1
|
Demoulin CF, Sforna MC, Lara YJ, Cornet Y, Somogyi A, Medjoubi K, Grolimund D, Sanchez DF, Tachoueres RT, Addad A, Fadel A, Compère P, Javaux EJ. Polysphaeroides filiformis, a proterozoic cyanobacterial microfossil and implications for cyanobacteria evolution. iScience 2024; 27:108865. [PMID: 38313056 PMCID: PMC10837632 DOI: 10.1016/j.isci.2024.108865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2023] [Revised: 11/29/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Deciphering the fossil record of cyanobacteria is crucial to understand their role in the chemical and biological evolution of the early Earth. They profoundly modified the redox conditions of early ecosystems more than 2.4 Ga ago, the age of the Great Oxidation Event (GOE), and provided the ancestor of the chloroplast by endosymbiosis, leading the diversification of photosynthetic eukaryotes. Here, we analyze the morphology, ultrastructure, chemical composition, and metals distribution of Polysphaeroides filiformis from the 1040-1006 Ma Mbuji-Mayi Supergroup (DR Congo). We evidence trilaminar and bilayered ultrastructures for the sheath and the cell wall, respectively, and the preservation of Ni-tetrapyrrole moieties derived from chlorophyll in intracellular inclusions. This approach allows an unambiguous interpretation of P. filiformis as a branched and multiseriate photosynthetic cyanobacterium belonging to the family of Stigonemataceae. It also provides a possible minimum age for the emergence of multiseriate true branching nitrogen-fixing and probably heterocytous cyanobacteria.
Collapse
Affiliation(s)
- Catherine F Demoulin
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, 4000 Liège, Belgium
| | - Marie Catherine Sforna
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, 4000 Liège, Belgium
- Centre de Biophysique Moléculaire, (UPR CNRS 4301), 45071 Orléans, France
| | - Yannick J Lara
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, 4000 Liège, Belgium
| | - Yohan Cornet
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, 4000 Liège, Belgium
| | | | | | - Daniel Grolimund
- Paul Scherrer Institut, Swiss Light Source, 5232 Villigen PSI, Switzerland
| | | | | | - Ahmed Addad
- Unité Matériaux et Transformations (UMR CNRS 8207), Université Lille 1 - Sciences et Technologies, 59650 Villeneuve d'Ascq, France
| | - Alexandre Fadel
- Unité Matériaux et Transformations (UMR CNRS 8207), Université Lille 1 - Sciences et Technologies, 59650 Villeneuve d'Ascq, France
| | - Philippe Compère
- Functional and Evolutive Morphology, UR FOCUS, and Center for Applied Research and Education in Microscopy (CAREM-ULiege), University of Liège, 4000 Liège, Belgium
| | - Emmanuelle J Javaux
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
2
|
Demoulin CF, Lara YJ, Lambion A, Javaux EJ. Oldest thylakoids in fossil cells directly evidence oxygenic photosynthesis. Nature 2024; 625:529-534. [PMID: 38172638 DOI: 10.1038/s41586-023-06896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/25/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024]
Abstract
Today oxygenic photosynthesis is unique to cyanobacteria and their plastid relatives within eukaryotes. Although its origin before the Great Oxidation Event is still debated1-4, the accumulation of O2 profoundly modified the redox chemistry of the Earth and the evolution of the biosphere, including complex life. Understanding the diversification of cyanobacteria is thus crucial to grasping the coevolution of our planet and life, but their early fossil record remains ambiguous5. Extant cyanobacteria include the thylakoid-less Gloeobacter-like group and the remainder of cyanobacteria that acquired thylakoid membranes6,7. The timing of this divergence is indirectly estimated at between 2.7 and 2.0 billion years ago (Ga) based on molecular clocks and phylogenies8-11 and inferred from the earliest undisputed fossil record of Eoentophysalis belcherensis, a 2.018-1.854 Ga pleurocapsalean cyanobacterium preserved in silicified stromatolites12,13. Here we report the oldest direct evidence of thylakoid membranes in a parallel-to-contorted arrangement within the enigmatic cylindrical microfossils Navifusa majensis from the McDermott Formation, Tawallah Group, Australia (1.78-1.73 Ga), and in a parietal arrangement in specimens from the Grassy Bay Formation, Shaler Supergroup, Canada (1.01-0.9 Ga). This discovery extends their fossil record by at least 1.2 Ga and provides a minimum age for the divergence of thylakoid-bearing cyanobacteria at roughly 1.75 Ga. It allows the unambiguous identification of early oxygenic photosynthesizers and a new redox proxy for probing early Earth ecosystems, highlighting the importance of examining the ultrastructure of fossil cells to decipher their palaeobiology and early evolution.
Collapse
Affiliation(s)
- Catherine F Demoulin
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium.
| | - Yannick J Lara
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| | - Alexandre Lambion
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| | - Emmanuelle J Javaux
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium.
| |
Collapse
|
3
|
Song Y, Li R, Song W, Tang Y, Sun S, Mao G. Microcystis spp. and phosphorus in aquatic environments: A comprehensive review on their physiological and ecological interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163136. [PMID: 37001662 DOI: 10.1016/j.scitotenv.2023.163136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/19/2023] [Revised: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023]
Abstract
Cyanobacterial blooms caused by eutrophication have become a major environmental problem in aquatic ecosystems worldwide over the last few decades. Phosphorus is a limiting nutrient that affects the growth of cyanobacteria and plays a role in dynamic changes in algal density and the formation of cyanobacterial blooms. Therefore, identifying the association between phosphorus sources and Microcystis, which is the most representative and harmful cyanobacteria, is essential for building an understanding of the ecological risks of cyanobacterial blooms. However, systematic reviews summarizing the relationships between Microcystis and phosphorus in aquatic environments are rare. Thus, this study provides a comprehensive overview of the physiological and ecological interactions between phosphorus sources and Microcystis in aquatic environments from the following perspectives: (i) the effects of phosphorus source and concentration on Microcystis growth, (ii) the impacts of phosphorus on the environmental behaviors of Microcystis, (iii) mechanisms of phosphorus-related metabolism in Microcystis, and (iv) role of Microcystis in the distribution of phosphorus sources within aquatic environments. In addition, relevant unsolved issues and essential future investigations (e.g., secondary ecological risks) have been highlighted and discussed. This review provides deeper insights into the relationship between phosphorus sources and Microcystis and can serve as a reference for the evaluation, monitoring, and effective control of cyanobacterial blooms.
