1
|
Sellés J, Alric J, Rutherford AW, Davis GA, Viola S. In vivo ElectroChromic Shift measurements of photosynthetic activity in far-red absorbing cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149502. [PMID: 39127329 DOI: 10.1016/j.bbabio.2024.149502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Some cyanobacteria can do photosynthesis using not only visible but also far-red light that is unused by most other oxygenic photoautotrophs because of its lower energy content. These species have a modified photosynthetic apparatus containing red-shifted pigments. The incorporation of red-shifted pigments decreases the photochemical efficiency of photosystem I and, especially, photosystem II, and it might affect the distribution of excitation energy between the two photosystems with possible consequences on the activity of the entire electron transport chain. To investigate the in vivo effects on photosynthetic activity of these pigment changes, we present here the adaptation of a spectroscopic method, based on a physical phenomenon called ElectroChromic Shift (ECS), to the far-red absorbing cyanobacteria Acaryochloris marina and Chroococcidiopsis thermalis PCC7203. ECS measures the electric field component of the trans-thylakoid proton motive force generated by photosynthetic electron transfer. We show that ECS can be used in these cyanobacteria to investigate in vivo the stoichiometry of photosystem I and photosystem II and their absorption cross-section, as well as the overall efficiency of light energy conversion into electron transport. Our results indicate that both species use visible and far-red light with similar efficiency, despite significant differences in their light absorption characteristics. ECS thus represents a new non-invasive tool to study the performance of naturally occurring far-red photosynthesis.
Collapse
Affiliation(s)
- Julien Sellés
- Institute of Physico-Chemical Biology - UMR7141, Paris, France
| | - Jean Alric
- Institute of Biosciences and Biotechnologies of Aix-Marseille - UMR7265, Saint-Paul-Lez-Durance, France
| | | | - Geoffry A Davis
- Department of Life Sciences, Imperial College, London, UK; Biology Department, Ludwig-Maximilians University, Munich, Germany
| | - Stefania Viola
- Institute of Biosciences and Biotechnologies of Aix-Marseille - UMR7265, Saint-Paul-Lez-Durance, France.
| |
Collapse
|
2
|
Schmitt FJ, Friedrich T. Adaptation processes in Halomicronema hongdechloris, an example of the light-induced optimization of the photosynthetic apparatus on hierarchical time scales. FRONTIERS IN PLANT SCIENCE 2024; 15:1359195. [PMID: 39049856 PMCID: PMC11266139 DOI: 10.3389/fpls.2024.1359195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
Oxygenic photosynthesis in Halomicronema hongdechloris, one of a series of cyanobacteria producing red-shifted Chl f, is adapted to varying light conditions by a range of diverse processes acting over largely different time scales. Acclimation to far-red light (FRL) above 700 nm over several days is mirrored by reversible changes in the Chl f content. In several cyanobacteria that undergo FRL photoacclimation, Chl d and Chl f are directly involved in excitation energy transfer in the antenna system, form the primary donor in photosystem I (PSI), and are also involved in electron transfer within photosystem II (PSII), most probably at the ChlD1 position, with efficient charge transfer happening with comparable kinetics to reaction centers containing Chl a. In H. hongdechloris, the formation of Chl f under FRL comes along with slow adaptive proteomic shifts like the rebuilding of the D1 complex on the time scale of days. On shorter time scales, much faster adaptation mechanisms exist involving the phycobilisomes (PBSs), which mainly contain allophycocyanin upon adaptation to FRL. Short illumination with white, blue, or red light leads to reactive oxygen species-driven mobilization of the PBSs on the time scale of seconds, in effect recoupling the PBSs with Chl f-containing PSII to re-establish efficient excitation energy transfer within minutes. In summary, H. hongdechloris reorganizes PSII to act as a molecular heat pump lifting excited states from Chl f to Chl a on the picosecond time scale in combination with a light-driven PBS reorganization acting on the time scale of seconds to minutes depending on the actual light conditions. Thus, structure-function relationships in photosynthetic energy and electron transport in H. hongdechloris including long-term adaptation processes cover 10-12 to 106 seconds, i.e., 18 orders of magnitude in time.
Collapse
Affiliation(s)
- Franz-Josef Schmitt
- Department of Physics, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Thomas Friedrich
- Department of Bioenergetics, Technische Universität Berlin, Institute of Chemistry PC 14, Berlin, Germany
| |
Collapse
|
3
|
Kosugi M, Ohtani S, Hara K, Toyoda A, Nishide H, Ozawa SI, Takahashi Y, Kashino Y, Kudoh S, Koike H, Minagawa J. Characterization of the far-red light absorbing light-harvesting chlorophyll a/ b binding complex, a derivative of the distinctive Lhca gene family in green algae. FRONTIERS IN PLANT SCIENCE 2024; 15:1409116. [PMID: 38916036 PMCID: PMC11194369 DOI: 10.3389/fpls.2024.1409116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/22/2024] [Indexed: 06/26/2024]
Abstract
Prasiola crispa, an aerial green alga, exhibits remarkable adaptability to the extreme conditions of Antarctica by forming layered colonies capable of utilizing far-red light for photosynthesis. Despite a recent report on the structure of P. crispa's unique light-harvesting chlorophyll (Chl)-binding protein complex (Pc-frLHC), which facilitates far-red light absorption and uphill excitation energy transfer to photosystem II, the specific genes encoding the subunits of Pc-frLHC have not yet been identified. Here, we report a draft genome sequence of P. crispa strain 4113, originally isolated from soil samples on Ongul Island, Antarctica. We obtained a 92 Mbp sequence distributed in 1,045 scaffolds comprising 10,244 genes, reflecting 87.1% of the core eukaryotic gene set. Notably, 26 genes associated with the light-harvesting Chl a/b binding complex (LHC) were identified, including four Pc-frLHC genes, with similarity to a noncanonical Lhca gene with four transmembrane helices, such as Ot_Lhca6 in Ostreococcus tauri and Cr_LHCA2 in Chlamydomonas reinhardtii. A comparative analysis revealed that Pc-frLHC shares homology with certain Lhca genes found in Coccomyxa and Trebouxia species. This similarity indicates that Pc-frLHC has evolved from an ancestral Lhca gene with four transmembrane helices and branched out within the Trebouxiaceae family. Furthermore, RNA-seq analysis conducted during the initiation of Pc-frLHC gene induction under red light illumination indicated that Pc-frLHC genes were induced independently from other genes associated with photosystems or LHCs. Instead, the genes of transcription factors, helicases, chaperones, heat shock proteins, and components of blue light receptors were identified to coexpress with Pc-frLHC. Those kinds of information could provide insights into the expression mechanisms of Pc-frLHC and its evolutional development.
