1
|
Wang Y, Wang J, Yang S, Liang Q, Gu Z, Wang Y, Mou H, Sun H. Selecting a preculture strategy for improving biomass and astaxanthin productivity of Chromochloris zofingiensis. Appl Microbiol Biotechnol 2024; 108:117. [PMID: 38204137 PMCID: PMC10781847 DOI: 10.1007/s00253-023-12873-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 01/12/2024]
Abstract
Chromochloris zofingiensis is a potential source of natural astaxanthin; however, its rapid growth and astaxanthin enrichment cannot be achieved simultaneously. This study established autotrophic, mixotrophic, and heterotrophic preculture patterns to assess their ameliorative effect on the C. zofingiensis heterotrophic growth state. In comparison, mixotrophic preculture (MP) exhibited the best improving effect on heterotrophic biomass concentration of C. zofingiensis (up to 121.5 g L-1) in a 20 L fermenter, reaching the global leading level. The astaxanthin productivity achieved 111 mg L-1 day-1, 7.4-fold higher than the best record. The transcriptome and 13C tracer-based metabolic flux analysis were used for mechanism inquiry. The results revealed that MP promoted carotenoid and lipid synthesis, and supported synthesis preference of low unsaturated fatty acids represented by C18:1 and C16:0. The MP group maintained the best astaxanthin productivity via mastering the balance between increasing glucose metabolism and inhibition of carotenoid synthesis. The MP strategy optimized the physiological state of C. zofingiensis and realized its heterotrophic high-density growth for an excellent astaxanthin yield on a pilot scale. This strategy exhibits great application potential in the microalgae-related industry. KEY POINTS: • Preculture strategies changed carbon flux and gene expression in C. zofingiensis • C. zofingiensis realized a high-density culture with MP and fed-batch culture (FBC) • Astaxanthin productivity achieved 0.111 g L-1 day-1 with MP and FBC.
Collapse
Affiliation(s)
- Yuxin Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Jia Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Ziqiang Gu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Ying Wang
- Marine Science research Institute of Shandong Province, Qingdao, 266003, China.
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| | - Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
2
|
Dorrell RG, Zhang Y, Liang Y, Gueguen N, Nonoyama T, Croteau D, Penot-Raquin M, Adiba S, Bailleul B, Gros V, Pierella Karlusich JJ, Zweig N, Fernie AR, Jouhet J, Maréchal E, Bowler C. Complementary environmental analysis and functional characterization of lower glycolysis-gluconeogenesis in the diatom plastid. THE PLANT CELL 2024; 36:3584-3610. [PMID: 38842420 PMCID: PMC11371179 DOI: 10.1093/plcell/koae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Organic carbon fixed in chloroplasts through the Calvin-Benson-Bassham Cycle can be diverted toward different metabolic fates, including cytoplasmic and mitochondrial respiration, gluconeogenesis, and synthesis of diverse plastid metabolites via the pyruvate hub. In plants, pyruvate is principally produced via cytoplasmic glycolysis, although a plastid-targeted lower glycolytic pathway is known to exist in non-photosynthetic tissue. Here, we characterized a lower plastid glycolysis-gluconeogenesis pathway enabling the direct interconversion of glyceraldehyde-3-phosphate and phospho-enol-pyruvate in diatoms, ecologically important marine algae distantly related to plants. We show that two reversible enzymes required to complete diatom plastid glycolysis-gluconeogenesis, Enolase and bis-phosphoglycerate mutase (PGAM), originated through duplications of mitochondria-targeted respiratory isoforms. Through CRISPR-Cas9 mutagenesis, integrative 'omic analyses, and measured kinetics of expressed enzymes in the diatom Phaeodactylum tricornutum, we present evidence that this pathway diverts plastid glyceraldehyde-3-phosphate into the pyruvate hub, and may also function in the gluconeogenic direction. Considering experimental data, we show that this pathway has different roles dependent in particular on day length and environmental temperature, and show that the cpEnolase and cpPGAM genes are expressed at elevated levels in high-latitude oceans where diatoms are abundant. Our data provide evolutionary, meta-genomic, and functional insights into a poorly understood yet evolutionarily recurrent plastid metabolic pathway.
Collapse
Affiliation(s)
- Richard G Dorrell
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
- Laboratory of Computational and Quantitative Biology (LCQB), Institut de Biologie Paris-Seine (IBPS), CNRS, INSERM, Sorbonne Université, Paris 75005, France
| | - Youjun Zhang
- Department of Plant Metabolomics, Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Central Plant Metabolism Group, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yue Liang
- Center of Deep Sea Research, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Nolwenn Gueguen
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, University Grenoble Alpes, CEA, INRAE, IRIG, 38000 Grenoble, France
| | - Tomomi Nonoyama
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Dany Croteau
- Institut de Biologie Physico-Chimique (IBPC), Université PSL, Paris 75005, France
| | - Mathias Penot-Raquin
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
- Laboratory of Computational and Quantitative Biology (LCQB), Institut de Biologie Paris-Seine (IBPS), CNRS, INSERM, Sorbonne Université, Paris 75005, France
| | - Sandrine Adiba
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Benjamin Bailleul
- Institut de Biologie Physico-Chimique (IBPC), Université PSL, Paris 75005, France
| | - Valérie Gros
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, University Grenoble Alpes, CEA, INRAE, IRIG, 38000 Grenoble, France
| | - Juan José Pierella Karlusich
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Nathanaël Zweig
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Alisdair R Fernie
- Department of Plant Metabolomics, Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Central Plant Metabolism Group, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, University Grenoble Alpes, CEA, INRAE, IRIG, 38000 Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, University Grenoble Alpes, CEA, INRAE, IRIG, 38000 Grenoble, France
| | - Chris Bowler
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| |
Collapse
|
3
|
Liu Y, Ye J, Zhu M, Atkinson RG, Zhang Y, Zheng X, Lu J, Cao Z, Peng J, Shi C, Xie Z, Larkin RM, Nieuwenhuizen NJ, Ampomah-Dwamena C, Chen C, Wang R, Luo X, Cheng Y, Deng X, Zeng Y. Multi-omics analyses reveal the importance of chromoplast plastoglobules in carotenoid accumulation in citrus fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:924-943. [PMID: 37902994 DOI: 10.1111/tpj.16519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023]
Abstract
Chromoplasts act as a metabolic sink for carotenoids, in which plastoglobules serve as versatile lipoprotein particles. PGs in chloroplasts have been characterized. However, the features of PGs from non-photosynthetic plastids are poorly understood. We found that the development of chromoplast plastoglobules (CPGs) in globular and crystalloid chromoplasts of citrus is associated with alterations in carotenoid storage. Using Nycodenz density gradient ultracentrifugation, an efficient protocol for isolating highly purified CPGs from sweet orange (Citrus sinensis) pulp was established. Forty-four proteins were defined as likely comprise the core proteome of CPGs using comparative proteomics analysis. Lipidome analysis of different chromoplast microcompartments revealed that the nonpolar microenvironment within CPGs was modified by 35 triacylglycerides, two sitosterol esters, and one stigmasterol ester. Manipulation of the CPG-localized gene CsELT1 (esterase/lipase/thioesterase) in citrus calli resulted in increased lipids and carotenoids, which is further evidence that the nonpolar microenvironment of CPGs contributes to carotenoid accumulation and storage in the chromoplasts. This multi-feature analysis of CPGs sheds new light on the role of chromoplasts in carotenoid metabolism, paving the way for manipulating carotenoid content in citrus fruit and other crops.
