1
|
Jia J, Jiang H, Zhu X, Wang S, Wang L, Liu C, Li W, Huang W. Inorganic carbon utilization strategies of plateau aquatic plants in response to native habitats. PHOTOSYNTHESIS RESEARCH 2024; 162:47-62. [PMID: 39133367 DOI: 10.1007/s11120-024-01115-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
Aquatic plants are a crucial component of the aquatic ecosystem in the Tibetan Plateau region. Researching the adaptability of plateau aquatic plants in photosynthesis to the plateau environment can enhance understanding of the operational mechanisms of plateau ecosystems, thereby providing a scientific basis for the protection and management of plateau aquatic ecosystems. This study presents an investigation of photosynthetic inorganic carbon utilization strategies and photosynthetic efficiency of 17 aquatic plants under natural growing conditions in Niyang River basin on the Tibetan Plateau. In pH-drift experiments, 10 of 17 species were able to utilize HCO3-, and environmental factors like water pH were shown to have a significant effect on the ability of the tested species to utilize HCO3-. Titratable acidity in the leaves of Stuckenia filiformis, Zannichellia palustris, Batrachium bungei, and Myriophyllum spicatum showed significant diurnal fluctuations at certain sampling sites, indicating the presence of CAM. In B. bungei, water pH positively correlated with CAM activity, while CO2 concentration negatively correlated with CAM activity. The chlorophyll fluorescence analysis revealed that aquatic plants inhabiting the Tibetan Plateau exhibited photosynthetic adaptations. In conclusion, the aquatic plants on the Tibetan Plateau employ diverse strategies for utilizing inorganic carbon during photosynthesis, exhibiting their flexible adaptability to the native high-altitude habitats of the Tibetan Plateau.
Collapse
Affiliation(s)
- Jiajia Jia
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850000, China
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Hongsheng Jiang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xi Zhu
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Life Sciences, Hainan University, HaiKou, 570228, China
| | - Shanwei Wang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Liyuan Wang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | | | - Wei Li
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850000, China.
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Yani Wetland Ecosystem Positioning Observation and Research Station, Tibet University, Lhasa, China.
| | - Wenmin Huang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
2
|
Okamoto A, Koyama K, Bhusal N. Diurnal Change of the Photosynthetic Light-Response Curve of Buckbean ( Menyanthes trifoliata), an Emergent Aquatic Plant. PLANTS (BASEL, SWITZERLAND) 2022; 11:174. [PMID: 35050061 PMCID: PMC8779618 DOI: 10.3390/plants11020174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/02/2022]
Abstract
Understanding plant physiological responses to high temperature is an important concern pertaining to climate change. However, compared with terrestrial plants, information about aquatic plants remains limited. Since the degree of midday depression of photosynthesis under high temperature depends on soil water conditions, it is expected that emergent aquatic plants, for which soil water conditions are always saturated, will show different patterns compared with terrestrial plants. We investigated the diurnal course of the photosynthetic light-response curve and incident light intensity for a freshwater emergent plant, buckbean (Menyanthes trifoliata L.; Menyanthaceae) in a cool temperate region. The effect of midday depression was observed only on a very hot day, but not on a moderately hot day, in summer. The diurnal course of photosynthetic light-response curves on this hot day showed that latent morning reduction of photosynthetic capacity started at dawn, preceding the apparent depression around the midday, in agreement with results reported in terrestrial plants. We concluded that (1) midday depression of emergent plants occurs when the stress intensity exceeds the species' tolerance, and (2) measurements of not only photosynthetic rate under field conditions but also diurnal course of photosynthetic light-response curve are necessary to quantify the effect of midday depression.