Collapse
Affiliation(s)
- Makiko Kosugi
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Japan
| | - Shuji Ohtani
- Faculty of Education, Shimane University, Matsue, Japan
| | - Kojiro Hara
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Hiroyo Nishide
- Data Integration and Analysis Facility, National Institute for Basic Biology, National Institutes of Natural Science, Okazaki, Japan
| | - Shin-Ichiro Ozawa
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
| | | | - Sakae Kudoh
- National Institute of Polar Research, Research Organization of Information and Systems, Tokyo, Japan
- Department of Polar Science, School of Multidisciplinary Science, The Graduate University for Advanced Studies, SOKENDAI, Tokyo, Japan
| | - Hiroyuki Koike
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| |
Collapse
|
4
|
Elias E, Oliver TJ, Croce R. Oxygenic Photosynthesis in Far-Red Light: Strategies and Mechanisms. Annu Rev Phys Chem 2024; 75:231-256. [PMID: 38382567 DOI: 10.1146/annurev-physchem-090722-125847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Oxygenic photosynthesis, the process that converts light energy into chemical energy, is traditionally associated with the absorption of visible light by chlorophyll molecules. However, recent studies have revealed a growing number of organisms capable of using far-red light (700-800 nm) to drive oxygenic photosynthesis. This phenomenon challenges the conventional understanding of the limits of this process. In this review, we briefly introduce the organisms that exhibit far-red photosynthesis and explore the different strategies they employ to harvest far-red light. We discuss the modifications of photosynthetic complexes and their impact on the delivery of excitation energy to photochemical centers and on overall photochemical efficiency. Finally, we examine the solutions employed to drive electron transport and water oxidation using relatively low-energy photons. The findings discussed here not only expand our knowledge of the remarkable adaptation capacities of photosynthetic organisms but also offer insights into the potential for enhancing light capture in crops.
Collapse
Affiliation(s)
- Eduard Elias
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands;
| | - Thomas J Oliver
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands;
| | - Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands;
| |
Collapse
|
5
|
Battistuzzi M, Cocola L, Liistro E, Claudi R, Poletto L, La Rocca N. Growth and Photosynthetic Efficiency of Microalgae and Plants with Different Levels of Complexity Exposed to a Simulated M-Dwarf Starlight. Life (Basel) 2023; 13:1641. [PMID: 37629498 PMCID: PMC10455698 DOI: 10.3390/life13081641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/16/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Oxygenic photosynthetic organisms (OPOs) are primary producers on Earth and generate surface and atmospheric biosignatures, making them ideal targets to search for life from remote on Earth-like exoplanets orbiting stars different from the Sun, such as M-dwarfs. These stars emit very low light in the visible and most light in the far-red, an issue for OPOs, which mostly utilize visible light to photosynthesize and grow. After successfully testing procaryotic OPOs (cyanobacteria) under a simulated M-dwarf star spectrum (M7, 365-850 nm) generated through a custom-made lamp, we tested several eukaryotic OPOs: microalgae (Dixoniella giordanoi, Microchloropsis gaditana, Chromera velia, Chlorella vulgaris), a non-vascular plant (Physcomitrium patens), and a vascular plant (Arabidopsis thaliana). We assessed their growth and photosynthetic efficiency under three light conditions: M7, solar (SOL) simulated spectra, and far-red light (FR). Microalgae grew similarly in SOL and M7, while the moss P. patens showed slower growth in M7 with respect to SOL. A. thaliana grew similarly in SOL and M7, showing traits typical of shade-avoidance syndrome. Overall, the synergistic effect of visible and far-red light, also known as the Emerson enhancing effect, could explain the growth in M7 for all organisms. These results lead to reconsidering the possibility and capability of the growth of OPOs and are promising for finding biosignatures on exoplanets orbiting the habitable zone of distant stars.
Collapse
Affiliation(s)
- Mariano Battistuzzi
- National Council of Research of Italy, Institute for Photonics and Nanotechnologies (CNR-IFN), 35131 Padua, Italy; (L.C.)
- Department of Biology, University of Padua, 35121 Padua, Italy (N.L.R.)
- Center for Space Studies and Activities (CISAS), University of Padua, 35131 Padua, Italy
| | - Lorenzo Cocola
- National Council of Research of Italy, Institute for Photonics and Nanotechnologies (CNR-IFN), 35131 Padua, Italy; (L.C.)
| | | | - Riccardo Claudi
- National Institute for Astrophysics (INAF), Astronomical Observatory of Padua, 35122 Padua, Italy
- Department of Mathematics and Physics, University Roma Tre, 00146 Rome, Italy
| | - Luca Poletto
- National Council of Research of Italy, Institute for Photonics and Nanotechnologies (CNR-IFN), 35131 Padua, Italy; (L.C.)
| | - Nicoletta La Rocca
- Department of Biology, University of Padua, 35121 Padua, Italy (N.L.R.)
- Center for Space Studies and Activities (CISAS), University of Padua, 35131 Padua, Italy
| |
Collapse
|
6
|
Uphill energy transfer mechanism for photosynthesis in an Antarctic alga. Nat Commun 2023; 14:730. [PMID: 36792917 PMCID: PMC9931709 DOI: 10.1038/s41467-023-36245-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/20/2023] [Indexed: 02/17/2023] Open
Abstract
Prasiola crispa, an aerial green alga, forms layered colonies under the severe terrestrial conditions of Antarctica. Since only far-red light is available at a deep layer of the colony, P. crispa has evolved a molecular system for photosystem II (PSII) excitation using far-red light with uphill energy transfer. However, the molecular basis underlying this system remains elusive. Here, we purified a light-harvesting chlorophyll (Chl)-binding protein complex from P. crispa (Pc-frLHC) that excites PSII with far-red light and revealed its ring-shaped structure with undecameric 11-fold symmetry at 3.13 Å resolution. The primary structure suggests that Pc-frLHC evolved from LHCI rather than LHCII. The circular arrangement of the Pc-frLHC subunits is unique among eukaryote LHCs and forms unprecedented Chl pentamers at every subunit‒subunit interface near the excitation energy exit sites. The Chl pentamers probably contribute to far-red light absorption. Pc-frLHC's unique Chl arrangement likely promotes PSII excitation with entropy-driven uphill excitation energy transfer.