Collapse
Affiliation(s)
- Yun Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| | - Junli Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Man Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, 92169, Auckland, New Zealand
| | - Yingzi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Xiongjie Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Jiao Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Zhen Cao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Jun Peng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Chunmei Shi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Zongzhou Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Robert M Larkin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Niels J Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, 92169, Auckland, New Zealand
| | - Charles Ampomah-Dwamena
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, 92169, Auckland, New Zealand
| | - Chuanwu Chen
- Guangxi Academy of Specialty Crops/Guangxi Engineering Research Center of Citrus Breeding and Culture, Guilin, 541004, P.R. China
| | - Rui Wang
- Shanghai Applied Protein Technology Co. Ltd, Shanghai, 200233, P.R. China
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| | - Yunjiang Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Yunliu Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| |
Collapse
|
4
|
Khazi MI, Liaqat F, Gu W, Mohamed B, Zhu D, Li J. Astaxanthin production from the microalga Haematococcus lacustris with a dual substrate mixotrophy strategy. Biotechnol J 2023; 18:e2300095. [PMID: 37377135 DOI: 10.1002/biot.202300095] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
This study investigates the development of dual-substrate mixotrophy strategy to cultivate the microalga Haematococcus lacustris for astaxanthin production. The influence of different concentrations of acetate and pyruvate on biomass productivity was first assessed individually, and then both substrates were used together to improve biomass growth in the green phase and astaxanthin accumulation in red the phase. The results showed that dual-substrates mixotrophy significantly increased the biomass productivity during green growth phase up to 2-fold compared to phototrophic controls. Furthermore, supplementation of dual-substrate to the red phase increased astaxanthin accumulation by 10% in the dual-substrate group compared to single-substrate acetate and no substrate. This dual-substrate mixotrophy approach shows promise for cultivating Haematococcus for commercial production of biological astaxanthin in indoor closed systems.
Collapse
Affiliation(s)
- Mahammed Ilyas Khazi
- College of Biological and Chemical Engineering, College of Agricultural Sciences, Panzhihua University, Panzhihua, China
| | - Fakhra Liaqat
- College of Biological and Chemical Engineering, College of Agricultural Sciences, Panzhihua University, Panzhihua, China
| | - Wenhui Gu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Badr Mohamed
- Department of Agricultural Engineering, Cairo University, Giza, Egypt
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jian Li
- College of Biological and Chemical Engineering, College of Agricultural Sciences, Panzhihua University, Panzhihua, China
| |
Collapse
|
5
|
Microalgae-mediated wastewater treatment for biofuels production: A comprehensive review. Microbiol Res 2022; 265:127187. [DOI: 10.1016/j.micres.2022.127187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 01/20/2023]
|
6
|
Shen XF, Xu YP, Tong XQ, Huang Q, Zhang S, Gong J, Chu FF, Zeng RJ. The mechanism of carbon source utilization by microalgae when co-cultivated with photosynthetic bacteria. BIORESOURCE TECHNOLOGY 2022; 365:128152. [PMID: 36265788 DOI: 10.1016/j.biortech.2022.128152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Microalgae-photosynthetic bacteria (PSB) co-culture, which is promising for wastewater treatment and lipid production, is lacking of study. In this work, the combinations of 3 microalgae and 3 PSB strains were firstly screened and then different inoculation ratios of the co-cultures were investigated. It was found the best promotion was Chlorella pyrenoidosa/Rhodobacter capsulatus co-culture (1:1), where the biomass productivity, acetate assimilation rate and lipid productivity were 1.64, 1.61 and 2.79 times than that of the sum of pure microalgae and PSB cultures, respectively. Meanwhile, the inoculation ratio significantly affected the growth rate and lipid productivity of co-culture systems. iTRAQ analysis showed that PSB played a positive effect on acetate assimilation, TCA cycle and glyoxylate cycle of microalgae, but decreased the carbon dioxide utilization and photosynthesis, indicating PSB promoted the microalgae metabolism of organic carbon utilization and weakened inorganic carbon utilization. These findings provide in-depth understanding of carbon utilization in microalgae-PSB co-culture.
Collapse
Affiliation(s)
- Xiao-Fei Shen
- School of Ecology and Environment, Anhui Normal University, Anhui 241000, PR China
| | - Ya-Ping Xu
- School of Ecology and Environment, Anhui Normal University, Anhui 241000, PR China
| | - Xiao-Qin Tong
- School of Ecology and Environment, Anhui Normal University, Anhui 241000, PR China
| | - Qi Huang
- School of Ecology and Environment, Anhui Normal University, Anhui 241000, PR China
| | - Shuai Zhang
- School of Ecology and Environment, Anhui Normal University, Anhui 241000, PR China
| | - Jing Gong
- School of Ecology and Environment, Anhui Normal University, Anhui 241000, PR China
| | - Fei-Fei Chu
- College of Standardization, China Jiliang University, Zhejiang 310018, PR China
| | - Raymond Jianxiong Zeng
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fujian 350002, PR China.
| |
Collapse
|
7
|
Lacroux J, Atteia A, Brugière S, Couté Y, Vallon O, Steyer JP, van Lis R. Proteomics unveil a central role for peroxisomes in butyrate assimilation of the heterotrophic Chlorophyte alga Polytomella sp. Front Microbiol 2022; 13:1029828. [PMID: 36353459 PMCID: PMC9637915 DOI: 10.3389/fmicb.2022.1029828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/05/2022] [Indexed: 09/08/2023] Open
Abstract
Volatile fatty acids found in effluents of the dark fermentation of biowastes can be used for mixotrophic growth of microalgae, improving productivity and reducing the cost of the feedstock. Microalgae can use the acetate in the effluents very well, but butyrate is poorly assimilated and can inhibit growth above 1 gC.L-1. The non-photosynthetic chlorophyte alga Polytomella sp. SAG 198.80 was found to be able to assimilate butyrate fast. To decipher the metabolic pathways implicated in butyrate assimilation, quantitative proteomics study was developed comparing Polytomella sp. cells grown on acetate and butyrate at 1 gC.L-1. After statistical analysis, a total of 1772 proteins were retained, of which 119 proteins were found to be overaccumulated on butyrate vs. only 46 on acetate, indicating that butyrate assimilation necessitates additional metabolic steps. The data show that butyrate assimilation occurs in the peroxisome via the β-oxidation pathway to produce acetyl-CoA and further tri/dicarboxylic acids in the glyoxylate cycle. Concomitantly, reactive oxygen species defense enzymes as well as the branched amino acid degradation pathway were strongly induced. Although no clear dedicated butyrate transport mechanism could be inferred, several membrane transporters induced on butyrate are identified as potential condidates. Metabolic responses correspond globally to the increased needs for central cofactors NAD, ATP and CoA, especially in the peroxisome and the cytosol.