Collapse
Affiliation(s)
- Yuhao Song
- School of Life Sciences, Qufu Normal University, Qufu 273165, China.
| | - Ruikai Li
- School of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Wenjia Song
- School of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Yulu Tang
- School of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Shuangyan Sun
- School of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Guannan Mao
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
4
|
Gugger M, Boullié A, Laurent T. Cyanotoxins and Other Bioactive Compounds from the Pasteur Cultures of Cyanobacteria (PCC). Toxins (Basel) 2023; 15:388. [PMID: 37368689 DOI: 10.3390/toxins15060388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/12/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
In tribute to the bicentenary of the birth of Louis Pasteur, this report focuses on cyanotoxins, other natural products and bioactive compounds of cyanobacteria, a phylum of Gram-negative bacteria capable of carrying out oxygenic photosynthesis. These microbes have contributed to changes in the geochemistry and the biology of Earth as we know it today. Furthermore, some bloom-forming cyanobacterial species are also well known for their capacity to produce cyanotoxins. This phylum is preserved in live cultures of pure, monoclonal strains in the Pasteur Cultures of Cyanobacteria (PCC) collection. The collection has been used to classify organisms within the Cyanobacteria of the bacterial kingdom and to investigate several characteristics of these bacteria, such as their ultrastructure, gas vacuoles and complementary chromatic adaptation. Thanks to the ease of obtaining genetic and further genomic sequences, the diversity of the PCC strains has made it possible to reveal some main cyanotoxins and to highlight several genetic loci dedicated to completely unknown natural products. It is the multidisciplinary collaboration of microbiologists, biochemists and chemists and the use of the pure strains of this collection that has allowed the study of several biosynthetic pathways from genetic origins to the structures of natural products and, eventually, their bioactivity.
Collapse
Affiliation(s)
- Muriel Gugger
- Institut Pasteur, Université Paris Cité, Collection of Cyanobacteria, 75015 Paris, France
| | - Anne Boullié
- Institut Pasteur, Université Paris Cité, Collection of Cyanobacteria, 75015 Paris, France
| | - Thierry Laurent
- Institut Pasteur, Université Paris Cité, Collection of Cyanobacteria, 75015 Paris, France
| |
Collapse
|
5
|
Shen LQ, Zhang ZC, Shang JL, Li ZK, Chen M, Li R, Qiu BS. Kovacikia minuta sp. nov. (Leptolyngbyaceae, Cyanobacteria), a new freshwater chlorophyll f-producing cyanobacterium. JOURNAL OF PHYCOLOGY 2022; 58:424-435. [PMID: 35279831 DOI: 10.1111/jpy.13248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/10/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
A few groups of cyanobacteria have been characterized as having far-red light photoacclimation (FaRLiP) that results from chlorophyll f (Chl f) production. In this study, using a polyphasic approach, we taxonomically transferred the Cf. Leptolyngbya sp. CCNUW1 isolated from a shaded freshwater pond, which produces Chl f under far-red light, to the genus Kovacikia and named this taxon Kovacikia minuta sp. nov. This strain was morphologically similar to Leptolyngbya-like strains. The thin filaments were purplish-brown under white light but became grass green under far-red light. The 31-gene phylogeny grouped K. minuta CCNU0001 into order Synechococcales and family Leptolyngbyaceae. Phylogenetic analysis based on 16S rRNA gene sequences further showed that K. minuta CCNU0001 was clustered into Kovacikia with similarities of 97.2-97.4% to the recently reported type species of Kovacikia muscicola HA7619-LM3. Additionally, the internal transcribed spacer region between 16S-23S rRNA genes had a unique sequence and secondary structure compared with other Kovacikia strains and phylogenetically related taxa. Draft genome sequences of K. minuta CCNU0001 (8,564,336 bp) were assembled into one circular chromosome and two circular plasmids. A FaRLiP 20-gene cluster comprised two operons with the unique organization. In sum, K. minuta was established as a new species, and it is the first species reported to produce Chl f and for which a draft genome was produced in genus Kovacikia. This study expanded our knowledge regarding the diversity of Chl f-producing cyanobacteria in far-red light-enriched environments and provides important foundational information for future investigations of FaRLiP evolution in cyanobacteria.
Collapse
Affiliation(s)
- Li-Qin Shen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Zhong-Chun Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jin-Long Shang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Zheng-Ke Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Min Chen
- ARC Centre of Excellence for Translational Photosynthesis, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Renhui Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Bao-Sheng Qiu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
6
|
Jung P, Azua-Bustos A, Gonzalez-Silva C, Mikhailyuk T, Zabicki D, Holzinger A, Lakatos M, Büdel B. Emendation of the Coccoid Cyanobacterial Genus Gloeocapsopsis and Description of the New Species Gloeocapsopsis diffluens sp. nov. and Gloeocapsopsis dulcis sp. nov. Isolated From the Coastal Range of the Atacama Desert (Chile). Front Microbiol 2021; 12:671742. [PMID: 34305839 PMCID: PMC8295473 DOI: 10.3389/fmicb.2021.671742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/11/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022] Open
Abstract
The taxonomy of coccoid cyanobacteria, such as Chroococcidiopsis, Pleurocapsa, Chroococcus, Gloeothece, Gloeocapsa, Gloeocapsopsis, and the related recent genera Sinocapsa and Aliterella, can easily be intermixed when solely compared on a morphological basis. There is still little support on the taxonomic position of some of the addressed genera, as genetic information is available only for a fraction of species that have been described solely on morphology. Modern polyphasic approaches that combine classic morphological investigations with DNA-based molecular analyses and the evaluation of ecological properties can disentangle these easily confusable unicellular genera. By using such an approach, we present here the formal description of two novel unicellular cyanobacterial species that inhabit the Coastal Range of the Atacama Desert, Gloeocapsopsis dulcis (first reported as Gloeocapsopsis AAB1) and Gloeocapsopsis diffluens. Both species could be clearly separated from previously reported species by 16S rRNA and 16S–23S ITS gene sequencing, the resulting secondary structures, p-distance analyses of the 16S–23S ITS, and morphology. For avoiding further confusions emendation of the genus Gloeocapsopsis as well as epitypification of the type species Gloeocapsopsis crepidinum based on the strain LEGE06123 were conducted.
Collapse
Affiliation(s)
- Patrick Jung
- University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Armando Azua-Bustos
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain.,Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | | | - Tatiana Mikhailyuk
- M. G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Daniel Zabicki
- University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | | | - Michael Lakatos
- University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Burkhard Büdel
- Technical University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
7
|
Genetic, Genomics, and Responses to Stresses in Cyanobacteria: Biotechnological Implications. Genes (Basel) 2021; 12:genes12040500. [PMID: 33805386 PMCID: PMC8066212 DOI: 10.3390/genes12040500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cyanobacteria are widely-diverse, environmentally crucial photosynthetic prokaryotes of great interests for basic and applied science. Work to date has focused mostly on the three non-nitrogen fixing unicellular species Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002, which have been selected for their genetic and physiological interests summarized in this review. Extensive "omics" data sets have been generated, and genome-scale models (GSM) have been developed for the rational engineering of these cyanobacteria for biotechnological purposes. We presently discuss what should be done to improve our understanding of the genotype-phenotype relationships of these models and generate robust and predictive models of their metabolism. Furthermore, we also emphasize that because Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002 represent only a limited part of the wide biodiversity of cyanobacteria, other species distantly related to these three models, should be studied. Finally, we highlight the need to strengthen the communication between academic researchers, who know well cyanobacteria and can engineer them for biotechnological purposes, but have a limited access to large photobioreactors, and industrial partners who attempt to use natural or engineered cyanobacteria to produce interesting chemicals at reasonable costs, but may lack knowledge on cyanobacterial physiology and metabolism.