Collapse
|
7
|
Every refuge has its price: Ostreobium as a model for understanding how algae can live in rock and stay in business. Semin Cell Dev Biol 2023; 134:27-36. [PMID: 35341677 DOI: 10.1016/j.semcdb.2022.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022]
Abstract
Ostreobium is a siphonous green alga in the Bryopsidales (Chlorophyta) that burrows into calcium carbonate (CaCO3) substrates. In this habitat, it lives under environmental conditions unusual for an alga (i.e., low light and low oxygen) and it is a major agent of carbonate reef bioerosion. In coral skeletons, Ostreobium can form conspicuous green bands recognizable by the naked eye and it is thought to contribute to the coral's nutritional needs. With coral reefs in global decline, there is a renewed focus on understanding Ostreobium biology and its roles in the coral holobiont. This review summarizes knowledge on Ostreobium's morphological structure, biodiversity and evolution, photosynthesis, mechanism of bioerosion and its role as a member of the coral holobiont. We discuss the resources available to study Ostreobium biology, lay out some of the uncharted territories in Ostreobium biology and offer perspectives for future research.
Collapse
|
8
|
Abstract
Chlorophylls provide the basis for photosynthesis and thereby most life on Earth. Besides their involvement in primary charge separation in the reaction center, they serve as light-harvesting and light-sensing pigments, they also have additional functions, e.g., in inter-system electron transfer. Chlorophylls also have a wealth of applications in basic science, medicine, as colorants and, possibly, in optoelectronics. Considering that there has been more than 200 years of chlorophyll research, one would think that all has been said on these pigments. However, the opposite is true: ongoing research evidenced in this Special Issue brings together current work on chlorophylls and on their carotenoid counterparts. These introductory notes give a very brief and in part personal account of the history of chlorophyll research and applications, before concluding with a snapshot of this year's publications.
Collapse
Affiliation(s)
- Hugo Scheer
- Bereich Systematik, Biodiversität und Evolution der Pflanzen, Universität München, Menzinger Str. 67, 80638 München, Germany
| |
Collapse
|
9
|
Slattery RA, Ort DR. Perspectives on improving light distribution and light use efficiency in crop canopies. PLANT PHYSIOLOGY 2021; 185:34-48. [PMID: 33631812 PMCID: PMC8133579 DOI: 10.1093/plphys/kiaa006] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/03/2020] [Indexed: 05/22/2023]
Abstract
Plant stands in nature differ markedly from most seen in modern agriculture. In a dense mixed stand, plants must vie for resources, including light, for greater survival and fitness. Competitive advantages over surrounding plants improve fitness of the individual, thus maintaining the competitive traits in the gene pool. In contrast, monoculture crop production strives to increase output at the stand level and thus benefits from cooperation to increase yield of the community. In choosing plants with higher yields to propagate and grow for food, humans may have inadvertently selected the best competitors rather than the best cooperators. Here, we discuss how this selection for competitiveness has led to overinvestment in characteristics that increase light interception and, consequently, sub-optimal light use efficiency in crop fields that constrains yield improvement. Decades of crop canopy modeling research have provided potential strategies for improving light distribution in crop canopies, and we review the current progress of these strategies, including balancing light distribution through reducing pigment concentration. Based on recent research revealing red-shifted photosynthetic pigments in algae and photosynthetic bacteria, we also discuss potential strategies for optimizing light interception and use through introducing alternative pigment types in crops. These strategies for improving light distribution and expanding the wavelengths of light beyond those traditionally defined for photosynthesis in plant canopies may have large implications for improving crop yield and closing the yield gap.
Collapse
Affiliation(s)
- Rebecca A Slattery
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Departments of Plant Biology & Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Author for communication:
| |
Collapse
|
10
|
Iha C, Dougan KE, Varela JA, Avila V, Jackson CJ, Bogaert KA, Chen Y, Judd LM, Wick R, Holt KE, Pasella MM, Ricci F, Repetti SI, Medina M, Marcelino VR, Chan CX, Verbruggen H. Genomic adaptations to an endolithic lifestyle in the coral-associated alga Ostreobium. Curr Biol 2021; 31:1393-1402.e5. [PMID: 33548192 DOI: 10.1016/j.cub.2021.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/21/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
The green alga Ostreobium is an important coral holobiont member, playing key roles in skeletal decalcification and providing photosynthate to bleached corals that have lost their dinoflagellate endosymbionts. Ostreobium lives in the coral's skeleton, a low-light environment with variable pH and O2 availability. We present the Ostreobium nuclear genome and a metatranscriptomic analysis of healthy and bleached corals to improve our understanding of Ostreobium's adaptations to its extreme environment and its roles as a coral holobiont member. The Ostreobium genome has 10,663 predicted protein-coding genes and shows adaptations for life in low and variable light conditions and other stressors in the endolithic environment. This alga presents a rich repertoire of light-harvesting complex proteins but lacks many genes for photoprotection and photoreceptors. It also has a large arsenal of genes for oxidative stress response. An expansion of extracellular peptidases suggests that Ostreobium may supplement its energy needs by feeding on the organic skeletal matrix, and a diverse set of fermentation pathways allows it to live in the anoxic skeleton at night. Ostreobium depends on other holobiont members for vitamin B12, and our metatranscriptomes identify potential bacterial sources. Metatranscriptomes showed Ostreobium becoming a dominant agent of photosynthesis in bleached corals and provided evidence for variable responses among coral samples and different Ostreobium genotypes. Our work provides a comprehensive understanding of the adaptations of Ostreobium to its extreme environment and an important genomic resource to improve our comprehension of coral holobiont resilience, bleaching, and recovery.
Collapse
Affiliation(s)
- Cintia Iha
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Katherine E Dougan
- School of Chemistry and Molecular Biosciences and Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Javier A Varela
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, and APC Microbiome Institute, University College Cork, Cork T12 YN60, Ireland
| | - Viridiana Avila
- Pennsylvania State University, University Park, PA 16802, USA
| | | | - Kenny A Bogaert
- Phycology Research Group, Ghent University, Krijgslaan 281 S8, 9000 Gent, Belgium
| | - Yibi Chen
- School of Chemistry and Molecular Biosciences and Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Louise M Judd
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Ryan Wick
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Marisa M Pasella
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Francesco Ricci
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Sonja I Repetti
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mónica Medina
- Pennsylvania State University, University Park, PA 16802, USA
| | - Vanessa R Marcelino
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Cheong Xin Chan
- School of Chemistry and Molecular Biosciences and Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
11
|
Giovagnetti V, Ruban AV. The mechanism of regulation of photosystem I cross-section in the pennate diatom Phaeodactylum tricornutum. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:561-575. [PMID: 33068431 DOI: 10.1093/jxb/eraa478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Photosystems possess distinct fluorescence emissions at low (77K) temperature. PSI emits in the long-wavelength region at ~710-740 nm. In diatoms, a successful clade of marine primary producers, the contribution of PSI-associated emission (710-717 nm) has been shown to be relatively small. However, in the pennate diatom Phaeodactylum tricornutum, the source of the long-wavelength emission at ~710 nm (F710) remains controversial. Here, we addressed the origin and modulation of F710 fluorescence in this alga grown under continuous and intermittent light. The latter condition led to a strong enhancement in F710. Biochemical and spectral properties of the photosynthetic complexes isolated from thylakoid membranes were investigated for both culture conditions. F710 emission appeared to be associated with PSI regardless of light acclimation. To further assess whether PSII could also contribute to this emission, we decreased the concentration of PSII reaction centres and core antenna by growing cells with lincomycin, a chloroplast protein synthesis inhibitor. The treatment did not diminish F710 fluorescence. Our data suggest that F710 emission originates from PSI under the conditions tested and is enhanced in intermittent light-grown cells due to increased energy flow from the FCP antenna to PSI.