Collapse
Affiliation(s)
- Azumi Okamoto
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inadacho, Obihiro 080-8555, Japan
| | - Kohei Koyama
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inadacho, Obihiro 080-8555, Japan
| | - Narayan Bhusal
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Korea;
| |
Collapse
|
3
|
In vitro activity of reconstituted rubisco enzyme from Gloeobacter violaceus. J Biosci 2021. [DOI: 10.1007/s12038-021-00188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Klok PF, van der Velde G. Plant traits and environment: floating leaf blade production and turnover of waterlilies. PeerJ 2017; 5:e3212. [PMID: 28462025 PMCID: PMC5410161 DOI: 10.7717/peerj.3212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 03/21/2017] [Indexed: 11/21/2022] Open
Abstract
Floating leaf blades of waterlilies fulfill several functions in wetland ecosystems by production, decomposition and turnover as well as exchange processes. Production and turnover rates of floating leaf blades of three waterlily species, Nuphar lutea (L.) Sm., Nymphaea alba L. and Nymphaea candida Presl, were studied in three freshwater bodies, differing in trophic status, pH and alkalinity. Length and percentages of leaf loss of marked leaf blades were measured weekly during the growing season. Area and biomass were calculated based on leaf length and were used to calculate the turnover rate of floating leaf blades. Seasonal changes in floating leaf production showed that values decreased in the order: Nymphaea alba, Nuphar lutea, Nymphaea candida. The highest production was reached for Nuphar lutea and Nymphaea alba in alkaline, eutrophic water bodies. The production per leaf was relatively high for both species in the acid water body. Nymphaea candida showed a very short vegetation period and low turnover rates. The ratio Total potential leaf biomass/Maximum potential leaf biomass (P/Bmax) of the three species ranged from 1.35–2.25. The ratio Vegetation period (Period with floating leaves)/Mean leaf life span ranged from 2.94–4.63, the ratio Growth period (Period with appearance of new floating leaves)/Vegetation period from 0.53–0.73. The clear differences between Nymphaea candida versus Nuphar lutea and Nymphaea alba, may be due to adaptations of Nymphaea candida to an Euro-Siberic climate with short-lasting summer conditions.
Collapse
Affiliation(s)
- Peter F Klok
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, Netherlands.,Department of Particle Physics, Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Gerard van der Velde
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, Netherlands.,Naturalis Biodiversity Center, Leiden, Netherlands
| |
Collapse
|
5
|
The drug ornidazole inhibits photosynthesis in a different mechanism described for protozoa and anaerobic bacteria. Biochem J 2016; 473:4413-4426. [DOI: 10.1042/bcj20160433] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/01/2016] [Accepted: 09/19/2016] [Indexed: 11/17/2022]
Abstract
Ornidazole of the 5-nitroimidazole drug family is used to treat protozoan and anaerobic bacterial infections via a mechanism that involves preactivation by reduction of the nitro group, and production of toxic derivatives and radicals. Metronidazole, another drug family member, has been suggested to affect photosynthesis by draining electrons from the electron carrier ferredoxin, thus inhibiting NADP+ reduction and stimulating radical and peroxide production. Here we show, however, that ornidazole inhibits photosynthesis via a different mechanism. While having a minute effect on the photosynthetic electron transport and oxygen photoreduction, ornidazole hinders the activity of two Calvin cycle enzymes, triose-phosphate isomerase (TPI) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Modeling of ornidazole's interaction with ferredoxin of the protozoan Trichomonas suggests efficient electron tunneling from the iron–sulfur cluster to the nitro group of the drug. A similar docking site of ornidazole at the plant-type ferredoxin does not exist, and the best simulated alternative does not support such efficient tunneling. Notably, TPI was inhibited by ornidazole in the dark or when electron transport was blocked by dichloromethyl diphenylurea, indicating that this inhibition was unrelated to the electron transport machinery. Although TPI and GAPDH isoenzymes are involved in glycolysis and gluconeogenesis, ornidazole's effect on respiration of photoautotrophs is moderate, thus raising its value as an efficient inhibitor of photosynthesis. The scarcity of Calvin cycle inhibitors capable of penetrating cell membranes emphasizes on the value of ornidazole for studying the regulation of this cycle.
Collapse
|
6
|
Schoelynck J, Bal K, Puijalon S, Meire P, Struyf E. Hydrodynamically mediated macrophyte silica dynamics. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:997-1005. [PMID: 22512916 DOI: 10.1111/j.1438-8677.2012.00583.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In most aquatic ecosystems, hydrodynamic conditions are a key abiotic factor determining species distributions and abundance of aquatic plants. Resisting stress and keeping an upright position often relies on investment in tissue reinforcement, which is costly to produce. Silica could provide a more economical alternative. Two laboratory experiments were conducted to measure the response of two submerged species, Egeria densa Planch. and Limnophila heterophylla (Roxb.) Benth., to dissolved silicic acid availability and exposure to hydrodynamic stress. The results were verified with a third species in a field study (Nuphar lutea (L.) Smith). Biogenic silica (BSi) concentration in both stems and leaves increases with increasing dissolved silica availability but also with the presence of hydrodynamic stress. We suggest that the inclusion of extra silica enables the plant to alternatively invest its energy in the production of lignin and cellulose. Although we found no significant effects of hydrodynamic stress on cellulose or lignin concentrations either in the laboratory or in the field, BSi was negatively correlated with cellulose concentration and positively correlated with lignin concentration in samples collected in the field study. This implies that the plant might perform with equal energy efficiency in both standing and running water environments. This could provide submerged species with a tool to respond to abiotic factors, to adapt to new ecological conditions and hence potentially colonise new environments.