Collapse
Affiliation(s)
| | - Ariane Atteia
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Sabine Brugière
- Univ Grenoble Alpes, CEA, INSERM, UMR BioSanté U1292, CNRS, CEA, Grenoble, France
| | - Yohann Couté
- Univ Grenoble Alpes, CEA, INSERM, UMR BioSanté U1292, CNRS, CEA, Grenoble, France
| | - Olivier Vallon
- Institut de Biologie Physico-Chimique, UMR7141 CNRS-Sorbonne Université, Paris, France
| | | | | |
Collapse
|
8
|
Han X, Zhang YW, Liu JY, Zuo JF, Zhang ZC, Guo L, Zhang YM. 4D genetic networks reveal the genetic basis of metabolites and seed oil-related traits in 398 soybean RILs. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:92. [PMID: 36076247 PMCID: PMC9461130 DOI: 10.1186/s13068-022-02191-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022]
Abstract
Background The yield and quality of soybean oil are determined by seed oil-related traits, and metabolites/lipids act as bridges between genes and traits. Although there are many studies on the mode of inheritance of metabolites or traits, studies on multi-dimensional genetic network (MDGN) are limited. Results In this study, six seed oil-related traits, 59 metabolites, and 107 lipids in 398 recombinant inbred lines, along with their candidate genes and miRNAs, were used to construct an MDGN in soybean. Around 175 quantitative trait loci (QTLs), 36 QTL-by-environment interactions, and 302 metabolic QTL clusters, 70 and 181 candidate genes, including 46 and 70 known homologs, were previously reported to be associated with the traits and metabolites, respectively. Gene regulatory networks were constructed using co-expression, protein–protein interaction, and transcription factor binding site and miRNA target predictions between candidate genes and 26 key miRNAs. Using modern statistical methods, 463 metabolite–lipid, 62 trait–metabolite, and 89 trait–lipid associations were found to be significant. Integrating these associations into the above networks, an MDGN was constructed, and 128 sub-networks were extracted. Among these sub-networks, the gene–trait or gene–metabolite relationships in 38 sub-networks were in agreement with previous studies, e.g., oleic acid (trait)–GmSEI–GmDGAT1a–triacylglycerol (16:0/18:2/18:3), gene and metabolite in each of 64 sub-networks were predicted to be in the same pathway, e.g., oleic acid (trait)–GmPHS–d-glucose, and others were new, e.g., triacylglycerol (16:0/18:1/18:2)–GmbZIP123–GmHD-ZIPIII-10–miR166s–oil content. Conclusions This study showed the advantages of MGDN in dissecting the genetic relationships between complex traits and metabolites. Using sub-networks in MGDN, 3D genetic sub-networks including pyruvate/threonine/citric acid revealed genetic relationships between carbohydrates, oil, and protein content, and 4D genetic sub-networks including PLDs revealed the relationships between oil-related traits and phospholipid metabolism likely influenced by the environment. This study will be helpful in soybean quality improvement and molecular biological research. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02191-1.
Collapse
|
9
|
Aburai N, Onda T, Fujii K. Carotenogenesis and carotenoid esterification in biofilms of the microalga Coelastrella rubescens KGU-Y002 in the aerial phase. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Teh KY, Loh SH, Aziz A, Takahashi K, Toda T, Wahid MEA, Cha TS. Transcriptome analysis of mangrove-isolated Chlorella vulgaris UMT-M1 reveals insights for vigorous growth and lipid accumulation through reduced salinity. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
11
|
Enhancement of co-conversion of endogenous carbon and nitrogen of dairy wastewater in mesophilic hydrolysis-acidification coupled microalgae culture system by rhamnolipid. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Li J, Pan K, Tang X, Li Y, Zhu B, Zhao Y. The molecular mechanisms of Chlorella sp. responding to high CO 2: A study based on comparative transcriptome analysis between strains with high- and low-CO 2 tolerance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:144185. [PMID: 33383507 DOI: 10.1016/j.scitotenv.2020.144185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 05/28/2023]
Abstract
High CO2 acclimation for microalgae has attracted large research attention owing to the usefulness of microalgae in bio-sequestration of CO2 from the emission source. In this study, one high CO2 tolerant (LAMB 31) and non-tolerant (LAMB 122) Chlorella sp. strains were transferred from air to 40% CO2, during which four time points were chosen for comparative transcriptome analysis. Gene changes started in the lag phase (T1) of population growth with more genes (7889) upregulated in LAMB 31 than in LAMB 122 (1092). Further function enrichments indicated: In LAMB 31, up-regulation of genes in cyclic electron transportation, F-type ATPase and Calvin cycle were associated with the enhancement of carbon fixation abilities; upregulation of genes in phosphorylation together with V-ATPase, which contributed to cytoplasmatic pH stability; Lastly, enhancement of carbon metabolisms including TCA cycle and glycolysis accelerated the consumption of cellular organic carbon. Most of the genes in these pathways and processes showed downregulation in LAMB 122. This study disclosed the most complete transcriptional molecular mechanisms of Chlorella sp. responding to high CO2 by combining CO2 fixation, transportation, and metabolic processes. The results provided valuable genetic information for future screening and breeding of microalgae with high-CO2 tolerance for more efficient CO2 bio-sequestration.
Collapse
Affiliation(s)
- Jun Li
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China
| | - Kehou Pan
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China; Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, No. 5 12 Yu Shan Road, Qingdao 266003, China
| | - Xuexi Tang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, No. 5 12 Yu Shan Road, Qingdao 266003, China
| | - Baohua Zhu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, No. 5 12 Yu Shan Road, Qingdao 266003, China
| | - Yan Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| |
Collapse
|
13
|
Seo S, Kim J, Lee JW, Nam O, Chang KS, Jin E. Enhanced pyruvate metabolism in plastids by overexpression of putative plastidial pyruvate transporter in Phaeodactylum tricornutum. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:120. [PMID: 32670407 PMCID: PMC7350735 DOI: 10.1186/s13068-020-01760-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/02/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND The development of microalgal strains for enhanced biomass and biofuel production has received increased attention. Moreover, strain development via metabolic engineering for commercial production is being considered as the most efficient strategy. Pyruvate is an essential metabolite in the cells and plays an essential role in amino acid biosynthesis and de novo fatty acid biosynthesis in plastids. Although pyruvate can be a valuable target for metabolic engineering, its transporters have rarely been studied in microalgae. In this study, we aimed to identify the plastidial pyruvate transporter of Phaeodactylum tricornutum and utilize it for strain development. RESULTS We identified putative pyruvate transporter localized in the plastid membrane of Phaeodactylum tricornutum. Transformants overexpressing the pyruvate transporter were generated to increase the influx of pyruvate into plastids. Overexpression of a plastidial pyruvate transporter in P. tricornutum resulted in enhanced biomass (13.6% to 21.9%), lipid contents (11% to 30%), and growth (3.3% to 8.0%) compared to those of wild type during one-stage cultivation. CONCLUSION To regulate the pyruvate influx and its metabolism in plastids, we generated transformants overexpressing the putative plastidial pyruvate transporter in P. tricornutum. They showed that its overexpression for compartmentalizing pyruvate in plastids could be an attractive strategy for the effective production of biomass and lipids with better growth, via enhanced pyruvate metabolism in plastids.
Collapse
Affiliation(s)
- Seungbeom Seo
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763 Republic of Korea
| | - Joon Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763 Republic of Korea
| | - Jun-Woo Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763 Republic of Korea
| | - Onyou Nam
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763 Republic of Korea
| | - Kwang Suk Chang
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763 Republic of Korea
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763 Republic of Korea
| |
Collapse
|
14
|
Sahoo S, Mahapatra SR, Das N, Parida BK, Rath S, Misra N, Suar M. Functional elucidation of hypothetical proteins associated with lipid accumulation: Prioritizing genetic engineering targets for improved algal biofuel production. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
15
|
Fang L, Zhang J, Fei Z, Wan M. Astaxanthin accumulation difference between non-motile cells and akinetes of Haematococcus pluvialis was affected by pyruvate metabolism. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-019-0293-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Haematococcus pluvialis is the best source of natural astaxanthin, known as the king of antioxidants. H. pluvialis have four cell forms: spore, motile cell, non-motile cell and akinete. Spores and motile cells are susceptible to photoinhibition and would die under photoinduction conditions. Photoinduction using non-motile cells as seeds could result in a higher astaxanthin production than that using akinetes. However, the mechanism of this phenomenon has not been clarified.