Collapse
Affiliation(s)
- Vasco Giovagnetti
- Department of Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Alexander V Ruban
- Department of Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
12
|
|
13
|
Massé A, Tribollet A, Meziane T, Bourguet-Kondracki ML, Yéprémian C, Sève C, Thiney N, Longeon A, Couté A, Domart-Coulon I. Functional diversity of microboring Ostreobium algae isolated from corals. Environ Microbiol 2020; 22:4825-4846. [PMID: 32990394 DOI: 10.1111/1462-2920.15256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/09/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022]
Abstract
The filamentous chlorophyte Ostreobium sp. dominates shallow marine carbonate microboring communities, and is one of the major agents of reef bioerosion. While its large genetic diversity has emerged, its physiology remains little known, with unexplored relationship between genotypes and phenotypes (endolithic versus free-living growth forms). Here, we isolated nine strains affiliated to two lineages of Ostreobium (>8% sequence divergence of the plastid gene rbcL), one of which was assigned to the family Odoaceae, from the fast-growing coral host Pocillopora acuta Lamarck 1816. Free-living isolates maintained their bioerosive potential, colonizing pre-bleached coral carbonate skeletons. We compared phenotypes, highlighting shifts in pigment and fatty acid compositions, carbon to nitrogen ratios and stable isotope compositions (δ13 C and δ15 N). Our data show a pattern of higher chlorophyll b and lower arachidonic acid (20:4ω6) content in endolithic versus free-living Ostreobium. Photosynthetic carbon fixation and nitrate uptake, quantified via 8 h pulse-labeling with 13 C-bicarbonate and 15 N-nitrate, showed lower isotopic enrichment in endolithic compared to free-living filaments. Our results highlight the functional plasticity of Ostreobium phenotypes. The isotope tracer approach opens the way to further study the biogeochemical cycling and trophic ecology of these cryptic algae at coral holobiont and reef scales.
Collapse
Affiliation(s)
- Anaïs Massé
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle (MNHN), CNRS (UMR7245); CP54 63 Rue Buffon, Paris, 75005, France.,IRD-Sorbonne Université (UPMC-CNRS-MNHN), Laboratoire IPSL-LOCEAN, 4 Place Jussieu, Tour 46-00, 5éme étage, Paris Cedex, 75005, France
| | - Aline Tribollet
- IRD-Sorbonne Université (UPMC-CNRS-MNHN), Laboratoire IPSL-LOCEAN, 4 Place Jussieu, Tour 46-00, 5éme étage, Paris Cedex, 75005, France
| | - Tarik Meziane
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum national d'Histoire naturelle (MNHN), SU, UNICAEN, UA, CNRS (UMR7208), IRD; CP53, 61 rue Buffon, Paris, 75005, France
| | - Marie-Lise Bourguet-Kondracki
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle (MNHN), CNRS (UMR7245); CP54 63 Rue Buffon, Paris, 75005, France
| | - Claude Yéprémian
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle (MNHN), CNRS (UMR7245); CP54 63 Rue Buffon, Paris, 75005, France
| | - Charlotte Sève
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle (MNHN), CNRS (UMR7245); CP54 63 Rue Buffon, Paris, 75005, France
| | - Najet Thiney
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum national d'Histoire naturelle (MNHN), SU, UNICAEN, UA, CNRS (UMR7208), IRD; CP53, 61 rue Buffon, Paris, 75005, France
| | - Arlette Longeon
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle (MNHN), CNRS (UMR7245); CP54 63 Rue Buffon, Paris, 75005, France
| | - Alain Couté
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle (MNHN), CNRS (UMR7245); CP54 63 Rue Buffon, Paris, 75005, France
| | - Isabelle Domart-Coulon
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle (MNHN), CNRS (UMR7245); CP54 63 Rue Buffon, Paris, 75005, France
| |
Collapse
|
14
|
Kosugi M, Ozawa SI, Takahashi Y, Kamei Y, Itoh S, Kudoh S, Kashino Y, Koike H. Red-shifted chlorophyll a bands allow uphill energy transfer to photosystem II reaction centers in an aerial green alga, Prasiola crispa, harvested in Antarctica. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148139. [DOI: 10.1016/j.bbabio.2019.148139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/14/2019] [Accepted: 12/04/2019] [Indexed: 12/22/2022]
|
15
|
Repetti SI, Jackson CJ, Judd LM, Wick RR, Holt KE, Verbruggen H. The inflated mitochondrial genomes of siphonous green algae reflect processes driving expansion of noncoding DNA and proliferation of introns. PeerJ 2020; 8:e8273. [PMID: 31915577 PMCID: PMC6944098 DOI: 10.7717/peerj.8273] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
Within the siphonous green algal order Bryopsidales, the size and gene arrangement of chloroplast genomes has been examined extensively, while mitochondrial genomes have been mostly overlooked. The recently published mitochondrial genome of Caulerpa lentillifera is large with expanded noncoding DNA, but it remains unclear if this is characteristic of the entire order. Our study aims to evaluate the evolutionary forces shaping organelle genome dynamics in the Bryopsidales based on the C. lentillifera and Ostreobium quekettii mitochondrial genomes. In this study, the mitochondrial genome of O. quekettii was characterised using a combination of long and short read sequencing, and bioinformatic tools for annotation and sequence analyses. We compared the mitochondrial and chloroplast genomes of O. quekettii and C. lentillifera to examine hypotheses related to genome evolution. The O. quekettii mitochondrial genome is the largest green algal mitochondrial genome sequenced (241,739 bp), considerably larger than its chloroplast genome. As with the mtDNA of C. lentillifera, most of this excess size is from the expansion of intergenic DNA and proliferation of introns. Inflated mitochondrial genomes in the Bryopsidales suggest effective population size, recombination and/or mutation rate, influenced by nuclear-encoded proteins, differ between the genomes of mitochondria and chloroplasts, reducing the strength of selection to influence evolution of their mitochondrial genomes.