Collapse
Affiliation(s)
- J Schoelynck
- Department of Biology, Ecosystem Management Research Group, University of Antwerp, Wilrijk, Belgium.
| | | | | | | | | |
Collapse
|
7
|
Klimenko EN. Structural and functional aspects of the Nuphar lutea (L.) Smith heterophylly: Ultrastructure and photosynthesis. CYTOL GENET+ 2012. [DOI: 10.3103/s0095452712050052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Marcus Y, Altman-Gueta H, Wolff Y, Gurevitz M. Rubisco mutagenesis provides new insight into limitations on photosynthesis and growth in Synechocystis PCC6803. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4173-82. [PMID: 21551078 PMCID: PMC3153676 DOI: 10.1093/jxb/err116] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Orthophosphate (Pi) stimulates the activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) while paradoxically inhibiting its catalysis. Of three Pi-binding sites, the roles of the 5P- and latch sites have been documented, whereas that of the 1P-site remained unclear. Conserved residues at the 1P-site of Rubisco from the cyanobacterium Synechocystis PCC6803 were substituted and the kinetic properties of the enzyme derivatives and effects on cell photosynthesis and growth were examined. While Pi-stimulated Rubisco activation diminished for enzyme mutants T65A/S and G404A, inhibition of catalysis by Pi remained unchanged. Together with previous studies, the results suggest that all three Pi-binding sites are involved in stimulation of Rubisco activation, whereas only the 5P-site is involved in inhibition of catalysis. While all the mutations reduced the catalytic turnover of Rubisco (K(cat)) between 6- and 20-fold, the photosynthesis and growth rates under saturating irradiance and inorganic carbon (Ci) concentrations were only reduced 40-50% (in the T65A/S mutants) or not at all (G404A mutant). Analysis of the mutant cells revealed a 3-fold increase in Rubisco content that partially compensated for the reduced K(cat) so that the carboxylation rate per chlorophyll was one-third of that in the wild type. Correlation between the kinetic properties of Rubisco and the photosynthetic rate (P(max)) under saturating irradiance and Ci concentrations indicate that a >60% reduction in K(cat) can be tolerated before P(max) in Synechocystsis PCC6803 is affected. These results indicate that the limitation of Rubisco activity on the rate of photosynthesis in Synechocystis is low. Determination of Calvin cycle metabolites revealed that unlike in higher plants, cyanobacterial photosynthesis is constrained by phosphoglycerate reduction probably due to limitation of ATP or NADPH.
Collapse
Affiliation(s)
- Yehouda Marcus
- Department of Molecular Biology and Ecology of Plants, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.
| | | | | | | |
Collapse
|
9
|
Raven JA, Giordano M, Beardall J. Insights into the evolution of CCMs from comparisons with other resource acquisition and assimilation processes. PHYSIOLOGIA PLANTARUM 2008; 133:4-14. [PMID: 18405331 DOI: 10.1111/j.1399-3054.2007.01024.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Regarding inorganic carbon as 'just another' chemical resource used in the growth of aquatic photolithotrophs, we ask three questions and then attempt to answer them. (1) How common are catalysed chemical changes of the resource outside the cell, and accumulation of the resource inside the cell prior to assimilation, for the diverse chemical resources used? (2) Do acquisition and assimilation meet evolutionary optimality criteria with respect to the use of other resources? (3) Are there clues to the evolutionary origin of inorganic carbon concentrating mechanism (CCMs) in the mechanisms of acquisition of other resources and vice versa? Evidence considered includes molecular genetic similarities between CCM components and components of other resource acquisition mechanisms, and palaeogeochemical evidence on the timing of restrictions on the availability of the resources such that extracellular transformation of materials, and their accumulation within cells prior to assimilation, are needed. Provisional answers to the questions are as follows: (1) Many common chemical resources other than inorganic carbon are subject to extracellular chemical conversion and/or accumulation prior to assimilation, e.g. ammonium, nitrate, urea, amino acids, organic and inorganic phosphate and iron; (2) There is some evidence for optimality of CCMs and of less complex resource acquisition processes, exemplified by NH(4)(+) entry and assimilation, though many more data are needed and (3) There are molecular genetic similarities between CCM components and transporters for other solutes and components of respiratory NADH dehydrogenases that are consistent with their use in CCMs representing a derived evolutionary state. Palaeogeochemical evidence suggests that CCMs evolved later than did at least some of the extracellular chemical transformation and/or accumulation mechanisms for other resources.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at SCRI, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom.
| | | | | |
Collapse
|