Collapse
|
8
|
MacCready JS, Basalla JL, Vecchiarelli AG. Origin and Evolution of Carboxysome Positioning Systems in Cyanobacteria. Mol Biol Evol 2021; 37:1434-1451. [PMID: 31899489 PMCID: PMC7182216 DOI: 10.1093/molbev/msz308] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023] Open
Abstract
Carboxysomes are protein-based organelles that are essential for allowing cyanobacteria to fix CO2. Previously, we identified a two-component system, McdAB, responsible for equidistantly positioning carboxysomes in the model cyanobacterium Synechococcus elongatus PCC 7942 (MacCready JS, Hakim P, Young EJ, Hu L, Liu J, Osteryoung KW, Vecchiarelli AG, Ducat DC. 2018. Protein gradients on the nucleoid position the carbon-fixing organelles of cyanobacteria. eLife 7:pii:e39723). McdA, a ParA-type ATPase, nonspecifically binds the nucleoid in the presence of ATP. McdB, a novel factor that directly binds carboxysomes, displaces McdA from the nucleoid. Removal of McdA from the nucleoid in the vicinity of carboxysomes by McdB causes a global break in McdA symmetry, and carboxysome motion occurs via a Brownian-ratchet-based mechanism toward the highest concentration of McdA. Despite the importance for cyanobacteria to properly position their carboxysomes, whether the McdAB system is widespread among cyanobacteria remains an open question. Here, we show that the McdAB system is widespread among β-cyanobacteria, often clustering with carboxysome-related components, and is absent in α-cyanobacteria. Moreover, we show that two distinct McdAB systems exist in β-cyanobacteria, with Type 2 systems being the most ancestral and abundant, and Type 1 systems, like that of S. elongatus, possibly being acquired more recently. Lastly, all McdB proteins share the sequence signatures of a protein capable of undergoing liquid–liquid phase separation. Indeed, we find that representatives of both McdB types undergo liquid–liquid phase separation in vitro, the first example of a ParA-type ATPase partner protein to exhibit this behavior. Our results have broader implications for understanding carboxysome evolution, biogenesis, homeostasis, and positioning in cyanobacteria.
Collapse
Affiliation(s)
- Joshua S MacCready
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Joseph L Basalla
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Anthony G Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
9
|
Kerfeld CA, Sutter M. Engineered bacterial microcompartments: apps for programming metabolism. Curr Opin Biotechnol 2020; 65:225-232. [PMID: 32554213 PMCID: PMC7719235 DOI: 10.1016/j.copbio.2020.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/25/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022]
Abstract
Bacterial Microcompartments (BMCs) are used by diverse bacteria to compartmentalize enzymatic reactions, functioning analogously to the organelles of eukaryotes. The bounding membrane and encapsulated components are composed entirely of protein, which makes them ideal targets for modification by genetic engineering. In contrast to viruses, in which generally only one protein forms the capsid, the shells of BMCs consist of a variety of shell proteins, each a potential unit of selection. Despite their differences in permeability, the shell proteins are surprisingly interchangeable. Recent developments have shown that they are also highly amenable to engineered modifications which poise them for a variety of biotechnological applications. Given their modular structure, with a module defined as a semi-autonomous functional unit, BMCs can be considered apps for programming metabolism that can be de-bugged by adaptive evolution.
Collapse
Affiliation(s)
- Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory and Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA; Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory and Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA; Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Abstract
Advances in imaging technologies have revealed that many bacteria possess organelles with a proteomically defined lumen and a macromolecular boundary. Some are bound by a lipid bilayer (such as thylakoids, magnetosomes and anammoxosomes), whereas others are defined by a lipid monolayer (such as lipid bodies), a proteinaceous coat (such as carboxysomes) or have a phase-defined boundary (such as nucleolus-like compartments). These diverse organelles have various metabolic and physiological functions, facilitating adaptation to different environments and driving the evolution of cellular complexity. This Review highlights that, despite the diversity of reported organelles, some unifying concepts underlie their formation, structure and function. Bacteria have fundamental mechanisms of organelle formation, through which conserved processes can form distinct organelles in different species depending on the proteins recruited to the luminal space and the boundary of the organelle. These complex subcellular compartments provide evolutionary advantages as well as enabling metabolic specialization, biogeochemical processes and biotechnological advances. Growing evidence suggests that the presence of organelles is the rule, rather than the exception, in bacterial cells.
Collapse
Affiliation(s)
- Chris Greening
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia.
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia.
| |
Collapse
|
11
|
Veaudor T, Blanc-Garin V, Chenebault C, Diaz-Santos E, Sassi JF, Cassier-Chauvat C, Chauvat F. Recent Advances in the Photoautotrophic Metabolism of Cyanobacteria: Biotechnological Implications. Life (Basel) 2020; 10:E71. [PMID: 32438704 PMCID: PMC7281370 DOI: 10.3390/life10050071] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/15/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Cyanobacteria constitute the only phylum of oxygen-evolving photosynthetic prokaryotes that shaped the oxygenic atmosphere of our planet. Over time, cyanobacteria have evolved as a widely diverse group of organisms that have colonized most aquatic and soil ecosystems of our planet and constitute a large proportion of the biomass that sustains the biosphere. Cyanobacteria synthesize a vast array of biologically active metabolites that are of great interest for human health and industry, and several model cyanobacteria can be genetically manipulated. Hence, cyanobacteria are regarded as promising microbial factories for the production of chemicals from highly abundant natural resources, e.g., solar energy, CO2, minerals, and waters, eventually coupled to wastewater treatment to save costs. In this review, we summarize new important discoveries on the plasticity of the photoautotrophic metabolism of cyanobacteria, emphasizing the coordinated partitioning of carbon and nitrogen towards growth or compound storage, and the importance of these processes for biotechnological perspectives. We also emphasize the importance of redox regulation (including glutathionylation) on these processes, a subject which has often been overlooked.
