1
|
Pérez Castro S, Peredo EL, Mason OU, Vineis J, Bowen JL, Mortazavi B, Ganesh A, Ruff SE, Paul BG, Giblin AE, Cardon ZG. Diversity at single nucleotide to pangenome scales among sulfur cycling bacteria in salt marshes. Appl Environ Microbiol 2023; 89:e0098823. [PMID: 37882526 PMCID: PMC10686091 DOI: 10.1128/aem.00988-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/04/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Salt marshes are known for their significant carbon storage capacity, and sulfur cycling is closely linked with the ecosystem-scale carbon cycling in these ecosystems. Sulfate reducers are key for the decomposition of organic matter, and sulfur oxidizers remove toxic sulfide, supporting the productivity of marsh plants. To date, the complexity of coastal environments, heterogeneity of the rhizosphere, high microbial diversity, and uncultured majority hindered our understanding of the genomic diversity of sulfur-cycling microbes in salt marshes. Here, we use comparative genomics to overcome these challenges and provide an in-depth characterization of sulfur-cycling microbial diversity in salt marshes. We characterize communities across distinct sites and plant species and uncover extensive genomic diversity at the taxon level and specific genomic features present in MAGs affiliated with uncultivated sulfur-cycling lineages. Our work provides insights into the partnerships in salt marshes and a roadmap for multiscale analyses of diversity in complex biological systems.
Collapse
Affiliation(s)
- Sherlynette Pérez Castro
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
- Crop and Soil Sciences, University of Georgia, Athens, USA
| | - Elena L. Peredo
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Olivia U. Mason
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida, USA
| | - Joseph Vineis
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
| | - Jennifer L. Bowen
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
| | - Behzad Mortazavi
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Anakha Ganesh
- Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - S. Emil Ruff
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
- Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Blair G. Paul
- Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Anne E. Giblin
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Zoe G. Cardon
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
2
|
Pettinato E, Böhnert P, Berg IA. Succinyl-CoA:acetate CoA-transferase functioning in the oxidative tricarboxylic acid cycle in Desulfurella acetivorans. Front Microbiol 2022; 13:1080142. [PMID: 36569052 PMCID: PMC9768450 DOI: 10.3389/fmicb.2022.1080142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Desulfurella acetivorans is a strictly anaerobic sulfur-reducing deltaproteobacterium that possesses a very dynamic metabolism with the ability to revert the citrate synthase version of the tricarboxylic acid (TCA) cycle for autotrophic growth (reversed oxidative TCA cycle) or to use it for acetate oxidation (oxidative TCA cycle). Here we show that for heterotrophic growth on acetate D. acetivorans uses a modified oxidative TCA cycle that was first discovered in acetate-oxidizing sulfate reducers in which a succinyl-CoA:acetate CoA-transferase catalyzes the conversion of succinyl-CoA to succinate, coupled with the activation of acetate to acetyl-CoA. We identified the corresponding enzyme in this bacterium as the AHF96498 gene product and characterized it biochemically. Our phylogenetic analysis of CoA-transferases revealed that the CoA-transferase variant of the oxidative TCA cycle has convergently evolved several times in different bacteria. Its functioning is especially important for anaerobes, as it helps to increase the energetic efficiency of the pathway by using one enzyme for two enzymatic reactions and by allowing to spend just one ATP equivalent for acetate activation.
Collapse
|
3
|
Rosado-Porto D, Ratering S, Moser G, Deppe M, Müller C, Schnell S. Soil metatranscriptome demonstrates a shift in C, N, and S metabolisms of a grassland ecosystem in response to elevated atmospheric CO 2. Front Microbiol 2022; 13:937021. [PMID: 36081791 PMCID: PMC9445814 DOI: 10.3389/fmicb.2022.937021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Soil organisms play an important role in the equilibrium and cycling of nutrients. Because elevated CO2 (eCO2) affects plant metabolism, including rhizodeposition, it directly impacts the soil microbiome and microbial processes. Therefore, eCO2 directly influences the cycling of different elements in terrestrial ecosystems. Hence, possible changes in the cycles of carbon (C), nitrogen (N), and sulfur (S) were analyzed, alongside the assessment of changes in the composition and structure of the soil microbiome through a functional metatranscriptomics approach (cDNA from mRNA) from soil samples taken at the Giessen free-air CO2 enrichment (Gi-FACE) experiment. Results showed changes in the expression of C cycle genes under eCO2 with an increase in the transcript abundance for carbohydrate and amino acid uptake, and degradation, alongside an increase in the transcript abundance for cellulose, chitin, and lignin degradation and prokaryotic carbon fixation. In addition, N cycle changes included a decrease in the transcript abundance of N2O reductase, involved in the last step of the denitrification process, which explains the increase of N2O emissions in the Gi-FACE. Also, a shift in nitrate (NO 3 - ) metabolism occurred, with an increase in transcript abundance for the dissimilatoryNO 3 - reduction to ammonium (NH 4 + ) (DNRA) pathway. S metabolism showed increased transcripts for sulfate (SO 4 2 - ) assimilation under eCO2 conditions. Furthermore, soil bacteriome, mycobiome, and virome significantly differed between ambient and elevated CO2 conditions. The results exhibited the effects of eCO2 on the transcript abundance of C, N, and S cycles, and the soil microbiome. This finding showed a direct connection between eCO2 and the increased greenhouse gas emission, as well as the importance of soil nutrient availability to maintain the balance of soil ecosystems.