Collapse
Affiliation(s)
- Sonja I Repetti
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | | | - Louise M Judd
- Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Ryan R Wick
- Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Kathryn E Holt
- Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Ricci F, Rossetto Marcelino V, Blackall LL, Kühl M, Medina M, Verbruggen H. Beneath the surface: community assembly and functions of the coral skeleton microbiome. MICROBIOME 2019; 7:159. [PMID: 31831078 PMCID: PMC6909473 DOI: 10.1186/s40168-019-0762-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/17/2019] [Indexed: 05/24/2023]
Abstract
Coral microbial ecology is a burgeoning field, driven by the urgency of understanding coral health and slowing reef loss due to climate change. Coral resilience depends on its microbiota, and both the tissue and the underlying skeleton are home to a rich biodiversity of eukaryotic, bacterial and archaeal species that form an integral part of the coral holobiont. New techniques now enable detailed studies of the endolithic habitat, and our knowledge of the skeletal microbial community and its eco-physiology is increasing rapidly, with multiple lines of evidence for the importance of the skeletal microbiota in coral health and functioning. Here, we review the roles these organisms play in the holobiont, including nutritional exchanges with the coral host and decalcification of the host skeleton. Microbial metabolism causes steep physico-chemical gradients in the skeleton, creating micro-niches that, along with dispersal limitation and priority effects, define the fine-scale microbial community assembly. Coral bleaching causes drastic changes in the skeletal microbiome, which can mitigate bleaching effects and promote coral survival during stress periods, but may also have detrimental effects. Finally, we discuss the idea that the skeleton may function as a microbial reservoir that can promote recolonization of the tissue microbiome following dysbiosis and help the coral holobiont return to homeostasis.
Collapse
Affiliation(s)
- Francesco Ricci
- School of BioSciences, University of Melbourne, Parkville, 3010 Australia
| | - Vanessa Rossetto Marcelino
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW 2006 Australia
| | - Linda L. Blackall
- School of BioSciences, University of Melbourne, Parkville, 3010 Australia
| | - Michael Kühl
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, DK-3000 Helsingør, Denmark
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - Mónica Medina
- Pennsylvania State University, University Park, PA 16802 USA
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Parkville, 3010 Australia
| |
Collapse
|
17
|
Wolf BM, Blankenship RE. Far-red light acclimation in diverse oxygenic photosynthetic organisms. PHOTOSYNTHESIS RESEARCH 2019; 142:349-359. [PMID: 31222688 DOI: 10.1007/s11120-019-00653-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Oxygenic photosynthesis has historically been considered limited to be driven by the wavelengths of visible light. However, in the last few decades, various adaptations have been discovered that allow algae, cyanobacteria, and even plants to utilize longer wavelength light in the far-red spectral range. These adaptations provide distinct advantages to the species possessing them, allowing the effective utilization of shade light under highly filtered light environments. In prokaryotes, these adaptations include the production of far-red-absorbing chlorophylls d and f and the remodeling of phycobilisome antennas and reaction centers. Eukaryotes express specialized light-harvesting pigment-protein complexes that use interactions between pigments and their protein environment to spectrally tune the absorption of chlorophyll a. If these adaptations could be applied to crop plants, a potentially significant increase in photon utilization in lower shaded leaves could be realized, improving crop yields.
Collapse
Affiliation(s)
- Benjamin M Wolf
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Robert E Blankenship
- Departments of Biology and Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
18
|
Litvín R, Bína D, Herbstová M, Pazderník M, Kotabová E, Gardian Z, Trtílek M, Prášil O, Vácha F. Red-shifted light-harvesting system of freshwater eukaryotic alga Trachydiscus minutus (Eustigmatophyta, Stramenopila). PHOTOSYNTHESIS RESEARCH 2019; 142:137-151. [PMID: 31375979 DOI: 10.1007/s11120-019-00662-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Survival of phototrophic organisms depends on their ability to collect and convert enough light energy to support their metabolism. Phototrophs can extend their absorption cross section by using diverse pigments and by tuning the properties of these pigments via pigment-pigment and pigment-protein interaction. It is well known that some cyanobacteria can grow in heavily shaded habitats by utilizing far-red light harvested with far-red-absorbing chlorophylls d and f. We describe a red-shifted light-harvesting system based on chlorophyll a from a freshwater eustigmatophyte alga Trachydiscus minutus (Eustigmatophyceae, Goniochloridales). A comprehensive characterization of the photosynthetic apparatus of T. minutus is presented. We show that thylakoid membranes of T. minutus contain light-harvesting complexes of several sizes differing in the relative amount of far-red chlorophyll a forms absorbing around 700 nm. The pigment arrangement of the major red-shifted light-harvesting complex is similar to that of the red-shifted antenna of a marine alveolate alga Chromera velia. Evolutionary aspects of the algal far-red light-harvesting complexes are discussed. The presence of these antennas in eustigmatophyte algae opens up new ways to modify organisms of this promising group for effective use of far-red light in mass cultures.
Collapse
Affiliation(s)
- Radek Litvín
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
- Biology Centre, The Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - David Bína
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic.