Collapse
Affiliation(s)
- Théo Veaudor
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (T.V.); (V.B.-G.); (C.C.); (E.D.-S.); (C.C.-C.)
| | - Victoire Blanc-Garin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (T.V.); (V.B.-G.); (C.C.); (E.D.-S.); (C.C.-C.)
| | - Célia Chenebault
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (T.V.); (V.B.-G.); (C.C.); (E.D.-S.); (C.C.-C.)
| | - Encarnación Diaz-Santos
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (T.V.); (V.B.-G.); (C.C.); (E.D.-S.); (C.C.-C.)
| | - Jean-François Sassi
- Commissariat à l’énergie atomique et aux énergies alternatives (CEA), Centre de Cadarache St Paul Lez, 13108 Durance, France;
| | - Corinne Cassier-Chauvat
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (T.V.); (V.B.-G.); (C.C.); (E.D.-S.); (C.C.-C.)
| | - Franck Chauvat
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (T.V.); (V.B.-G.); (C.C.); (E.D.-S.); (C.C.-C.)
| |
Collapse
|
12
|
Dong Q, Xing X, Han Y, Wei X, Zhang S. De Novo Organelle Biogenesis in the Cyanobacterium TDX16 Released from the Green Alga <i>Haematococcus pluvialis</i>. Cell 2020. [DOI: 10.4236/cellbio.2020.91003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
|
13
|
De Wever A, Benzerara K, Coutaud M, Caumes G, Poinsot M, Skouri-Panet F, Laurent T, Duprat E, Gugger M. Evidence of high Ca uptake by cyanobacteria forming intracellular CaCO 3 and impact on their growth. GEOBIOLOGY 2019; 17:676-690. [PMID: 31347755 DOI: 10.1111/gbi.12358] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/20/2019] [Revised: 06/15/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Several species of cyanobacteria biomineralizing intracellular amorphous calcium carbonates (ACC) were recently discovered. However, the mechanisms involved in this biomineralization process and the determinants discriminating species forming intracellular ACC from those not forming intracellular ACC remain unknown. Recently, it was hypothesized that the intensity of Ca uptake (i.e., how much Ca was scavenged from the extracellular solution) might be a major parameter controlling the capability of a cyanobacterium to form intracellular ACC. Here, we tested this hypothesis by systematically measuring the Ca uptake by a set of 52 cyanobacterial strains cultured in the same growth medium. The results evidenced a dichotomy among cyanobacteria regarding Ca sequestration capabilities, with all strains forming intracellular ACC incorporating significantly more calcium than strains not forming ACC. Moreover, Ca provided at a concentration of 50 μM in BG-11 was shown to be limiting for the growth of some of the strains forming intracellular ACC, suggesting an overlooked quantitative role of Ca for these strains. All cyanobacteria forming intracellular ACC contained at least one gene coding for a mechanosensitive channel, which might be involved in Ca influx, as well as at least one gene coding for a Ca2+ /H+ exchanger and membrane proteins of the UPF0016 family, which might be involved in active Ca transport either from the cytosol to the extracellular solution or the cytosol toward an intracellular compartment. Overall, massive Ca sequestration may have an indirect role by allowing the formation of intracellular ACC. The latter may be beneficial to the growth of the cells as a storage of inorganic C and/or a buffer of intracellular pH. Moreover, high Ca scavenging by cyanobacteria biomineralizing intracellular ACC, a trait shared with endolithic cyanobacteria, suggests that these cyanobacteria should be considered as potentially significant geochemical reservoirs of Ca.
Collapse
Affiliation(s)
- Alexis De Wever
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Karim Benzerara
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Margot Coutaud
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Géraldine Caumes
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Mélanie Poinsot
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Fériel Skouri-Panet
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Thierry Laurent
- Collection des Cyanobactéries, Institut Pasteur, Paris Cedex 15, France
| | - Elodie Duprat
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Muriel Gugger
- Collection des Cyanobactéries, Institut Pasteur, Paris Cedex 15, France
| |
Collapse
|
14
|
Alcorta J, Vergara-Barros P, Antonaru LA, Alcamán-Arias ME, Nürnberg DJ, Díez B. Fischerella thermalis: a model organism to study thermophilic diazotrophy, photosynthesis and multicellularity in cyanobacteria. Extremophiles 2019; 23:635-647. [PMID: 31512055 DOI: 10.1007/s00792-019-01125-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/23/2019] [Accepted: 08/05/2019] [Indexed: 01/19/2023]
Abstract
The true-branching cyanobacterium Fischerella thermalis (also known as Mastigocladus laminosus) is widely distributed in hot springs around the world. Morphologically, it has been described as early as 1837. However, its taxonomic placement remains controversial. F. thermalis belongs to the same genus as mesophilic Fischerella species but forms a monophyletic clade of thermophilic Fischerella strains and sequences from hot springs. Their recent divergence from freshwater or soil true-branching species and the ongoing process of specialization inside the thermal gradient make them an interesting evolutionary model to study. F. thermalis is one of the most complex prokaryotes. It forms a cellular network in which the main trichome and branches exchange metabolites and regulators via septal junctions. This species can adapt to a variety of environmental conditions, with its photosynthetic apparatus remaining active in a temperature range from 15 to 58 °C. Together with its nitrogen-fixing ability, this allows it to dominate in hot spring microbial mats and contribute significantly to the de novo carbon and nitrogen input. Here, we review the current knowledge on the taxonomy and distribution of F. thermalis, its morphological complexity, and its physiological adaptations to an extreme environment.
Collapse
Affiliation(s)
- Jaime Alcorta
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Avenida Libertador Bernardo O'higgins 340, Casilla 144-D, C.P. 651, 3677, Santiago, Chile
| | - Pablo Vergara-Barros
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Avenida Libertador Bernardo O'higgins 340, Casilla 144-D, C.P. 651, 3677, Santiago, Chile
| | - Laura A Antonaru
- Department of Life Science, Imperial College, London, SW7 2AZ, UK
| | - María E Alcamán-Arias
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Avenida Libertador Bernardo O'higgins 340, Casilla 144-D, C.P. 651, 3677, Santiago, Chile.,Department of Oceanography, University of Concepcion, Concepción, Chile.,Center for Climate and Resilience Research (CR)2, Santiago, Chile
| | - Dennis J Nürnberg
- Department of Life Science, Imperial College, London, SW7 2AZ, UK.,Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Avenida Libertador Bernardo O'higgins 340, Casilla 144-D, C.P. 651, 3677, Santiago, Chile. .,Center for Climate and Resilience Research (CR)2, Santiago, Chile.