Results
Transcriptome was sequenced and annotated to illustrate the mechanism of this phenomenon. All differentially expressed genes involved in astaxanthin biosynthesis were up-regulated. Particularly, chyb gene was up-regulated by 16-fold, improving the conversion of β-carotene into astaxanthin. Pyruvate was the precursor of carotenoids biosynthesis. Pyruvate kinase gene expression level was increased by 2.0-fold at the early stage of akinetes formation. More changes of gene transcription occurred at the early stage of akinetes formation, 52.7% and 51.9% of total DEGs in control group and treatment group, respectively.
Conclusions
Genes transcription network was constructed and the synthesis mechanism of astaxanthin was clarified. The results are expected to further guide the in-depth optimization of the astaxanthin production process in H. pluvialis by improving pyruvate metabolism.
Collapse
|
16
|
Mao X, Lao Y, Sun H, Li X, Yu J, Chen F. Time‑resolved transcriptome analysis during transitions of sulfur nutritional status provides insight into triacylglycerol (TAG) and astaxanthin accumulation in the green alga Chromochloris zofingiensis. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:128. [PMID: 32695224 PMCID: PMC7367374 DOI: 10.1186/s13068-020-01768-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/11/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Chromochloris zofingiensis, an oleaginous microalga, is a promising feedstock for the co-production of triacylglycerol (TAG)-based biodiesel and the high-value product astaxanthin. To reveal the molecular mechanism of TAG and astaxanthin biosynthesis during transitions of sulfur nutritional status, namely sulfur-starvation (SS) and sulfur-replenishment (SR), the physiological responses and the transcriptomic dynamics of C. zofingiensis were examined. RESULTS The results revealed a reversible TAG and astaxanthin accumulation under SS, which is correlated with the reduction of cell growth and protein content, indicating the reallocation of carbon. By correlating the data on the physiological and transcriptional responses to different sulfur nutritional status, a model for the underlying mechanism of TAG and astaxanthin accumulation in C. zofingiensis was postulated, which involved up-regulation of key genes including diacylglycerol acyltransferase (DGTT5) and beta-carotene ketolase (BKT1), increased energy and NADPH supply by elevating the tricarboxylic acid (TCA) cycle and the oxidative pentose phosphate (OPP) pathway, and the increased carbon precursors (pyruvate and acetyl-CoA) through central carbon metabolism. In addition, the net enhancement of the de novo biosynthesis of fatty acids and the re-direction of the terpenoid precursors toward the branch catalyzed by lycopene beta cyclase (LCYb) and BKT1 escalated the substrate availability for the biosynthesis of TAG and astaxanthin, respectively. CONCLUSIONS In this study, the time-resolved transcriptional analysis of C. zofingiensis under SS and SR conditions was reported for the first time to elucidate the regulatory roles of key enzymes, including DGTT5, BKT1 and LCYb, in the underlying mechanisms of TAG and astaxanthin accumulation.
Collapse
Affiliation(s)
- Xuemei Mao
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060 China
| | - Yongmin Lao
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060 China
| | - Han Sun
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| | - Xiaojie Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060 China
| | - Jianfeng Yu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060 China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060 China
| |
Collapse
|
17
|
Responses of Arthrospira ZJU9000 to high bicarbonate concentration (HCO3−: 171.2 mM): How do biomass productivity and lipid content simultaneously increase? ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Metabolic Innovations Underpinning the Origin and Diversification of the Diatom Chloroplast. Biomolecules 2019; 9:biom9080322. [PMID: 31366180 PMCID: PMC6723447 DOI: 10.3390/biom9080322] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
Of all the eukaryotic algal groups, diatoms make the most substantial contributions to photosynthesis in the contemporary ocean. Understanding the biological innovations that have occurred in the diatom chloroplast may provide us with explanations to the ecological success of this lineage and clues as to how best to exploit the biology of these organisms for biotechnology. In this paper, we use multi-species transcriptome datasets to compare chloroplast metabolism pathways in diatoms to other algal lineages. We identify possible diatom-specific innovations in chloroplast metabolism, including the completion of tocopherol synthesis via a chloroplast-targeted tocopherol cyclase, a complete chloroplast ornithine cycle, and chloroplast-targeted proteins involved in iron acquisition and CO2 concentration not shared between diatoms and their closest relatives in the stramenopiles. We additionally present a detailed investigation of the chloroplast metabolism of the oil-producing diatom Fistulifera solaris, which is of industrial interest for biofuel production. These include modified amino acid and pyruvate hub metabolism that might enhance acetyl-coA production for chloroplast lipid biosynthesis and the presence of a chloroplast-localised squalene synthesis pathway unknown in other diatoms. Our data provides valuable insights into the biological adaptations underpinning an ecologically critical lineage, and how chloroplast metabolism can change even at a species level in extant algae.
Collapse
|
19
|
Kokabi K, Gorelova O, Ismagulova T, Itkin M, Malitsky S, Boussiba S, Solovchenko A, Khozin-Goldberg I. Metabolomic foundation for differential responses of lipid metabolism to nitrogen and phosphorus deprivation in an arachidonic acid-producing green microalga. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:95-115. [PMID: 31128719 DOI: 10.1016/j.plantsci.2019.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/05/2019] [Accepted: 02/11/2019] [Indexed: 05/08/2023]
Abstract
The green oleaginous microalga Lobosphaera incisa accumulates storage lipids triacylglycerols (TAG) enriched in the long-chain polyunsaturated fatty acid arachidonic acid under nitrogen (N) deprivation. In contrast, under phosphorous (P) deprivation, the production of the monounsaturated oleic acid prevails. We compared physiological responses, ultrastructural, and metabolic consequences of L. incisa acclimation to N and P deficiency to provide novel insights into the key determinants of ARA accumulation. Differential responses to nutrient deprivation on growth performance, carbon-to-nitrogen stoichiometry, membrane lipid composition and TAG accumulation were demonstrated. Ultrastructural analyses suggested a dynamic role for vacuoles in sustaining cell homeostasis under conditions of different nutrient availability and their involvement in autophagy in L. incisa. Paralleling ARA-rich TAG accumulation in lipid droplets, N deprivation triggered intensive chloroplast dismantling and promoted catabolic processes. Metabolome analysis revealed depletion of amino acids and pyrimidines, and repression of numerous biosynthetic hubs to favour TAG biosynthesis under N deprivation. Under P deprivation, despite the relatively low growth penalties, the presence of the endogenous P reserves and the characteristic lipid remodelling, metabolic signatures of energy deficiency were revealed. Metabolome adjustments to P deprivation included depletion in ATP and phosphorylated nucleotides, increased levels of TCA-cycle intermediates and osmoprotectants. We conclude that characteristic cellular and metabolome adjustments tailor the adaptive responses of L. incisa to N and P deprivation modulating its LC-PUFA production.
