1
|
Reinhard D, Schuldt MP, Elbert SM, Ueberricke L, Hengefeld K, Rominger F, Mastalerz M. Substituent Effects in Scholl-Type Reactions of 1,2-Terphenyls to Triphenylenes. Chemistry 2024; 30:e202402821. [PMID: 39253989 DOI: 10.1002/chem.202402821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/11/2024]
Abstract
A series of 3,3''- and 4,4''-dimethoxy terphenyls with different second substituents on their ortho-positions have been synthesized and investigated upon the possibility to be oxidatively cyclodehydrogenated to the corresponding triphenylenes under Scholl-type conditions. The experimentally obtained selectivities were supported and explained by quantum chemical calculations and conclusions on the involved mechanisms (acid catalyzed arenium-ion mechanism (AIM) vs radical cation mechanism) were drawn.
Collapse
Affiliation(s)
- Dennis Reinhard
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| | - Moritz P Schuldt
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| | - Sven M Elbert
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| | - Lucas Ueberricke
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| | - Karsten Hengefeld
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| |
Collapse
|
2
|
Shen T, Pasqués-Gramage P, Villalvilla JM, Boj PG, Quintana JA, Zou Y, Han Y, Jiao L, Ren L, Díaz-García MA, Wu J. [4]Rhombene: Solution-Phase Synthesis and Application in Distributed Feedback Lasers With Emission Beyond 830 nm. Angew Chem Int Ed Engl 2024; 63:e202410828. [PMID: 38981687 DOI: 10.1002/anie.202410828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024]
Abstract
Graphene-like molecules with multiple zigzag edges are emerging as promising gain materials for organic lasers. Their emission wavelengths can vary widely, ranging from visible to near-infrared (NIR), as the molecular size increases. Specifically, rhombus-shaped molecular graphenes with two pairs of parallel zigzag edges, known as [n]rhombenes, are excellent candidates for NIR lasers due to their small energy gaps. However, synthesizing large-size rhombenes with emission beyond 800 nm in solution remains a significant challenge. In this study, we present a straightforward synthesis of an aryl-substituted [4]rhombene derivative, [4]RB-Ar, using a method that combines intramolecular radical-radical coupling with Bi(OTf)3-mediated cyclization of vinyl ethers. The structure of [4]RB-Ar was confirmed through X-ray crystallographic analysis. Bond length analysis and theoretical calculations indicate that aromatic sextets are predominantly localized along the molecule's long axis. Significantly, [4]RB-Ar demonstrates narrow amplified spontaneous emission at around 834 nm when dispersed in polystyrene thin films. Moreover, solution-processed distributed feedback lasers employing [4]RB-Ar as the active gain material display tunable narrow emissions in the range of 830 to 844 nm.
Collapse
Affiliation(s)
- Tong Shen
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350507, China
- Department of chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Pablo Pasqués-Gramage
- Departamento Física Aplicada and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Alicante, 03080, Spain
| | - José M Villalvilla
- Departamento Física Aplicada and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Alicante, 03080, Spain
| | - Pedro G Boj
- Departamento de Óptica, Farmacología y Anatomía and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Alicante, 03080, Spain
| | - José A Quintana
- Departamento de Óptica, Farmacología y Anatomía and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Alicante, 03080, Spain
| | - Ya Zou
- Department of chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Yi Han
- Department of chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Liuying Jiao
- Department of chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Longbin Ren
- Department of chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - María A Díaz-García
- Departamento Física Aplicada and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Alicante, 03080, Spain
| | - Jishan Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350507, China
- Department of chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| |
Collapse
|
3
|
Zheng J, He Z, Shen L, Chen X, Chen P, Zhang B, Qin H, Xiong Z, Zhang S. Microwave-Responsive Edge-Oxidized Graphene for Imaging-Guided Neoadjuvant Thermal Immunotherapy via Promoting Immunogenic Cell Death and Redressing Hypoxia. ACS APPLIED NANO MATERIALS 2024; 7:10243-10256. [DOI: 10.1021/acsanm.4c00580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- Jieling Zheng
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510627, China
| | - Zicong He
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510627, China
| | - Luyan Shen
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xiaoyu Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Pei Chen
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510627, China
| | - Bin Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510627, China
| | - Huan Qin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zhiyuan Xiong
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510627, China
| |
Collapse
|
4
|
Xie Z, Liu W, Liu Y, Song X, Zheng H, Su X, Redshaw C, Feng X. Influence of Steric Effects on the Emission Behavior of Pyrene-Based Blue Luminogens. J Org Chem 2024; 89:1681-1691. [PMID: 38207100 DOI: 10.1021/acs.joc.3c02372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Pyrene-based derivatives have been widely deployed in organic luminescent materials because of their bright fluorescence, high charge carrier mobility, and facile modification. Nevertheless, the fluorescence output of conventional pyrenes is prone to quenching upon aggregation due to extensive intermolecular π-π stacking interactions. To address this issue, a set of new Y-shaped pyrene-containing luminogens are synthesized from a new bromopyrene chemical precursor, 2-hydroxyl-7-tert-butyl-1,3-bromopyrene, where the bromo and hydroxyl groups at the pyrene core can be readily modified to obtain the target products and provide great flexibility in tuning the photophysical performances. When the hydroxy group at the 2-position of pyrene was replaced by a benzyl group, the steric hindrance of the benzyl group not only efficiently inhibits the detrimental intermolecular π-π stacking interactions but also rigidifies the molecular conformation, resulting in a narrow-band blue emission. Moreover, the TPE-containing compounds 2c and 3c possessed characteristic aggregation-induced emission (AIE) properties with fluorescence quantum yields of up to 66% and 38% in the solid state, respectively. Thus, this article has methodically investigated the factors influencing the optical behavior, such as intermolecular interactions, and the steric effects of the substituent group, thereby opening up the potential to develop narrow-band pyrene-based blue emitters for OLED device applications.