| |
Collapse
|
15
|
Guedes IA, Pacheco ABF, Vilar MCP, Mello MM, Marinho MM, Lurling M, Azevedo SMFO. Intraspecific variability in response to phosphorus depleted conditions in the cyanobacteria Microcystis aeruginosa and Raphidiopsis raciborskii. HARMFUL ALGAE 2019; 86:96-105. [PMID: 31358281 DOI: 10.1016/j.hal.2019.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/07/2018] [Revised: 02/18/2019] [Accepted: 03/14/2019] [Indexed: 06/10/2023]
Abstract
Phosphorus loading plays an important role in the occurrence of cyanobacterial blooms and understanding how this nutrient affects the physiology of cyanobacteria is imperative to manage these phenomena. Microcystis aeruginosa and Raphidiopsis raciborskii are cyanobacterial species that form potentially toxic blooms in freshwater ecosystems worldwide. Blooms comprise numerous strains with high trait variability, which can contribute to the widespread distribution of these species. Here, we explored the intraspecific variability in response to phosphorus depleted conditions (P-) testing five strains of each species. Strains could be differentiated by cell volume or genetic profiles except for those of the same species, sampling location and date, though these presented differences in their response to (P-). Although differently affected by (P-) over 10 days, all strains were able to grow and maintain photosynthetic activity. For most M. aeruginosa and R. raciborskii strains growth rates were not significantly different comparing (P+) and (P-) conditions. After ten days in (P-), only one M. aeruginosa strain and two R. raciborskii strains showed reduction in biovolume yield as compared to (P+) but in most strains chlorophyll-a concentrations were lower in (P-) than in (P+). Reduced photosystem II efficiency was found for only one R. raciborskii strain while all M. aeruginosa strains were affected. Only two M. aeruginosa and one R. raciborskii strain increased alkaline phosphatase activity under (P-) as compared to (P+). Variation in P-uptake was also observed but comparison among strains yielded homogeneous groups comprised of representatives of both species. Comparing the response of each species as a whole, the (P-) condition affected growth rate, biovolume yield and chlorophyll yield. However, these parameters revealed variation among strains of the same species to the extent that differences between M. aeruginosa and R. raciborskii were not significant. Taken together, these results do not support the idea that R. raciborskii, as a species, can withstand phosphorus limitation better than M. aeruginosa and also point that the level of intraspecific variation may preclude generalizations based on studies that use only one or few strains.
Collapse
Affiliation(s)
- Iame Alves Guedes
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21949-902, Brazil
| | - Ana Beatriz F Pacheco
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21949-902, Brazil
| | - Mauro C P Vilar
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21949-902, Brazil
| | - Mariana M Mello
- Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Marcelo Manzi Marinho
- Laboratory of Ecology and Physiology of Phytoplankton, Department of Plant Biology, University of Rio de Janeiro State, Rua São Francisco Xavier 524-PHLC Sala 511a, 20550-900, Rio de Janeiro, Brazil
| | - Miquel Lurling
- Aquatic Ecology & Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands; Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, the Netherlands
| | - Sandra M F O Azevedo
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21949-902, Brazil.
| |
Collapse
|
16
|
Mareš J, Strunecký O, Bučinská L, Wiedermannová J. Evolutionary Patterns of Thylakoid Architecture in Cyanobacteria. Front Microbiol 2019; 10:277. [PMID: 30853950 PMCID: PMC6395441 DOI: 10.3389/fmicb.2019.00277] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/01/2018] [Accepted: 02/01/2019] [Indexed: 01/28/2023] Open
Abstract
While photosynthetic processes have become increasingly understood in cyanobacterial model strains, differences in the spatial distribution of thylakoid membranes among various lineages have been largely unexplored. Cyanobacterial cells exhibit an intriguing diversity in thylakoid arrangements, ranging from simple parietal to radial, coiled, parallel, and special types. Although metabolic background of their variability remains unknown, it has been suggested that thylakoid patterns are stable in certain phylogenetic clades. For decades, thylakoid arrangements have been used in cyanobacterial classification as one of the crucial characters for definition of taxa. The last comprehensive study addressing their evolutionary history in cyanobacteria was published 15 years ago. Since then both DNA sequence and electron microscopy data have grown rapidly. In the current study, we map ultrastructural data of >200 strains onto the SSU rRNA gene tree, and the resulting phylogeny is compared to a phylogenomic tree. Changes in thylakoid architecture in general follow the phylogeny of housekeeping loci. Parietal arrangement is resolved as the original thylakoid organization, evolving into complex arrangement in the most derived group of heterocytous cyanobacteria. Cyanobacteria occupying intermediate phylogenetic positions (greater filamentous, coccoid, and baeocytous types) exhibit fascicular, radial, and parallel arrangements, partly tracing the reconstructed course of phylogenetic branching. Contrary to previous studies, taxonomic value of thylakoid morphology seems very limited. Only special cases such as thylakoid absence or the parallel arrangement could be used as taxonomically informative apomorphies. The phylogenetic trees provide evidence of both paraphyly and reversion from more derived architectures in the simple parietal thylakoid pattern. Repeated convergent evolution is suggested for the radial and fascicular architectures. Moreover, thylakoid arrangement is constrained by cell size, excluding the occurrence of complex architectures in cyanobacteria smaller than 2 μm in width. It may further be dependent on unknown (eco)physiological factors as suggested by recurrence of the radial type in unrelated but morphologically similar cyanobacteria, and occurrence of special features throughout the phylogeny. No straightforward phylogenetic congruences have been found between proteins involved in photosynthesis and thylakoid formation, and the thylakoid patterns. Remarkably, several postulated thylakoid biogenesis factors are partly or completely missing in cyanobacteria, challenging their proposed essential roles.
Collapse
Affiliation(s)
- Jan Mareš
- Center Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czechia
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Otakar Strunecký
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
- Institute of Aquaculture, Faculty of Fisheries and Protection of Waters, University of South Bohemia, České Budějovice, Czechia
| | - Lenka Bučinská
- Center Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Jana Wiedermannová
- Laboratory of Molecular Genetics of Bacteria, Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
17
|
Will SE, Henke P, Boedeker C, Huang S, Brinkmann H, Rohde M, Jarek M, Friedl T, Seufert S, Schumacher M, Overmann J, Neumann-Schaal M, Petersen J. Day and Night: Metabolic Profiles and Evolutionary Relationships of Six Axenic Non-Marine Cyanobacteria. Genome Biol Evol 2019; 11:270-294. [PMID: 30590650 PMCID: PMC6349668 DOI: 10.1093/gbe/evy275] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 12/19/2018] [Indexed: 12/14/2022] Open
Abstract
Cyanobacteria are dominant primary producers of various ecosystems and they colonize marine as well as freshwater and terrestrial habitats. On the basis of their oxygenic photosynthesis they are known to synthesize a high number of secondary metabolites, which makes them promising for biotechnological applications. State-of-the-art sequencing and analytical techniques and the availability of several axenic strains offer new opportunities for the understanding of the hidden metabolic potential of cyanobacteria beyond those of single model organisms. Here, we report comprehensive genomic and metabolic analyses of five non-marine cyanobacteria, that is, Nostoc sp. DSM 107007, Anabaena variabilis DSM 107003, Calothrix desertica DSM 106972, Chroococcidiopsis cubana DSM 107010, Chlorogloeopsis sp. PCC 6912, and the reference strain Synechocystis sp. PCC 6803. Five strains that are prevalently belonging to the order Nostocales represent the phylogenetic depth of clade B1, a morphologically highly diverse sister lineage of clade B2 that includes strain PCC 6803. Genome sequencing, light and scanning electron microscopy revealed the characteristics and axenicity of the analyzed strains. Phylogenetic comparisons showed the limits of the 16S rRNA gene for the classification of cyanobacteria, but documented the applicability of a multilocus sequence alignment analysis based on 43 conserved protein markers. The analysis of metabolites of the core carbon metabolism showed parts of highly conserved metabolic pathways as well as lineage specific pathways such as the glyoxylate shunt, which was acquired by cyanobacteria at least twice via horizontal gene transfer. Major metabolic changes were observed when we compared alterations between day and night samples. Furthermore, our results showed metabolic potential of cyanobacteria beyond Synechocystis sp. PCC 6803 as model organism and may encourage the cyanobacterial community to broaden their research to related organisms with higher metabolic activity in the desired pathways.