- Biology Centre, The Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| | - Miroslava Herbstová
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
- Biology Centre, The Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Marek Pazderník
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
- Institute of Microbiology, The Czech Academy of Sciences, Opatovický mlýn, 379 81, Třeboň, Czech Republic
| | - Eva Kotabová
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
- Institute of Microbiology, The Czech Academy of Sciences, Opatovický mlýn, 379 81, Třeboň, Czech Republic
| | - Zdenko Gardian
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
- Biology Centre, The Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Martin Trtílek
- PSI (Photon Systems Instruments), spol. s r.o. Drásov 470, 664 24, Drásov, Czech Republic
| | - Ondřej Prášil
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
- Institute of Microbiology, The Czech Academy of Sciences, Opatovický mlýn, 379 81, Třeboň, Czech Republic
| | - František Vácha
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
- Biology Centre, The Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| |
Collapse
|
19
|
|
20
|
Schmitt FJ, Campbell ZY, Bui MV, Hüls A, Tomo T, Chen M, Maksimov EG, Allakhverdiev SI, Friedrich T. Photosynthesis supported by a chlorophyll f-dependent, entropy-driven uphill energy transfer in Halomicronema hongdechloris cells adapted to far-red light. PHOTOSYNTHESIS RESEARCH 2019; 139:185-201. [PMID: 30039357 DOI: 10.1007/s11120-018-0556-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
The phototrophic cyanobacterium Halomicronema hongdechloris shows far-red light-induced accumulation of chlorophyll (Chl) f, but the involvement of the pigment in photosynthetic energy harvesting by photosystem (PS) II is controversially discussed. While H. hongdechloris contains negligible amounts of Chl f in white-light culture conditions, the ratio of Chl f to Chl a is reversibly changed up to 1:8 under illumination with far-red light (720-730 nm). We performed UV-Vis absorption spectroscopy, time-integrated and time-resolved fluorescence spectroscopy for the calculation of decay-associated spectra (DAS) to determine excitation energy transfer (EET) processes between photosynthetic pigments in intact H. hongdechloris filaments. In cells grown under white light, highly efficient EET occurs from phycobilisomes (PBSs) to Chl a with an apparent time constant of about 100 ps. Charge separation occurs with a typical apparent time constant of 200-300 ps from Chl a. After 3-4 days of growth under far-red light, robust Chl f content was observed in H. hongdechloris and EET from PBSs reached Chl f efficiently within 200 ps. It is proposed based on mathematical modeling by rate equation systems for EET between the PBSs and PSII and subsequent electron transfer (ET) that charge separation occurs from Chl a and excitation energy is funneled from Chl f to Chl a via an energetically uphill EET driven by entropy, which is effective because the number of Chl a molecules coupled to Chl f is at least eight- to tenfold larger than the corresponding number of Chl f molecules. The long lifetime of Chl f molecules in contact to a tenfold larger pool of Chl a molecules allows Chl f to act as an intermediate energy storage level, from which the Gibbs free energy difference between Chl f and Chl a can be overcome by taking advantage from the favorable ratio of degeneracy coefficients, which formally represents a significant entropy gain in the Eyring formulation of the Arrhenius law. Direct evidence for energetically uphill EET and charge separation in PSII upon excitation of Chl f via anti-Stokes fluorescence in far-red light-adapted H. hongdechloris cells was obtained: Excitation by 720 nm laser light resulted in robust Chl a fluorescence at 680 nm that was distinctly temperature-dependent and, notably, increased upon DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) treatment in far-red light-adapted cells. Thus, rather than serving as an excitation energy trap, Chl f in far-red light-adapted H. hongdechloris cells is directly contributing to oxygenic photosynthesis at PSII.
Collapse
Affiliation(s)
- Franz-Josef Schmitt
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
| | - Züleyha Yenice Campbell
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Mai Vi Bui
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Anne Hüls
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Tatsuya Tomo
- Department of Biology, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku‑Ku, Tokyo, 162‑8601, Japan
| | - Min Chen
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Eugene G Maksimov
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Leninskye Gory 1, bld. 24, Moscow, Russian Federation, 119991
| | - Suleyman I Allakhverdiev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russian Federation, 119992
- Bionanotechnology Laboratory, Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Matbuat Avenue 2a, 1073, Baku, Azerbaijan
- Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region, Russian Federation, 141700
- Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, Russian Federation, 127276
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation, 142290
| | - Thomas Friedrich
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
| |
Collapse
|
21
|
Hamblin MR, Huang YY, Heiskanen V. Non-mammalian Hosts and Photobiomodulation: Do All Life-forms Respond to Light? Photochem Photobiol 2019; 95:126-139. [PMID: 29882348 PMCID: PMC6286699 DOI: 10.1111/php.12951] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/04/2018] [Indexed: 12/28/2022]
Abstract
Photobiomodulation (PBM), also known as low-level laser (light) therapy, was discovered over 50 years ago, but only recently has it been making progress toward wide acceptance. PBM originally used red and near-infrared (NIR) lasers, but now other wavelengths and non-coherent light-emitting diodes (LEDs) are being explored. The almost complete lack of side effects makes the conduction of controlled clinical trials relatively easy. Laboratory research has mainly concentrated on mammalian cells (normal or cancer) in culture, and small rodents (mice and rats) as models of different diseases. A sizeable body of work was carried out in the 1970s and 1980s in Russia looking at various bacterial and fungal cells. The present review covers some of these studies and a recent number of papers that have applied PBM to so-called "model organisms." These models include flies (Drosophila), worms (Caenorhabditis elegans), fish (zebrafish) and caterpillars (Galleria). Much knowledge about the genomics and proteomics, and many reagents for these organisms already exist. They are inexpensive to work with and have lower regulatory barriers compared to vertebrate animals. Other researchers have studied different models (snails, sea urchins, Paramecium, toads, frogs and chickens). Plants may respond to NIR light differently from visible light (photosynthesis and photomorphogenesis) but PBM in plants has not been much studied. Veterinarians routinely use PBM to treat non-mammalian patients. The conclusion is that red or NIR light does indeed have significant biologic effects conserved over many different kingdoms, and perhaps it is true that "all life-forms respond to light."
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | | |
Collapse
|
22
|
Wolf BM, Niedzwiedzki DM, Magdaong NCM, Roth R, Goodenough U, Blankenship RE. Characterization of a newly isolated freshwater Eustigmatophyte alga capable of utilizing far-red light as its sole light source. PHOTOSYNTHESIS RESEARCH 2018; 135:177-189. [PMID: 28547584 DOI: 10.1007/s11120-017-0401-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
Oxygenic phototrophs typically utilize visible light (400-700 nm) to drive photosynthesis. However, a large fraction of the energy in sunlight is contained in the far-red region, which encompasses light beyond 700 nm. In nature, certain niche environments contain high levels of this far-red light due to filtering by other phototrophs, and in these environments, organisms with photosynthetic antenna systems adapted to absorbing far-red light are able to thrive. We used selective far-red light conditions to isolate such organisms in environmental samples. One cultured organism, the Eustigmatophyte alga Forest Park Isolate 5 (FP5), is able to absorb far-red light using a chlorophyll (Chl) a-containing antenna complex, and is able to grow under solely far-red light. Here we characterize the antenna system from this organism, which is able to shift the absorption of Chl a to >705 nm.
Collapse
Affiliation(s)
- Benjamin M Wolf
- Department of Biology, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO, USA
- Photosynthetic Antenna Research Center, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO, USA
- Department of Chemistry, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO, USA
| | - Dariusz M Niedzwiedzki
- Photosynthetic Antenna Research Center, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO, USA
| | - Nikki Cecil M Magdaong
- Department of Biology, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO, USA
- Photosynthetic Antenna Research Center, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO, USA
- Department of Chemistry, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO, USA
| | - Robyn Roth
- Washington University Center for Cellular Imaging, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO, USA
| | - Ursula Goodenough
- Department of Biology, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO, USA
| | - Robert E Blankenship
- Department of Biology, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO, USA.
- Photosynthetic Antenna Research Center, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO, USA.