Collapse
Affiliation(s)
- Kamilya Kokabi
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Olga Gorelova
- Department of Bioengineering, Faculty of Biology, Moscow State University, GSP-1, Moscow, 119234, Russia
| | - Tatiana Ismagulova
- Department of Bioengineering, Faculty of Biology, Moscow State University, GSP-1, Moscow, 119234, Russia
| | - Maxim Itkin
- Metabolic Profiling Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Metabolic Profiling Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sammy Boussiba
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Alexei Solovchenko
- Department of Bioengineering, Faculty of Biology, Moscow State University, GSP-1, Moscow, 119234, Russia; Peoples Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel.
| |
Collapse
|
20
|
Olivares-Rubio HF, Salazar-Coria L, Nájera-Martínez M, Godínez-Ortega JL, Vega-López A. Lipid metabolism and pro-oxidant/antioxidant balance of Halamphora oceanica from the Gulf of Mexico exposed to water accommodated fraction of Maya crude oil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:840-851. [PMID: 28968937 DOI: 10.1016/j.ecoenv.2017.09.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Diatoms play key roles in primary production and carbon fixation at a global scale and in some cases these species live on marine ecosystems impacted by crude oil (CO) spills. Halamphora oceanica, a new diatom species from the Southwest of the Gulf of Mexico was isolated and cultured in the laboratory and was exposed to water accommodated fraction (WAF) of different Maya CO loads at 0.01, 0.1, 1 and 10g/L by 96h. A battery of biomarkers involved in oxidative stress (O2•, H2O2, TBARS, ROOH, RC=O, SOD, CAT, GPx), biotransformation and conjugation (total CYP450 activity and GST) moreover fatty acid (FA) metabolism (FA levels, fatty-acid synthase and acyl-CoA oxidase) were measured. Obtained results suggest that increases of PAHs in the medium (below to EC50) acts as external forces able to turn-on regulatory mechanisms on H. oceanica involved in both, on the PAHs uptake and changing its aerobic metabolism to anaerobic metabolism. However, the growth of this microalgae species evaluated as chlorophyll "a" and pheophytin levels increased as the WAF concentration indicating that PAHs and other hydrosoluble hydrocarbons were used as carbon and energy sources by unidentified enzymes not evaluated in the current study. Our hypothesis was also corroborated by IBRv2. In the current study, we suppose the change from aerobic to anaerobic metabolism as a strategy for Halamphora oceanica survival exposed to petroleum hydrocarbons.
Collapse
Affiliation(s)
- Hugo F Olivares-Rubio
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental. Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, México D.F. CP 07738, Mexico
| | - Lucía Salazar-Coria
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental. Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, México D.F. CP 07738, Mexico
| | - Minerva Nájera-Martínez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental. Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, México D.F. CP 07738, Mexico
| | - José Luis Godínez-Ortega
- Universidad Nacional Autónoma de México, Instituto de Biología, Apdo. postal 70-233, 04510 México D.F., Mexico
| | - Armando Vega-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental. Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, México D.F. CP 07738, Mexico.
| |
Collapse
|
21
|
Heydarizadeh P, Boureba W, Zahedi M, Huang B, Moreau B, Lukomska E, Couzinet-Mossion A, Wielgosz-Collin G, Martin-Jézéquel V, Bougaran G, Marchand J, Schoefs B. Response of CO 2-starved diatom Phaeodactylum tricornutum to light intensity transition. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160396. [PMID: 28717022 PMCID: PMC5516105 DOI: 10.1098/rstb.2016.0396] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2017] [Indexed: 12/13/2022] Open
Abstract
In this study, we investigated the responses of Phaeodactylum tricornutum cells acclimated to 300 µmol m-2 s-1 photon flux density to an increase (1000 µmol m-2 s-1) or decrease (30 µmol m-2 s-1) in photon flux densities. The light shift occurred abruptly after 5 days of growth and the acclimation to new conditions was followed during the next 6 days at the physiological and molecular levels. The molecular data reflect a rearrangement of carbon metabolism towards the production of phosphoenolpyruvic acid (PEP) and/or pyruvate. These intermediates were used differently by the cell as a function of the photon flux density: under low light, photosynthesis was depressed while respiration was increased. Under high light, lipids and proteins accumulated. Of great interest, under high light, the genes coding for the synthesis of aromatic amino acids and phenolic compounds were upregulated suggesting that the shikimate pathway was activated.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.
Collapse
Affiliation(s)
- Parisa Heydarizadeh
- Metabolism, Bioengineering of Microalga Molecules and Applications (MIMMA), Mer Molécules Santé, UBL, IUML-FR 3473 CNRS, University of Le Mans, 72085 Le Mans, France
| | - Wafâa Boureba
- Metabolism, Bioengineering of Microalga Molecules and Applications (MIMMA), Mer Molécules Santé, UBL, IUML-FR 3473 CNRS, University of Le Mans, 72085 Le Mans, France
| | - Morteza Zahedi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Bing Huang
- Metabolism, Bioengineering of Microalga Molecules and Applications (MIMMA), Mer Molécules Santé, UBL, IUML-FR 3473 CNRS, University of Le Mans, 72085 Le Mans, France
| | - Brigitte Moreau
- Metabolism, Bioengineering of Microalga Molecules and Applications (MIMMA), Mer Molécules Santé, UBL, IUML-FR 3473 CNRS, University of Le Mans, 72085 Le Mans, France
| | - Ewa Lukomska
- IFREMER, Physiology and Biotechnology of Algae Laboratory, rue de l'Ile d'Yeu, BP 21105, 44311 Nantes, France
| | - Aurélie Couzinet-Mossion
- Faculté des Sciences Pharmaceutiques et Biologiques, Université de Nantes, Groupe Mer, Molécules, Santé-EA 2160, Institut Universitaire Mer et Littoral FR3473 CNRS, 9 rue Bias, BP 61112, 44035 Nantes Cedex 1, France
| | - Gaëtane Wielgosz-Collin
- Faculté des Sciences Pharmaceutiques et Biologiques, Université de Nantes, Groupe Mer, Molécules, Santé-EA 2160, Institut Universitaire Mer et Littoral FR3473 CNRS, 9 rue Bias, BP 61112, 44035 Nantes Cedex 1, France
| | | | - Gaël Bougaran
- IFREMER, Physiology and Biotechnology of Algae Laboratory, rue de l'Ile d'Yeu, BP 21105, 44311 Nantes, France
| | - Justine Marchand
- Metabolism, Bioengineering of Microalga Molecules and Applications (MIMMA), Mer Molécules Santé, UBL, IUML-FR 3473 CNRS, University of Le Mans, 72085 Le Mans, France
| | - Benoît Schoefs
- Metabolism, Bioengineering of Microalga Molecules and Applications (MIMMA), Mer Molécules Santé, UBL, IUML-FR 3473 CNRS, University of Le Mans, 72085 Le Mans, France
| |
Collapse
|
22
|
Jaeger D, Winkler A, Mussgnug JH, Kalinowski J, Goesmann A, Kruse O. Time-resolved transcriptome analysis and lipid pathway reconstruction of the oleaginous green microalga Monoraphidium neglectum reveal a model for triacylglycerol and lipid hyperaccumulation. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:197. [PMID: 28814974 PMCID: PMC5556983 DOI: 10.1186/s13068-017-0882-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/03/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Oleaginous microalgae are promising production hosts for the sustainable generation of lipid-based bioproducts and as bioenergy carriers such as biodiesel. Transcriptomics of the lipid accumulation phase, triggered efficiently by nitrogen starvation, is a valuable approach for the identification of gene targets for metabolic engineering. RESULTS An explorative analysis of the detailed transcriptional response to different stages of nitrogen availability was performed in the oleaginous green alga Monoraphidium neglectum. Transcript data were correlated with metabolic data for cellular contents of starch and of different lipid fractions. A pronounced transcriptional down-regulation of photosynthesis became apparent in response to nitrogen starvation, whereas glucose catabolism was found to be up-regulated. An in-depth reconstruction and analysis of the pathways for glycerolipid, central carbon, and starch metabolism revealed that distinct transcriptional changes were generally found only for specific steps within a metabolic pathway. In addition to pathway analyses, the transcript data were also used to refine the current genome annotation. The transcriptome data were integrated into a database and complemented with data for other microalgae which were also subjected to nitrogen starvation. It is available at https://tdbmn.cebitec.uni-bielefeld.de. CONCLUSIONS Based on the transcriptional responses to different stages of nitrogen availability, a model for triacylglycerol and lipid hyperaccumulation is proposed, which involves transcriptional induction of thioesterases, differential regulation of lipases, and a re-routing of the central carbon metabolism. Over-expression of distinct thioesterases was identified to be a potential strategy to increase the oleaginous phenotype of M. neglectum, and furthermore specific lipases were identified as potential targets for future metabolic engineering approaches.