Collapse
Affiliation(s)
- David Rosado-Porto
- Institute of Applied Microbiology, Justus Liebig University, Giessen, Germany
- Faculty of Basic and Biomedical Sciences, Simón Bolívar University, Barranquilla, Colombia
| | - Stefan Ratering
- Institute of Applied Microbiology, Justus Liebig University, Giessen, Germany
| | - Gerald Moser
- Institute of Plant Ecology, Justus Liebig University, Giessen, Germany
| | - Marianna Deppe
- Institute of Plant Ecology, Justus Liebig University, Giessen, Germany
| | - Christoph Müller
- Institute of Plant Ecology, Justus Liebig University, Giessen, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| | - Sylvia Schnell
- Institute of Applied Microbiology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
4
|
Santos Correa S, Schultz J, Lauersen KJ, Soares Rosado A. Natural carbon fixation and advances in synthetic engineering for redesigning and creating new fixation pathways. J Adv Res 2022; 47:75-92. [PMID: 35918056 PMCID: PMC10173188 DOI: 10.1016/j.jare.2022.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Autotrophic carbon fixation is the primary route through which organic carbon enters the biosphere, and it is a key step in the biogeochemical carbon cycle. The Calvin-Benson-Bassham pathway, which is predominantly found in plants, algae, and some bacteria (mainly cyanobacteria), was previously considered to be the sole carbon-fixation pathway. However, the discovery of a new carbon-fixation pathway in sulfurous green bacteria almost two decades ago encouraged further research on previously overlooked ancient carbon-fixation pathways in taxonomically and phylogenetically distinct microorganisms. AIM OF REVIEW In this review, we summarize the six known natural carbon-fixation pathways and outline the newly proposed additions to this list. We also discuss the recent achievements in synthetic carbon fixation and the importance of the metabolism of thermophilic microorganisms in this field. KEY SCIENTIFIC CONCEPTS OF REVIEW Currently, at least six carbon-fixation routes have been confirmed in Bacteria and Archaea. Other possible candidate routes have also been suggested on the basis of emerging "omics" data analyses, expanding our knowledge and stimulating discussions on the importance of these pathways in the way organisms acquire carbon. Notably, the currently known natural fixation routes cannot balance the excessive anthropogenic carbon emissions in a highly unbalanced global carbon cycle. Therefore, significant efforts have also been made to improve the existing carbon-fixation pathways and/or design new efficient in vitro and in vivo synthetic pathways.
Collapse
Affiliation(s)
- Sulamita Santos Correa
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Junia Schultz
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Kyle J Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Alexandre Soares Rosado
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Bioscience Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
5
|
Spontaneous assembly of redox-active iron-sulfur clusters at low concentrations of cysteine. Nat Commun 2021; 12:5925. [PMID: 34635654 PMCID: PMC8505563 DOI: 10.1038/s41467-021-26158-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Iron-sulfur (FeS) proteins are ancient and fundamental to life, being involved in electron transfer and CO2 fixation. FeS clusters have structures similar to the unit-cell of FeS minerals such as greigite, found in hydrothermal systems linked with the origin of life. However, the prebiotic pathway from mineral surfaces to biological clusters is unknown. Here we show that FeS clusters form spontaneously through interactions of inorganic Fe2+/Fe3+ and S2- with micromolar concentrations of the amino acid cysteine in water at alkaline pH. Bicarbonate ions stabilize the clusters and even promote cluster formation alone at concentrations >10 mM, probably through salting-out effects. We demonstrate robust, concentration-dependent formation of [4Fe4S], [2Fe2S] and mononuclear iron clusters using UV-Vis spectroscopy, 57Fe-Mössbauer spectroscopy and 1H-NMR. Cyclic voltammetry shows that the clusters are redox-active. Our findings reveal that the structures responsible for biological electron transfer and CO2 reduction could have formed spontaneously from monomers at the origin of life.