- Department of Chemistry, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO, USA.
| |
Collapse
|
23
|
Herbstová M, Bína D, Kaňa R, Vácha F, Litvín R. Red-light phenotype in a marine diatom involves a specialized oligomeric red-shifted antenna and altered cell morphology. Sci Rep 2017; 7:11976. [PMID: 28931902 PMCID: PMC5607283 DOI: 10.1038/s41598-017-12247-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 09/06/2017] [Indexed: 01/12/2023] Open
Abstract
Diatoms greatly contribute to carbon fixation and thus strongly influence the global biogeochemical balance. Capable of chromatic acclimation (CA) to unfavourable light conditions, diatoms often dominate benthic ecosystems in addition to their planktonic lifestyle. Although CA has been studied at the molecular level, our understanding of this phenomenon remains incomplete. Here we provide new data to better explain the acclimation-associated changes under red-enhanced ambient light (RL) in diatom Phaeodactylum tricornutum, known to express a red-shifted antenna complex (F710). The complex was found to be an oligomer of a single polypeptide, Lhcf15. The steady-state spectroscopic properties of the oligomer were also studied. The oligomeric assembly of the Lhcf15 subunits is required for the complex to exhibit a red-shifted absorption. The presence of the red antenna in RL culture coincides with the development of a rounded phenotype of the diatom cell. A model summarizing the modulation of the photosynthetic apparatus during the acclimation response to light of different spectral quality is proposed. Our study suggests that toggling between alternative organizations of photosynthetic apparatus and distinct cell morphologies underlies the remarkable acclimation capacity of diatoms.
Collapse
Affiliation(s)
- Miroslava Herbstová
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - David Bína
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 37005, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic
| | - Radek Kaňa
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic
- Institute of Microbiology, Algatech Centre CAS, Opatovický mlýn, 379 81, Třeboň, Czech Republic
| | - František Vácha
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 37005, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic
| | - Radek Litvín
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 37005, České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic.
| |
Collapse
|
24
|
R Marcelino V, Cremen MCM, Jackson CJ, Larkum AAW, Verbruggen H. Evolutionary Dynamics of Chloroplast Genomes in Low Light: A Case Study of the Endolithic Green Alga Ostreobium quekettii. Genome Biol Evol 2016; 8:2939-2951. [PMID: 27566760 PMCID: PMC5633697 DOI: 10.1093/gbe/evw206] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Some photosynthetic organisms live in extremely low light environments. Light limitation is associated with selective forces as well as reduced exposure to mutagens, and over evolutionary timescales it can leave a footprint on species’ genomes. Here, we present the chloroplast genomes of four green algae (Bryopsidales, Ulvophyceae), including the endolithic (limestone-boring) alga Ostreobium quekettii, which is a low light specialist. We use phylogenetic models and comparative genomic tools to investigate whether the chloroplast genome of Ostreobium corresponds to our expectations of how low light would affect genome evolution. Ostreobium has the smallest and most gene-dense chloroplast genome among Ulvophyceae reported to date, matching our expectation that light limitation would impose resource constraints reflected in the chloroplast genome architecture. Rates of molecular evolution are significantly slower along the phylogenetic branch leading to Ostreobium, in agreement with the expected effects of low light and energy levels on molecular evolution. We expected the ability of Ostreobium to perform photosynthesis in very low light to be associated with positive selection in genes related to the photosynthetic machinery, but instead, we observed that these genes may be under stronger purifying selection. Besides shedding light on the genome dynamics associated with a low light lifestyle, this study helps to resolve the role of environmental factors in shaping the diversity of genome architectures observed in nature.
Collapse
Affiliation(s)
| | | | | | - Anthony A W Larkum
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, NSW 2007, Australia
| | | |
Collapse
|
25
|
Li Y, Chen M. Novel chlorophylls and new directions in photosynthesis research. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:493-501. [PMID: 32480695 DOI: 10.1071/fp14350] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/06/2015] [Indexed: 06/11/2023]
Abstract
Chlorophyll d and chlorophyll f are red-shifted chlorophylls, because their Qy absorption bands are significantly red-shifted compared with chlorophyll a. The red-shifted chlorophylls broaden the light absorption region further into far red light. The presence of red-shifted chlorophylls in photosynthetic systems has opened up new possibilities of research on photosystem energetics and challenged the unique status of chlorophyll a in oxygenic photosynthesis. In this review, we report on the chemistry and function of red-shifted chlorophylls in photosynthesis and summarise the unique adaptations that have allowed the proliferation of chlorophyll d- and chlorophyll f-containing organisms in diverse ecological niches around the world.
Collapse
Affiliation(s)
- Yaqiong Li
- School of Biological Sciences, The University of Sydney, NSW 2006, Australia
| | - Min Chen
- School of Biological Sciences, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
26
|
Herbstová M, Bína D, Koník P, Gardian Z, Vácha F, Litvín R. Molecular basis of chromatic adaptation in pennate diatom Phaeodactylum tricornutum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:534-43. [DOI: 10.1016/j.bbabio.2015.02.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 12/17/2022]
|
27
|
Bína D, Gardian Z, Herbstová M, Kotabová E, Koník P, Litvín R, Prášil O, Tichý J, Vácha F. Novel type of red-shifted chlorophyll a antenna complex from Chromera velia: II. Biochemistry and spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:802-10. [PMID: 24486443 DOI: 10.1016/j.bbabio.2014.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 01/13/2014] [Accepted: 01/21/2014] [Indexed: 11/16/2022]
Abstract
A novel chlorophyll a containing pigment-protein complex expressed by cells of Chromera velia adapted to growth under red/far-red illumination [1]. Purification of the complex was achieved by means of anion-exchange chromatography and gel-filtration. The antenna is shown to be an aggregate of ~20kDa proteins of the light-harvesting complex (LHC) family, unstable in the isolated form. The complex possesses an absorption maximum at 705nm at room temperature in addition to the main chlorophyll a maximum at 677nm producing the major emission band at 714nm at room temperature. The far-red absorption is shown to be the property of the isolated aggregate in the intact form and lost upon dissociation. The purified complex was further characterized by circular dichroism spectroscopy and fluorescence spectroscopy. This work thus identified the third different class of antenna complex in C. velia after the recently described FCP-like and LHCr-like antennas. Possible candidates for red antennas are identified in other taxonomic groups, such as eustigmatophytes and the relevance of the present results to other known examples of red-shifted antenna from other organisms is discussed. This work appears to be the first successful isolation of a chlorophyll a-based far-red antenna complex absorbing above 700nm unrelated to LHCI.