Collapse
Affiliation(s)
- Sabine Eva Will
- Nachwuchsgruppe Bakterielle Metabolomik, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Petra Henke
- Abteilung Mikrobielle Ökologie und Diversität, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Christian Boedeker
- Abteilung Mikrobielle Ökologie und Diversität, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Sixing Huang
- Abteilung Mikrobielle Ökologie und Diversität, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Henner Brinkmann
- Abteilung Protisten und Cyanobakterien, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Manfred Rohde
- Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | - Michael Jarek
- Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | - Thomas Friedl
- Sammlung von Algenkulturen der Universität Göttingen (SAG), Germany
| | - Steph Seufert
- Abteilung Protisten und Cyanobakterien, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Martin Schumacher
- Abteilung Protisten und Cyanobakterien, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Jörg Overmann
- Abteilung Mikrobielle Ökologie und Diversität, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Nachwuchsgruppe Bakterielle Metabolomik, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Jörn Petersen
- Abteilung Protisten und Cyanobakterien, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| |
Collapse
|
18
|
Santamarï A-Gï Mez J, Mariscal V, Luque I. Mechanisms for Protein Redistribution in Thylakoids of Anabaena During Cell Differentiation. PLANT & CELL PHYSIOLOGY 2018; 59:1860-1873. [PMID: 29878163 DOI: 10.1093/pcp/pcy103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/19/2018] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
Thylakoid membranes are far from being homogeneous in composition. On the contrary, compositional heterogeneity of lipid and protein content is well known to exist in these membranes. The mechanisms for the confinement of proteins at a particular membrane domain have started to be unveiled, but we are far from a thorough understanding, and many issues remain to be elucidated. During the differentiation of heterocysts in filamentous cyanobacteria of the Anabaena and Nostoc genera, thylakoids undergo a complete reorganization, separating into two membrane domains of different appearance and subcellular localization. Evidence also indicates different functionality and protein composition for these two membrane domains. In this work, we have addressed the mechanisms that govern the specific localization of proteins at a particular membrane domain. Two classes of proteins were distinguished according to their distribution in the thylakoids. Our results indicate that the specific accumulation of proteins of the CURVATURE THYLAKOID 1 (CURT1) family and proteins containing the homologous CAAD domain at subpolar honeycomb thylakoids is mediated by multiple mechanisms including a previously unnoticed phenomenon of thylakoid membrane migration.
Collapse
Affiliation(s)
- Javier Santamarï A-Gï Mez
- Instituto de Bioqu�mica Vegetal y Fotos�ntesis, CSIC and Universidad de Sevilla, Avda Am�rico Vespucio 49, Seville E-41092, Spain
| | - Vicente Mariscal
- Instituto de Bioqu�mica Vegetal y Fotos�ntesis, CSIC and Universidad de Sevilla, Avda Am�rico Vespucio 49, Seville E-41092, Spain
| | - Ignacio Luque
- Instituto de Bioqu�mica Vegetal y Fotos�ntesis, CSIC and Universidad de Sevilla, Avda Am�rico Vespucio 49, Seville E-41092, Spain
| |
Collapse
|
19
|
Blondeau M, Sachse M, Boulogne C, Gillet C, Guigner JM, Skouri-Panet F, Poinsot M, Ferard C, Miot J, Benzerara K. Amorphous Calcium Carbonate Granules Form Within an Intracellular Compartment in Calcifying Cyanobacteria. Front Microbiol 2018; 9:1768. [PMID: 30127775 PMCID: PMC6087745 DOI: 10.3389/fmicb.2018.01768] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/04/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022] Open
Abstract
The recent discovery of cyanobacteria forming intracellular amorphous calcium carbonate (ACC) has challenged the former paradigm suggesting that cyanobacteria-mediated carbonatogenesis was exclusively extracellular. Yet, the mechanisms of intracellular biomineralization in cyanobacteria and in particular whether this takes place within an intracellular microcompartment, remain poorly understood. Here, we analyzed six cyanobacterial strains forming intracellular ACC by transmission electron microscopy. We tested two different approaches to preserve as well as possible the intracellular ACC inclusions: (i) freeze-substitution followed by epoxy embedding and room-temperature ultramicrotomy and (ii) high-pressure freezing followed by cryo-ultramicrotomy, usually referred to as cryo-electron microscopy of vitreous sections (CEMOVIS). We observed that the first method preserved ACC well in 500-nm-thick sections but not in 70-nm-thick sections. However, cell ultrastructures were difficult to clearly observe in the 500-nm-thick sections. In contrast, CEMOVIS provided a high preservation quality of bacterial ultrastructures, including the intracellular ACC inclusions in 50-nm-thick sections. ACC inclusions displayed different textures, suggesting varying brittleness, possibly resulting from different hydration levels. Moreover, an electron dense envelope of ∼2.5 nm was systematically observed around ACC granules in all studied cyanobacterial strains. This envelope may be composed of a protein shell or a lipid monolayer, but not a lipid bilayer as usually observed in other bacteria forming intracellular minerals. Overall, this study evidenced that ACC inclusions formed and were stabilized within a previously unidentified bacterial microcompartment in some species of cyanobacteria.