Collapse
|
6
|
Steiner TM, Lettl C, Schindele F, Goebel W, Haas R, Fischer W, Eisenreich W. Substrate usage determines carbon flux via the citrate cycle in Helicobacter pylori. Mol Microbiol 2021; 116:841-860. [PMID: 34164854 DOI: 10.1111/mmi.14775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/07/2021] [Accepted: 06/19/2021] [Indexed: 12/31/2022]
Abstract
Helicobacter pylori displays a worldwide infection rate of about 50%. The Gram-negative bacterium is the main reason for gastric cancer and other severe diseases. Despite considerable knowledge about the metabolic inventory of H. pylori, carbon fluxes through the citrate cycle (TCA cycle) remained enigmatic. In this study, different 13 C-labeled substrates were supplied as carbon sources to H. pylori during microaerophilic growth in a complex medium. After growth, 13 C-excess and 13 C-distribution were determined in multiple metabolites using GC-MS analysis. [U-13 C6 ]Glucose was efficiently converted into glyceraldehyde but only less into TCA cycle-related metabolites. In contrast, [U-13 C5 ]glutamate, [U-13 C4 ]succinate, and [U-13 C4 ]aspartate were incorporated at high levels into intermediates of the TCA cycle. The comparative analysis of the 13 C-distributions indicated an adaptive TCA cycle fully operating in the closed oxidative direction with rapid equilibrium fluxes between oxaloacetate-succinate and α-ketoglutarate-citrate. 13 C-Profiles of the four-carbon intermediates in the TCA cycle, especially of malate, together with the observation of an isocitrate lyase activity by in vitro assays, suggested carbon fluxes via a glyoxylate bypass. In conjunction with the lack of enzymes for anaplerotic CO2 fixation, the glyoxylate bypass could be relevant to fill up the TCA cycle with carbon atoms derived from acetyl-CoA.
Collapse
Affiliation(s)
- Thomas M Steiner
- Bavarian NMR Center-Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Clara Lettl
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, München, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, München, Germany
| | - Franziska Schindele
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, München, Germany
| | - Werner Goebel
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, München, Germany
| | - Rainer Haas
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, München, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, München, Germany
| | - Wolfgang Fischer
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, München, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, München, Germany
| | - Wolfgang Eisenreich
- Bavarian NMR Center-Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
| |
Collapse
|
7
|
Rubredoxin from the green sulfur bacterium Chlorobaculum tepidum donates a redox equivalent to the flavodiiron protein in an NAD(P)H dependent manner via ferredoxin-NAD(P) + oxidoreductase. Arch Microbiol 2020; 203:799-808. [PMID: 33051772 DOI: 10.1007/s00203-020-02079-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
Abstract
The green sulfur bacterium, Chlorobaculum tepidum, is an anaerobic photoautotroph that performs anoxygenic photosynthesis. Although genes encoding rubredoxin (Rd) and a putative flavodiiron protein (FDP) were reported in the genome, a gene encoding putative NADH-Rd oxidoreductase is not identified. In this work, we expressed and purified the recombinant Rd and FDP and confirmed dioxygen reductase activity in the presence of ferredoxin-NAD(P)+ oxidoreductase (FNR). FNR from C. tepidum and Bacillus subtilis catalyzed the reduction of Rd at rates comparable to those reported for NADH-Rd oxidoreductases. Also, we observed substrate inhibition at high concentrations of NADPH similar to that observed with ferredoxins. In the presence of NADPH, B. subtilis FNR and Rd, FDP promoted dioxygen reduction at rates comparable to those reported for other bacterial FDPs. Taken together, our results suggest that Rd and FDP participate in the reduction of dioxygen in C. tepidum and that FNR can promote the reduction of Rd in this bacterium.
Collapse
|
8
|
Zhang Y, Fernie AR. On the role of the tricarboxylic acid cycle in plant productivity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:1199-1216. [PMID: 29917310 DOI: 10.1111/jipb.12690] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/18/2018] [Indexed: 05/10/2023]
Abstract
The tricarboxylic acid (TCA) cycle is one of the canonical energy pathways of living systems, as well as being an example of a pathway in which dynamic enzyme assemblies, or metabolons, are well characterized. The role of the enzymes have been the subject of saturated transgenesis approaches, whereby the expression of the constituent enzymes were reduced or knocked out in order to ascertain their in vivo function. Some of the resultant plants exhibited improved photosynthesis and plant growth, under controlled greenhouse conditions. In addition, overexpression of the endogenous genes, or heterologous forms of a number of the enzymes, has been carried out in tomato fruit and the roots of a range of species, and in some instances improvement in fruit yield and postharvest properties and plant performance, under nutrient limitation, have been reported, respectively. Given a number of variants, in nature, we discuss possible synthetic approaches involving introducing these variants, or at least a subset of them, into plants. We additionally discuss the likely consequences of introducing synthetic metabolons, wherein certain pairs of reactions are artificially permanently assembled into plants, and speculate as to future strategies to further improve plant productivity by manipulation of the core metabolic pathway.
Collapse
Affiliation(s)
- Youjun Zhang
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| |
Collapse
|
9
|
|