Collapse
Affiliation(s)
- David Bína
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Zdenko Gardian
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Miroslava Herbstová
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Eva Kotabová
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic; Institute of Microbiology ASCR, Centrum Algatech, Laboratory of Photosynthesis, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| | - Peter Koník
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Radek Litvín
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Ondřej Prášil
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic; Institute of Microbiology ASCR, Centrum Algatech, Laboratory of Photosynthesis, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| | - Josef Tichý
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - František Vácha
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
28
|
Kotabová E, Jarešová J, Kaňa R, Sobotka R, Bína D, Prášil O. Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. I. Physiological relevance and functional connection to photosystems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:734-43. [PMID: 24480388 DOI: 10.1016/j.bbabio.2014.01.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 01/14/2014] [Accepted: 01/21/2014] [Indexed: 02/04/2023]
Abstract
Chromera velia is an alveolate alga associated with scleractinian corals. Here we present detailed work on chromatic adaptation in C. velia cultured under either blue or red light. Growth of C. velia under red light induced the accumulation of a light harvesting antenna complex exhibiting unusual spectroscopic properties with red-shifted absorption and atypical 710nm fluorescence emission at room temperature. Due to these characteristic features the complex was designated "Red-shifted Chromera light harvesting complex" (Red-CLH complex). Its detailed biochemical survey is described in the accompanying paper (Bina et al. 2013, this issue). Here, we show that the accumulation of Red-CLH complex under red light represents a slow acclimation process (days) that is reversible with much faster kinetics (hours) under blue light. This chromatic adaptation allows C. velia to maintain all important parameters of photosynthesis constant under both light colors. We further demonstrated that the C. velia Red-CLH complex is assembled from a 17kDa antenna protein and is functionally connected to photosystem II as it shows variability of chlorophyll fluorescence. Red-CLH also serves as an additional locus for non-photochemical quenching. Although overall rates of oxygen evolution and carbon fixation were similar for both blue and red light conditions, the presence of Red-CLH in C. velia cells increases the light harvesting potential of photosystem II, which manifested as a doubled oxygen evolution rate at illumination above 695nm. This data demonstrates a remarkable long-term remodeling of C. velia light-harvesting system according to light quality and suggests physiological significance of 'red' antenna complexes.
Collapse
Affiliation(s)
- Eva Kotabová
- Institute of Microbiology ASCR, Centrum Algatech, Laboratory of Photosynthesis, Opatovický mlýn, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Jana Jarešová
- Institute of Microbiology ASCR, Centrum Algatech, Laboratory of Photosynthesis, Opatovický mlýn, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Radek Kaňa
- Institute of Microbiology ASCR, Centrum Algatech, Laboratory of Photosynthesis, Opatovický mlýn, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Roman Sobotka
- Institute of Microbiology ASCR, Centrum Algatech, Laboratory of Photosynthesis, Opatovický mlýn, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - David Bína
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Ondřej Prášil
- Institute of Microbiology ASCR, Centrum Algatech, Laboratory of Photosynthesis, Opatovický mlýn, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
29
|
Chisti Y. Constraints to commercialization of algal fuels. J Biotechnol 2013; 167:201-14. [DOI: 10.1016/j.jbiotec.2013.07.020] [Citation(s) in RCA: 510] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/12/2013] [Accepted: 07/12/2013] [Indexed: 01/01/2023]
|
30
|
Photosystem trap energies and spectrally-dependent energy-storage efficiencies in the Chl d-utilizing cyanobacterium, Acaryochloris marina. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:255-65. [DOI: 10.1016/j.bbabio.2012.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 10/08/2012] [Accepted: 11/02/2012] [Indexed: 12/27/2022]
|
31
|
Chen M, Scheer H. Extending the limits of natural photosynthesis and implications for technical light harvesting. J PORPHYR PHTHALOCYA 2013. [DOI: 10.1142/s1088424612300108] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Photosynthetic organisms provide, directly or indirectly, the energy that sustains life on earth by harvesting light from the sun. The amount of light impinging on the surface of the earth vastly surpasses the energy needs of life including man. Harvesting the sun is, therefore, an option for a sustainable energy source: directly by improving biomass production, indirectly by coupling it to the production of hydrogen for fuel or, conceptually, by using photosynthetic strategies for technological solutions based on non-biological or hybrid materials. In this review, we summarize the various light climates on earth, the primary reactions responsible for light harvesting and transduction to chemical energy in photosynthesis, and the mechanisms of competitively adapting the photosynthetic apparatus to the ever-changing light conditions. The focus is on oxygenic photosynthesis, its adaptation to the various light-climates by specialized pigments and on the extension of its limits by the evolution of red-shifted chlorophylls. The implications for potential technical solutions are briefly discussed.
Collapse
Affiliation(s)
- Min Chen
- School of Biological Sciences, University of Sydney, Sydney NSW 2006, Australia
| | - Hugo Scheer
- Dept-Biologie 1, Botanik, Universität München, 80638 München, Germany
| |
Collapse
|
32
|
Chen M, Blankenship RE. Expanding the solar spectrum used by photosynthesis. TRENDS IN PLANT SCIENCE 2011; 16:427-31. [PMID: 21493120 DOI: 10.1016/j.tplants.2011.03.011] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/11/2011] [Accepted: 03/11/2011] [Indexed: 05/03/2023]
Abstract
A limiting factor for photosynthetic organisms is their light-harvesting efficiency, that is the efficiency of their conversion of light energy to chemical energy. Small modifications or variations of chlorophylls allow photosynthetic organisms to harvest sunlight at different wavelengths. Oxygenic photosynthetic organisms usually utilize only the visible portion of the solar spectrum. The cyanobacterium Acaryochloris marina carries out oxygenic photosynthesis but contains mostly chlorophyll d and only traces of chlorophyll a. Chlorophyll d provides a potential selective advantage because it enables Acaryochloris to use infrared light (700-750 nm) that is not absorbed by chlorophyll a. Recently, an even more red-shifted chlorophyll termed chlorophyll f has been reported. Here, we discuss using modified chlorophylls to extend the spectral region of light that drives photosynthetic organisms.
Collapse
Affiliation(s)
- Min Chen
- School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | | |
Collapse
|
33
|
|
34
|
Björn LO, Sundqvist C, Oquist G. A tribute to Per Halldal (1922-1986), a Norwegian photobiologist in Sweden. PHOTOSYNTHESIS RESEARCH 2007; 92:7-11. [PMID: 17342447 DOI: 10.1007/s11120-006-9072-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 05/06/2006] [Indexed: 05/14/2023]
Abstract
We present here a tribute to Per Halldal (February 2, 1922-March 26, 1986), a leader, an instrumentalist, an expert on phototaxis in algae, and one whom we remember, even after 20 years of his death, as a person who spread joy, enthusiasm and knowledge wherever he went.
Collapse
Affiliation(s)
- Lars Olof Björn
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35, SE-223 62, Lund, Sweden.
| | | | | |
Collapse
|
35
|
|