10.1016/j.cbpa.2006.02.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 02/16/2006] [Indexed: 11/17/2022]
Abstract
Oxygenic photosynthesis is one example of the many bioenergetic pathways utilized by different organisms to harvest energy from the environment. These pathways revolve around a theme of coupling oxidation-reduction reactions to the formation of membrane potential and subsequent ATP synthesis. Although the basic principles underlying bioenergetics are universally conserved, the constituents of the bioenergetic pathways in different organisms have evolved unique aspects to fill an evolutionary niche. Three-dimensional structures of all of the membrane-spanning components of the electron-transfer chain of oxygenic photosynthesis have revealed those unique aspects of this fascinating process, including the unique metallocofactor for catalysis, the determinants of the uniquely high voltage cofactor, and the numerous photoprotective mechanisms that guard against radical damage.
Collapse
Affiliation(s)
- Tina M Iverson
- Department of Pharmacology, Center for Structural Biology and Vanderbilt Institute for Chemical Biology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA.
| |
Collapse
|
38
|
Zimmermann K, Heck M, Frank J, Kern J, Vass I, Zouni A. Herbicide binding and thermal stability of photosystem II isolated from Thermosynechococcus elongatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:106-14. [PMID: 16472760 DOI: 10.1016/j.bbabio.2005.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 11/30/2005] [Accepted: 12/05/2005] [Indexed: 10/25/2022]
Abstract
Binding of herbicides to photosystem II inhibits the electron transfer from Q(A) to Q(B) due to competition of herbicides with plastoquinone bound at the Q(B) site. We investigated herbicide binding to monomeric and dimeric photosystem II core complexes (PSIIcc) isolated from Thermosynechococcus elongatus by a combination of different methods (isothermal titration and differential scanning calorimetry, CD spectroscopy and measurements of the oxygen evolution) yielding binding constants, enthalpies and stoichiometries for various herbicides as well as information regarding stabilization/destabilization of the complex. Herbicide binding to detergent-solubilized PSIIcc can be described by a model of single independent binding sites present on this important membrane protein. Interestingly, binding stoichiometries herbicide:PSIIcc are lower than 1:1 and vary depending on the herbicide under study. Strong binding herbicides such as terbutryn stabilize PSIIcc in thermal unfolding experiments and endothermically binding herbicides like ioxynil probably cause large structural changes accompanied with the binding process as shown by differential scanning calorimetry experiments of the unfolding reaction of PSIIcc monomer in the presence of ioxynil. In addition we studied the occupancy of the Q(B) sites with plastoquinone (PQ9) by measuring flash induced fluorescence relaxation yielding a possible explanation for the deviations of herbicide binding from a 1:1 herbicide/binding site model.
Collapse
Affiliation(s)
- K Zimmermann
- Institute for Medical Physics and Biophysics, Charité-Universitätsmedizin, D-10098 Berlin, Schumann Str. 21/22, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Oxygenic photosynthesis, the principal converter of sunlight into chemical energy on earth, is catalyzed by four multi-subunit membrane-protein complexes: photosystem I (PSI), photosystem II (PSII), the cytochrome b(6)f complex, and F-ATPase. PSI generates the most negative redox potential in nature and largely determines the global amount of enthalpy in living systems. PSII generates an oxidant whose redox potential is high enough to enable it to oxidize H(2)O, a substrate so abundant that it assures a practically unlimited electron source for life on earth. During the last century, the sophisticated techniques of spectroscopy, molecular genetics, and biochemistry were used to reveal the structure and function of the two photosystems. The new structures of PSI and PSII from cyanobacteria, algae, and plants has shed light not only on the architecture and mechanism of action of these intricate membrane complexes, but also on the evolutionary forces that shaped oxygenic photosynthesis.
Collapse
Affiliation(s)
- Nathan Nelson
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|