Collapse
Affiliation(s)
- Marine Blondeau
- UMR CNRS 7590, IRD, Muséum National d'Histoire Naturelle, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Paris, France
| | - Martin Sachse
- Unité Technologie et Service BioImagerie Ultrastructurale, Citech, Institut Pasteur, Paris, France
| | - Claire Boulogne
- CEA, Centre National de la Recherche Scientifique, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Cynthia Gillet
- CEA, Centre National de la Recherche Scientifique, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jean-Michel Guigner
- UMR CNRS 7590, IRD, Muséum National d'Histoire Naturelle, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Paris, France
| | - Fériel Skouri-Panet
- UMR CNRS 7590, IRD, Muséum National d'Histoire Naturelle, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Paris, France
| | - Mélanie Poinsot
- UMR CNRS 7590, IRD, Muséum National d'Histoire Naturelle, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Paris, France
| | - Céline Ferard
- UMR CNRS 7590, IRD, Muséum National d'Histoire Naturelle, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Paris, France
| | - Jennyfer Miot
- UMR CNRS 7590, IRD, Muséum National d'Histoire Naturelle, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Paris, France
| | - Karim Benzerara
- UMR CNRS 7590, IRD, Muséum National d'Histoire Naturelle, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Paris, France
| |
Collapse
|
20
|
Cornet L, Wilmotte A, Javaux EJ, Baurain D. A constrained SSU-rRNA phylogeny reveals the unsequenced diversity of photosynthetic Cyanobacteria (Oxyphotobacteria). BMC Res Notes 2018; 11:435. [PMID: 29970154 PMCID: PMC6029276 DOI: 10.1186/s13104-018-3543-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2018] [Accepted: 06/26/2018] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Cyanobacteria are an ancient phylum of prokaryotes that contain the class Oxyphotobacteria. This group has been extensively studied by phylogenomics notably because it is widely accepted that Cyanobacteria were responsible for the spread of photosynthesis to the eukaryotic domain. The aim of this study was to evaluate the fraction of the oxyphotobacterial diversity for which sequenced genomes are available for genomic studies. For this, we built a phylogenomic-constrained SSU rRNA (16S) tree to pinpoint unexploited clusters of Oxyphotobacteria that should be targeted for future genome sequencing, so as to improve our understanding of Oxyphotobacteria evolution. RESULTS We show that only a little fraction of the oxyphotobacterial diversity has been sequenced so far. Indeed 31 rRNA clusters of the 60 composing the photosynthetic Cyanobacteria have a fraction of sequenced genomes < 1%. This fraction remains low (min = 1%, median = 11.1%, IQR = 7.3%) within the remaining "sequenced" clusters that already contain some representative genomes. The "unsequenced" clusters are scattered across the whole Oxyphotobacteria tree, at the exception of very basal clades. Yet, these clades still feature some (sub)clusters without any representative genome. This last result is especially important, as these basal clades are prime candidate for plastid emergence.
Collapse
Affiliation(s)
- Luc Cornet
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, 4000 Liège, Belgium
- UR Geology-Palaeobiogeology-Palaeobotany-Palaeopalynology, University of Liège, 4000 Liège, Belgium
| | - Annick Wilmotte
- InBioS-CIP, Centre for Protein Engineering, University of Liège, 4000 Liège, Belgium
- BCCM/ULC Collection of Cyanobacteria, University of Liège, 4000 Liège, Belgium
| | - Emmanuelle J. Javaux
- UR Geology-Palaeobiogeology-Palaeobotany-Palaeopalynology, University of Liège, 4000 Liège, Belgium
| | - Denis Baurain
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
21
|
Abstract
Because of recent advances in omics methodologies, knowledge of chlorophototrophy (i.e., chlorophyll-based phototrophy) in bacteria has rapidly increased. Chlorophototrophs currently are known to occur in seven bacterial phyla: Cyanobacteria, Proteobacteria, Chlorobi, Chloroflexi, Firmicutes, Acidobacteria, and Gemmatimonadetes. Other organisms that can produce chlorophylls and photochemical reaction centers may still be undiscovered. Here we summarize the current status of the taxonomy and phylogeny of chlorophototrophic bacteria as revealed by genomic methods. In specific cases, we briefly describe important ecophysiological and metabolic insights that have been gained from the application of genomic methods to these bacteria. In the 20 years since the completion of the Synechocystis sp. PCC 6803 genome in 1996, approximately 1,100 genomes have been sequenced, which represents nearly the complete diversity of known chlorophototrophic bacteria. These data are leading to new insights into many important processes, including photosynthesis, nitrogen and carbon fixation, cellular differentiation and development, symbiosis, and ecosystem functionality.
Collapse
Affiliation(s)
- Vera Thiel
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; ,
| | - Marcus Tank
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; ,
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA;
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
| |
Collapse
|
22
|
Kerfeld CA. A bioarchitectonic approach to the modular engineering of metabolism. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0387. [PMID: 28808103 DOI: 10.1098/rstb.2016.0387] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 03/05/2017] [Indexed: 01/13/2023] Open
Abstract
Dissociating the complexity of metabolic processes into modules is a shift in focus from the single gene/gene product to functional and evolutionary units spanning the scale of biological organization. When viewing the levels of biological organization through this conceptual lens, modules are found across the continuum: domains within proteins, co-regulated groups of functionally associated genes, operons, metabolic pathways and (sub)cellular compartments. Combining modules as components or subsystems of a larger system typically leads to increased complexity and the emergence of new functions. By virtue of their potential for 'plug and play' into new contexts, modules can be viewed as units of both evolution and engineering. Through consideration of lessons learned from recent efforts to install new metabolic modules into cells and the emerging understanding of the structure, function and assembly of protein-based organelles, bacterial microcompartments, a structural bioengineering approach is described: one that builds from an architectural vocabulary of protein domains. This bioarchitectonic approach to engineering cellular metabolism can be applied to microbial cell factories, used in the programming of members of synthetic microbial communities or used to attain additional levels of metabolic organization in eukaryotic cells for increasing primary productivity and as the foundation of a green economy.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.
Collapse
Affiliation(s)
- Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA .,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.,Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824, USA.,Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720, USA
| |
Collapse
|
23
|
Kurmayer R, Christiansen G, Holzinger A, Rott E. Single colony genetic analysis of epilithic stream algae of the genus Chamaesiphon spp. HYDROBIOLOGIA 2018; 811:61-75. [PMID: 29556110 PMCID: PMC5856356 DOI: 10.1007/s10750-017-3295-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/30/2023]
Abstract
In order to understand Chamaesiphon spp. evolution and ecological diversification, we investigated the phylogenetic differentiation of three morphospecies from field samples by means of single colony genetics. Individual colonies of three different morphospecies (C. starmachii, C. polonicus, C. geitleri,) were isolated from lotic gravel streams and their 16S rDNA nucleotide variability was analyzed. For a number of individual colonies, microscopical and ultrastructural analysis was also performed. A phylogenetic tree of all major lineages of the phylum of Cyanobacteria assigned all Chamaesiphon genotypes (1149-1176 bp) most closely with the family of Gomontiellaceae of the order Oscillatoriales. The sequences obtained from colonies assigned to C. starmachii (n = 21), C. polonicus (n = 9), and C. geitleri (n = 17) were found to reveal high average (3.5%) nucleotide diversity. No phylogenetic sub-branching in correspondence with morphology was observed suggesting that the three Chamaesiphon morphospecies did not represent monophyletic taxa. We could not attribute specific thylakoid ultrastructure to phylogenetic sub-branches; however, the observed parietally and loosely arranged thylakoids indicate that for the genus Chamaesiphon, the variability in thylakoid ultrastructure might have been underestimated. In summary, the high nucleotide diversity of the 16S rDNA gene implies phylogenetic diversity that corresponds little to morphological classification.