Collapse
Affiliation(s)
- Daniel Jaeger
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Anika Winkler
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Jan H. Mussgnug
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-Universität, 35392 Gießen, Germany
| | - Olaf Kruse
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Universitaetsstrasse 27, 33615 Bielefeld, Germany
| |
Collapse
|
23
|
Li K, Cheng J, Lu H, Yang W, Zhou J, Cen K. Transcriptome-based analysis on carbon metabolism of Haematococcus pluvialis mutant under 15% CO 2. BIORESOURCE TECHNOLOGY 2017; 233:313-321. [PMID: 28285223 DOI: 10.1016/j.biortech.2017.02.121] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 05/20/2023]
Abstract
To elucidate the mechanism underlying the enhanced growth rate in the Haematococcus pluvialis mutated with 60Co-γ rays and domesticated with 15% CO2, transcriptome sequencing was conducted to clarify the carbon metabolic pathways of mutant cells. The CO2 fixation rate of mutant cells increased to 2.57gL-1d-1 under 15% CO2 due to the enhanced photosynthesis, carbon fixation, glycolysis pathways. The upregulation of PetH, ATPF0A and PetJ related to photosynthetic electron transport, ATP synthase and NADPH generation promoted the photosynthesis. The upregulation of genes related to Calvin cycle and ppdK promoted carbon fixation in both C3 and C4 photosynthetic pathways. The reallocation of carbon was also enhanced under 15% CO2. The 19-, 14- and 3.5-fold upregulation of FBA, TPI and PK genes, respectively, remarkably promoted the glycolysis pathways. This accelerated the conversion of photosynthetic carbon to pyruvate, which was an essential precursor for astaxanthin and lipids biosynthesis.
Collapse
Affiliation(s)
- Ke Li
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Hongxiang Lu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Weijuan Yang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Junhu Zhou
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Kefa Cen
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
24
|
Dorrell RG, Gile G, McCallum G, Méheust R, Bapteste EP, Klinger CM, Brillet-Guéguen L, Freeman KD, Richter DJ, Bowler C. Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. eLife 2017; 6. [PMID: 28498102 PMCID: PMC5462543 DOI: 10.7554/elife.23717] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/08/2017] [Indexed: 12/18/2022] Open
Abstract
Plastids are supported by a wide range of proteins encoded within the nucleus and imported from the cytoplasm. These plastid-targeted proteins may originate from the endosymbiont, the host, or other sources entirely. Here, we identify and characterise 770 plastid-targeted proteins that are conserved across the ochrophytes, a major group of algae including diatoms, pelagophytes and kelps, that possess plastids derived from red algae. We show that the ancestral ochrophyte plastid proteome was an evolutionary chimera, with 25% of its phylogenetically tractable nucleus-encoded proteins deriving from green algae. We additionally show that functional mixing of host and plastid proteomes, such as through dual-targeting, is an ancestral feature of plastid evolution. Finally, we detect a clear phylogenetic signal from one ochrophyte subgroup, the lineage containing pelagophytes and dictyochophytes, in plastid-targeted proteins from another major algal lineage, the haptophytes. This may represent a possible serial endosymbiosis event deep in eukaryotic evolutionary history. DOI:http://dx.doi.org/10.7554/eLife.23717.001 The cells of most plants and algae contain compartments called chloroplasts that enable them to capture energy from sunlight in a process known as photosynthesis. Chloroplasts are the remnants of photosynthetic bacteria that used to live freely in the environment until they were consumed by a larger cell. “Complex” chloroplasts can form if a cell that already has a chloroplast is swallowed by another cell. The most abundant algae in the oceans are known as diatoms. These algae belong to a group called the stramenopiles, which also includes giant seaweeds such as kelp. The stramenopiles have a complex chloroplast that they acquired from a red alga (a relative of the seaweed used in sushi). However, some of the proteins in their chloroplasts are from other sources, such as the green algal relatives of plants, and it was not clear how these chloroplast proteins have contributed to the evolution of this group. Many of the proteins that chloroplasts need to work properly are produced by the host cell and are then transported into the chloroplasts. Dorrell et al. studied the genetic material of many stramenopile species and identified 770 chloroplast-targeted proteins that are predicted to underpin the origins of this group. Experiments in a diatom called Phaeodactylum confirmed these predictions and show that many of these chloroplast-targeted proteins have been recruited from green algae, bacteria, and other compartments within the host cell to support the chloroplast. Further experiments suggest that another major group of algae called the haptophytes once had a stramenopile chloroplast. The current haptophyte chloroplast does not come from the stramenopiles so the haptophytes appear to have replaced their chloroplasts at least once in their evolutionary history. The findings show that algal chloroplasts are mosaics, supported by proteins from many different species. This helps us understand why certain species succeed in the wild and how they may respond to environmental changes in the oceans. In the future, these findings may help researchers to engineer new species of algae and plants for food and fuel production. DOI:http://dx.doi.org/10.7554/eLife.23717.002
Collapse
Affiliation(s)
- Richard G Dorrell
- IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Gillian Gile
- School of Life Sciences, Arizona State University, Tempe, United States
| | - Giselle McCallum
- IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Raphaël Méheust
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Paris, France
| | - Eric P Bapteste
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Paris, France
| | | | | | | | - Daniel J Richter
- Sorbonne Universités, Université Pierre et Marie Curie, CNRS UMR 7144.,Adaptation et Diversité en Milieu Marin, Équipe EPEP, Station Biologique de Roscoff, Roscoff, France
| | - Chris Bowler
- IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| |
Collapse
|
25
|
Dinamarca J, Levitan O, Kumaraswamy GK, Lun DS, Falkowski PG. Overexpression of a diacylglycerol acyltransferase gene in Phaeodactylum tricornutum directs carbon towards lipid biosynthesis. JOURNAL OF PHYCOLOGY 2017; 53:405-414. [PMID: 28078675 DOI: 10.1111/jpy.12513] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 11/17/2016] [Indexed: 05/03/2023]
Abstract
Under nutrient deplete conditions, diatoms accumulate between 15% to 25% of their dry weight as lipids, primarily as triacylglycerols (TAGs). As in most eukaryotes, these organisms produce TAGs via the acyl-CoA dependent Kennedy pathway. The last step in this pathway is catalyzed by diacylglycerol acyltransferase (DGAT) that acylates diacylglycerol (DAG) to produce TAG. To test our hypothesis that DGAT plays a major role in controlling the flux of carbon towards lipids, we overexpressed a specific type II DGAT gene, DGAT2D, in the model diatom Phaeodactylum tricornutum. The transformants had 50- to 100-fold higher DGAT2D mRNA levels and the abundance of the enzyme increased 30- to 50-fold. More important, these cells had a 2-fold higher total lipid content and incorporated carbon into lipids more efficiently than the wild type (WT) while growing only 15% slower at light saturation. Based on a flux analysis using 13 C as a tracer, we found that the increase in lipids was achieved via increased fluxes through pyruvate and acetyl-CoA. Our results reveal overexpression of DAGT2D increases the flux of photosynthetically fixed carbon towards lipids, and leads to a higher lipid content than exponentially grown WT cells.
Collapse
Affiliation(s)
- Jorge Dinamarca
- Environmental Biophysics and Molecular Ecology Laboratory, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, 08901, USA
| | - Orly Levitan
- Environmental Biophysics and Molecular Ecology Laboratory, Departments of Marine and Coastal Sciences and Plant Biology and Pathology, Rutgers University, New Brunswick, New Jersey, 08901, USA
| | - G Kenchappa Kumaraswamy
- Waksman Institute and Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - Desmond S Lun
- Center for Computational and Integrative Biology and Department of Computer Science, Rutgers University, Camden, New Jersey, 08102, USA
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, 08901, USA
| | - Paul G Falkowski
- Environmental Biophysics and Molecular Ecology Laboratory, Departments of Marine and Coastal Sciences and Earth and Planetary Sciences, Rutgers University, Piscataway, New Jersey, 0885, USA
| |
Collapse
|
26
|
Cheng J, Li K, Zhu Y, Yang W, Zhou J, Cen K. Transcriptome sequencing and metabolic pathways of astaxanthin accumulated in Haematococcus pluvialis mutant under 15% CO 2. BIORESOURCE TECHNOLOGY 2017; 228:99-105. [PMID: 28061399 DOI: 10.1016/j.biortech.2016.12.084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/08/2016] [Accepted: 12/22/2016] [Indexed: 05/09/2023]
Abstract
Transcriptome sequencing and annotation was performed on Haematococcus pluvialis mutant red cells induced with high light under 15% CO2 to demonstrate why astaxanthin yield of the mutant was 1.7 times higher than that of a wild strain. It was found that 56% of 1947 differentially expressed genes were upregulated in mutant cells. Most significant differences were found in unigenes related to photosynthesis, carotenoid biosynthesis and fatty acid biosynthesis pathways. The pyruvate kinase increased by 3.5-fold in mutant cells. Thus, more pyruvate, which was beneficial to carotenoids and fatty acid biosynthesis, was generated. Phytoene synthase, zeta-carotene desaturase, lycopene beta-cyclase involved in β-carotene biosynthesis in mutant cells were upregulated by 10.4-, 4.4-, and 5.8-fold, respectively. Beta-carotene 3-hydroxylase catalyzing conversion of β-carotene into astaxanthin was upregulated by 18.4-fold. The fatty acid biosynthesis was promoted because of the upregulation of acetyl-CoA synthetase and acetyl-CoA carboxylase, thus increasing astaxanthin esterification and accumulation in mutant cells.
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Ke Li
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yanxia Zhu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Weijuan Yang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Junhu Zhou
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Kefa Cen
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
27
|
Smith SR, Gillard JTF, Kustka AB, McCrow JP, Badger JH, Zheng H, New AM, Dupont CL, Obata T, Fernie AR, Allen AE. Transcriptional Orchestration of the Global Cellular Response of a Model Pennate Diatom to Diel Light Cycling under Iron Limitation. PLoS Genet 2016; 12:e1006490. [PMID: 27973599 PMCID: PMC5156380 DOI: 10.1371/journal.pgen.1006490] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/16/2016] [Indexed: 11/23/2022] Open
Abstract
Environmental fluctuations affect distribution, growth and abundance of diatoms in nature, with iron (Fe) availability playing a central role. Studies on the response of diatoms to low Fe have either utilized continuous (24 hr) illumination or sampled a single time of day, missing any temporal dynamics. We profiled the physiology, metabolite composition, and global transcripts of the pennate diatom Phaeodactylum tricornutum during steady-state growth at low, intermediate, and high levels of dissolved Fe over light:dark cycles, to better understand fundamental aspects of genetic control of physiological acclimation to growth under Fe-limitation. We greatly expand the catalog of genes involved in the low Fe response, highlighting the importance of intracellular trafficking in Fe-limited diatoms. P. tricornutum exhibited transcriptomic hallmarks of slowed growth leading to prolonged periods of cell division/silica deposition, which could impact biogeochemical carbon sequestration in Fe-limited regions. Light harvesting and ribosome biogenesis transcripts were generally reduced under low Fe while transcript levels for genes putatively involved in the acquisition and recycling of Fe were increased. We also noted shifts in expression towards increased synthesis and catabolism of branched chain amino acids in P. tricornutum grown at low Fe whereas expression of genes involved in central core metabolism were relatively unaffected, indicating that essential cellular function is protected. Beyond the response of P. tricornutum to low Fe, we observed major coordinated shifts in transcript control of primary and intermediate metabolism over light:dark cycles which contribute to a new view of the significance of distinctive diatom pathways, such as mitochondrial glycolysis and the ornithine-urea cycle. This study provides new insight into transcriptional modulation of diatom physiology and metabolism across light:dark cycles in response to Fe availability, providing mechanistic understanding for the ability of diatoms to remain metabolically poised to respond quickly to Fe input and revealing strategies underlying their ecological success. Oceanic diatoms live in constantly fluctuating environments to which they must adapt in order to survive. During sunlit hours, photosynthesis occurs allowing diatoms to store energy used at night to sustain energy demands. Cellular and molecular mechanisms for regulation of phytoplankton growth are important to understand because of their environmental roles at the base of food webs and in regulating carbon flux out of the atmosphere. In ocean ecosystems, the availability of iron (Fe) commonly limits phytoplankton growth and diatoms typically outcompete other phytoplankton when Fe is added, indicating they have adaptations allowing them to both survive at low Fe and rapidly respond to Fe additions. These adaptations may be unique depending on isolation from coastal or oceanic locations. To identify adaptive strategies, we characterized the response of a model diatom, Phaeodactylum tricornutum, to limiting Fe conditions over day:night cycles using a combination of gene expression analyses, metabolite, and physiology measurements. Major coordinated shifts in metabolism and growth were documented over diel cycles, with peak expression of low Fe expressed genes in the dark phase. Diatoms respond to limiting Fe by increasing Fe acquisition, while decreasing growth rate through slowed cell cycle progression, reduced energy acquisition, and subtle metabolic remodeling.
Collapse
Affiliation(s)
- Sarah R. Smith
- Integrative Oceanography Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, California, United States of America
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Jeroen T. F. Gillard
- J. Craig Venter Institute, La Jolla, California, United States of America
- Department of Biology, CSU Bakersfield, Bakersfield, California, United States of America
| | - Adam B. Kustka
- Department of Earth and Environmental Sciences, Rutgers University, Newark, New Jersey, United States of America
| | - John P. McCrow
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Jonathan H. Badger
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Hong Zheng
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Ashley M. New
- Department of Earth and Environmental Sciences, Rutgers University, Newark, New Jersey, United States of America
| | - Chris L. Dupont
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Toshihiro Obata
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Andrew E. Allen
- Integrative Oceanography Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, California, United States of America
- J. Craig Venter Institute, La Jolla, California, United States of America
- * E-mail: ,
| |
Collapse
|
28
|
Garnier M, Bougaran G, Pavlovic M, Berard JB, Carrier G, Charrier A, Le Grand F, Lukomska E, Rouxel C, Schreiber N, Cadoret JP, Rogniaux H, Saint-Jean B. Use of a lipid rich strain reveals mechanisms of nitrogen limitation and carbon partitioning in the haptophyte Tisochrysis lutea. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.10.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Tan KWM, Lee YK. The dilemma for lipid productivity in green microalgae: importance of substrate provision in improving oil yield without sacrificing growth. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:255. [PMID: 27895709 PMCID: PMC5120525 DOI: 10.1186/s13068-016-0671-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/16/2016] [Indexed: 05/02/2023]
Abstract
Rising oil prices and concerns over climate change have resulted in more emphasis on research into renewable biofuels from microalgae. Unlike plants, green microalgae have higher biomass productivity, will not compete with food and agriculture, and do not require fertile land for cultivation. However, microalgae biofuels currently suffer from high capital and operating costs due to low yields and costly extraction methods. Microalgae grown under optimal conditions produce large amounts of biomass but with low neutral lipid content, while microalgae grown in nutrient starvation accumulate high levels of neutral lipids but are slow growing. Producing lipids while maintaining high growth rates is vital for biofuel production because high biomass productivity increases yield per harvest volume while high lipid content decreases the cost of extraction per unit product. Therefore, there is a need for metabolic engineering of microalgae to constitutively produce high amounts of lipids without sacrificing growth. Substrate availability is a rate-limiting step in balancing growth and fatty acid (FA) production because both biomass and FA synthesis pathways compete for the same substrates, namely acetyl-CoA and NADPH. In this review, we discuss the efforts made for improving biofuel production in plants and microorganisms, the challenges faced in achieving lipid productivity, and the important role of precursor supply for FA synthesis. The main focus is placed on the enzymes which catalyzed the reactions supplying acetyl-CoA and NADPH.