Collapse
Affiliation(s)
- Rainer Kurmayer
- Research Institute for Limnology, University of Innsbruck, Mondseestraße 9, 5310 Mondsee, Austria
| | - Guntram Christiansen
- Research Institute for Limnology, University of Innsbruck, Mondseestraße 9, 5310 Mondsee, Austria
| | - Andreas Holzinger
- Institute of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Eugen Rott
- Institute of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| |
Collapse
|
24
|
Abstract
Cultivation of microalgae requires consideration of shear stress, which is generated by operations such as mixing, circulation, aeration and pumping that are designed to facilitate mass and heat transfer as well as light distribution in cultures. Excessive shear stress can cause increased cell mortality, decreased growth rate and cell viability, or even cell lysis. This review examines the sources of shear stress in different cultivation systems, shear stress tolerance of different microalgal species and the physiological factors and environmental conditions that may affect shear sensitivity, and potential approaches to mitigate the detrimental effects of shear stress. In general, green algae have the greatest tolerance to shear stress, followed by cyanobacteria, haptophytes, red algae, and diatoms, with dinoflagellates comprising the most shear-sensitive species. The shear-sensitivity of microalgae is determined primarily by cell wall strength, cell morphology and the presence of flagella. Turbulence, eddy size, and viscosity are the most prominent parameters affecting shear stress to microalgal cells during cultivation.
Collapse
Affiliation(s)
- Chinchin Wang
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Private, Ottawa, ON K1N 6N5, Canada; Department of Biochemistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Christopher Q Lan
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Private, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
25
|
Raven JA, Beardall J, Sánchez-Baracaldo P. The possible evolution and future of CO2-concentrating mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3701-3716. [PMID: 28505361 DOI: 10.1093/jxb/erx110] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/11/2023]
Abstract
CO2-concentrating mechanisms (CCMs), based either on active transport of inorganic carbon (biophysical CCMs) or on biochemistry involving supplementary carbon fixation into C4 acids (C4 and CAM), play a major role in global primary productivity. However, the ubiquitous CO2-fixing enzyme in autotrophs, Rubisco, evolved at a time when atmospheric CO2 levels were very much higher than today and O2 was very low and, as CO2 and O2 approached (by no means monotonically), today's levels, at some time subsequently many organisms evolved a CCM that increased the supply of CO2 and decreased Rubisco oxygenase activity. Given that CO2 levels and other environmental factors have altered considerably between when autotrophs evolved and the present day, and are predicted to continue to change into the future, we here examine the drivers for, and possible timing of, evolution of CCMs. CCMs probably evolved when CO2 fell to 2-16 times the present atmospheric level, depending on Rubisco kinetics. We also assess the effects of other key environmental factors such as temperature and nutrient levels on CCM activity and examine the evidence for evolutionary changes in CCM activity and related cellular processes as well as limitations on continuity of CCMs through environmental variations.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Functional Plant Biology and Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - John Beardall
- School of Biological Sciences, Monash University, Building 18, Clayton Campus, Vic 3800, Australia
| | | |
Collapse
|
26
|
Sommer M, Cai F, Melnicki M, Kerfeld CA. β-Carboxysome bioinformatics: identification and evolution of new bacterial microcompartment protein gene classes and core locus constraints. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3841-3855. [PMID: 28419380 PMCID: PMC5853843 DOI: 10.1093/jxb/erx115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/21/2016] [Accepted: 03/18/2017] [Indexed: 05/03/2023]
Abstract
Carboxysomes are bacterial microcompartments (BMCs) that enhance CO2 fixation in all cyanobacteria. Structurally, carboxysome shell proteins are classified according to the type of oligomer formed: hexameric (BMC-H), trimeric (BMC-T) and pentameric (BMC-P) proteins. To understand the forces driving the evolution of the carboxysome shell, we conducted a bioinformatic study of genes encoding β-carboxysome shell proteins, taking advantage of the recent large increase in sequenced cyanobacterial genomes. In addition to the four well-established BMC-H (CcmK1-4) classes, our analysis reveals two new CcmK classes, which we name CcmK5 and CcmK6. CcmK5 is phylogenetically closest to CcmK3 and CcmK4, and the ccmK5 gene is found only in genomes lacking ccmK3 and ccmk4 genes. ccmK6 is found predominantly in heterocyst-forming cyanobacteria. The gene encoding the BMC-T homolog CcmO is associated with the main carboxysome locus (MCL) in only 60% of all species. We find five evolutionary origins of separation of ccmO from the MCL. Transcriptome analysis demonstrates that satellite ccmO genes, in contrast to MCL-associated ccmO genes, are never co-regulated with other MCL genes. The dispersal of carboxysome shell genes across the genome allows for distinct regulation of their expression, perhaps in response to changes in environmental conditions.
Collapse
Affiliation(s)
- Manuel Sommer
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Fei Cai
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Matthew Melnicki
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cheryl A Kerfeld
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, USA
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
27
|
Alvarenga DO, Fiore MF, Varani AM. A Metagenomic Approach to Cyanobacterial Genomics. Front Microbiol 2017; 8:809. [PMID: 28536564 PMCID: PMC5422444 DOI: 10.3389/fmicb.2017.00809] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/14/2017] [Accepted: 04/20/2017] [Indexed: 01/08/2023] Open
Abstract
Cyanobacteria, or oxyphotobacteria, are primary producers that establish ecological interactions with a wide variety of organisms. Although their associations with eukaryotes have received most attention, interactions with bacterial and archaeal symbionts have also been occurring for billions of years. Due to these associations, obtaining axenic cultures of cyanobacteria is usually difficult, and most isolation efforts result in unicyanobacterial cultures containing a number of associated microbes, hence composing a microbial consortium. With rising numbers of cyanobacterial blooms due to climate change, demand for genomic evaluations of these microorganisms is increasing. However, standard genomic techniques call for the sequencing of axenic cultures, an approach that not only adds months or even years for culture purification, but also appears to be impossible for some cyanobacteria, which is reflected in the relatively low number of publicly available genomic sequences of this phylum. Under the framework of metagenomics, on the other hand, cumbersome techniques for achieving axenic growth can be circumvented and individual genomes can be successfully obtained from microbial consortia. This review focuses on approaches for the genomic and metagenomic assessment of non-axenic cyanobacterial cultures that bypass requirements for axenity. These methods enable researchers to achieve faster and less costly genomic characterizations of cyanobacterial strains and raise additional information about their associated microorganisms. While non-axenic cultures may have been previously frowned upon in cyanobacteriology, latest advancements in metagenomics have provided new possibilities for in vitro studies of oxyphotobacteria, renewing the value of microbial consortia as a reliable and functional resource for the rapid assessment of bloom-forming cyanobacteria.
Collapse
Affiliation(s)
- Danillo O. Alvarenga
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP)Jaboticabal, Brazil
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP)Piracicaba, Brazil
| | - Marli F. Fiore
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP)Piracicaba, Brazil
| | - Alessandro M. Varani
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP)Jaboticabal, Brazil
| |
Collapse
|