Collapse
Affiliation(s)
- Kenneth Wei Min Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545 Singapore
| | - Yuan Kun Lee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545 Singapore
| |
Collapse
|
30
|
Tan KWM, Lin H, Shen H, Lee YK. Nitrogen-induced metabolic changes and molecular determinants of carbon allocation in Dunaliella tertiolecta. Sci Rep 2016; 6:37235. [PMID: 27849022 PMCID: PMC5110973 DOI: 10.1038/srep37235] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/25/2016] [Indexed: 01/06/2023] Open
Abstract
Certain species of microalgae are natural accumulators of lipids, while others are more inclined to store starch. However, what governs the preference to store lipids or starch is not well understood. In this study, the microalga Dunaliella tertiolecta was used as a model to study the global gene expression profile regulating starch accumulation in microalgae. D. tertiolecta, when depleted of nitrogen, produced only 1% of dry cell weight (DCW) in neutral lipids, while starch was rapidly accumulated up to 46% DCW. The increased in starch content was accompanied by a coordinated overexpression of genes shunting carbon towards starch synthesis, a response not seen in the oleaginous microalgae Nannochloropsis oceanica, Chlamydomonas reinhardtii or Chlorella vulgaris. Genes in the central carbon metabolism pathways, particularly those of the tricarboxylic acid cycle, were also simultaneously upregulated, indicating a robust interchange of carbon skeletons for anabolic and catabolic processes. In contrast, fatty acid and triacylglycerol synthesis genes were downregulated or unchanged, suggesting that lipids are not a preferred form of storage in these cells. This study reveals the transcriptomic influence behind storage reserve allocation in D. tertiolecta and provides valuable insights into the possible manipulation of genes for engineering microorganisms to synthesize products of interest.
Collapse
Affiliation(s)
- Kenneth Wei Min Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Huixin Lin
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Hui Shen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Yuan Kun Lee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| |
Collapse
|
31
|
Chen Z, Song S, Wen Y, Zou Y, Liu H. Toxicity of Cu (II) to the green alga Chlorella vulgaris: a perspective of photosynthesis and oxidant stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:17910-17918. [PMID: 27255311 DOI: 10.1007/s11356-016-6997-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 05/27/2016] [Indexed: 06/05/2023]
Abstract
The toxic effects of Cu (II) on the freshwater green algae Chlorella vulgaris and its chloroplast were investigated by detecting the responses of photosynthesis and oxidant stress. The results showed that Cu (II) arrested the growth of C. vulgaris and presented in a concentration- and time-dependent trend and the SRichards 2 model fitted the inhibition curve best. The chlorophyll fluorescence parameters, including qP, Y (II), ETR, F v /F m , and F v /F 0, were stimulated at low concentration of Cu (II) but declined at high concentration, indicating the photosystem II (PSII) of C. vulgaris was destroyed by Cu (II). The chloroplasts were extracted, and the Hill reaction activity (HRA) of chloroplast was significantly decreased with the increasing Cu (II) concentration under both illuminating and dark condition, and faster decline speed was observed under dark condition. Activities of superoxide dismutase (SOD) and catalase (CAT) and malondialdehyde (MDA) content were also significantly decreased at high concentration Cu (II), companied with a large number of reactive oxygen species (ROS) production. All these results indicated a severe oxidative stress on algal cells occurred as well as the effect on photosynthesis, thus inhibiting the growth of algae, which providing sights to evaluate the phytotoxicity of Cu (II).
Collapse
Affiliation(s)
- Zunwei Chen
- Institute of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Shufang Song
- Institute of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Yuezhong Wen
- Institute of Environmental Science, Zhejiang University, Hangzhou, 310058, China.
| | - Yuqin Zou
- Institute of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
32
|
Sumiya N, Kawase Y, Hayakawa J, Matsuda M, Nakamura M, Era A, Tanaka K, Kondo A, Hasunuma T, Imamura S, Miyagishima SY. Expression of Cyanobacterial Acyl-ACP Reductase Elevates the Triacylglycerol Level in the Red Alga Cyanidioschyzon merolae. PLANT & CELL PHYSIOLOGY 2015; 56:1962-80. [PMID: 26272551 DOI: 10.1093/pcp/pcv120] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/07/2015] [Indexed: 05/21/2023]
Abstract
Nitrogen starvation is known to induce the accumulation of triacylglycerol (TAG) in many microalgae, and potential use of microalgae as a source of biofuel has been explored. However, nitrogen starvation also stops cellular growth. The expression of cyanobacterial acyl-acyl carrier protein (ACP) reductase in the unicellular red alga Cyanidioschyzon merolae chloroplasts resulted in an accumulation of TAG, which led to an increase in the number and size of lipid droplets while maintaining cellular growth. Transcriptome and metabolome analyses showed that the expression of acyl-ACP reductase altered the activities of several metabolic pathways. The activities of enzymes involved in fatty acid synthesis in chloroplasts, such as acetyl-CoA carboxylase and pyruvate dehydrogenase, were up-regulated, while pyruvate decarboxylation in mitochondria and the subsequent consumption of acetyl-CoA by the tricarboxylic acid (TCA) cycle were down-regulated. Aldehyde dehydrogenase, which oxidizes fatty aldehydes to fatty acids, was also up-regulated in the acyl-ACP reductase expresser. This activation was required for the lipid droplet accumulation and metabolic changes observed in the acyl-ACP reductase expresser. Nitrogen starvation also resulted in lipid droplet accumulation in C. merolae, while cell growth ceased as in the case of other algal species. The metabolic changes that occur upon the expression of acyl-ACP reductase are quite different from those caused by nitrogen starvation. Therefore, there should be a method for further increasing the storage lipid level while still maintaining cell growth that is different from the metabolic response to nitrogen starvation.
Collapse
Affiliation(s)
- Nobuko Sumiya
- Department of Cell Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yasuko Kawase
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Jumpei Hayakawa
- Department of Biological Sciences, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Mami Matsuda
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, 3-5 Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan
| | - Mami Nakamura
- Department of Cell Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Atsuko Era
- Department of Cell Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Kan Tanaka
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan Biomass Engineering Program, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Tomohisa Hasunuma
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, 3-5 Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan
| | - Sousuke Imamura
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Shin-ya Miyagishima
- Department of Cell Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| |
Collapse
|