Collapse
Affiliation(s)
- Zhixin Xie
- Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Wei Liu
- Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yiwei Liu
- Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xinyi Song
- Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Heng Zheng
- Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xiang Su
- Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull HU6 7RX, Yorkshire, U.K
| | - Xing Feng
- Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
5
|
Sun K, Li D, Kaihara T, Minakata S, Takeda Y, Kawai S. On-surface synthesis of nitrogen-doped nanographene with an [18]annulene pore on Ag(111). Commun Chem 2023; 6:228. [PMID: 37863965 PMCID: PMC10589310 DOI: 10.1038/s42004-023-01023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023] Open
Abstract
On-surface synthesis is of importance to fabricate low dimensional carbon-based nanomaterials with atomic precision. Here, we synthesize nitrogen-doped nanographene with an [18]annulene pore and its dimer through sequential reactions of debromination, aryl-aryl coupling, cyclodehydrogenation and C-N coupling on Ag(111) from 3,12-dibromo-7,8-diaza[5]helicene. The inner structures of the products were characterized with scanning tunneling microscopy with a CO terminated tip at low temperature. Furthermore, the first four unoccupied electronic states of the nanographene were investigated with a combination of scanning tunneling spectroscopy and theoretical calculations. Except for the LUMO + 2 state observed at +1.3 V, the electronic states at 500 mV, 750 mV and 1.9 V were attributed to the superatom molecular orbitals at the [18]annulene pore, which were significantly shifted towards the Fermi level due to the hybridization with the confined surface state.
Collapse
Affiliation(s)
- Kewei Sun
- International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Donglin Li
- Center for Basic Research on Materials, National Institute for Materials Science, 1-2-1 Segen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Takahito Kaihara
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Satoshi Minakata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Youhei Takeda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan.
| | - Shigeki Kawai
- Center for Basic Research on Materials, National Institute for Materials Science, 1-2-1 Segen, Tsukuba, Ibaraki, 305-0047, Japan.
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan.
| |
Collapse
|
6
|
Fthenakis ZG. A Generalized Nomenclature Scheme for Graphene Pores, Flakes, and Edges, and an Algorithm for Their Generation and Numbering. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2343. [PMID: 37630928 PMCID: PMC10459746 DOI: 10.3390/nano13162343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
In the present study, we generalize our recently proposed nomenclature scheme for porous graphene structures to include graphene flakes and (periodic) edges, i.e., nanographenes and graphene nanoribbons. The proposed nomenclature scheme is a complete scheme that similarly treats all these structures. Beyond this generalization, we study the geometric features of graphene flakes and edges based on ideas from the graph theory, as well as the pore-flake duality. Based on this study, we propose an algorithm for the systematic generation, identification, and numbering of graphene pores, flakes, and edges. The algorithm and the nomenclature scheme can also be used for flakes and edges of similar honeycomb systems.
Collapse
Affiliation(s)
- Zacharias G. Fthenakis
- Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR), 56127 Pisa, Italy; or
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 11635 Athens, Greece
- National Enterprise for nanoScience and nanoTechnology (NEST), Scuola Normale Superiore, 56127 Pisa, Italy
| |
Collapse
|
7
|
Reale M, Sciortino A, Cannas M, Maçoas E, David AHG, Cruz CM, Campaña AG, Messina F. Atomically Precise Distorted Nanographenes: The Effect of Different Edge Functionalization on the Photophysical Properties down to the Femtosecond Scale. MATERIALS (BASEL, SWITZERLAND) 2023; 16:835. [PMID: 36676571 PMCID: PMC9867459 DOI: 10.3390/ma16020835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Nanographenes (NGs) have been attracting widespread interest since they combine peculiar properties of graphene with molecular features, such as bright visible photoluminescence. However, our understanding of the fundamental properties of NGs is still hampered by the high degree of heterogeneity usually characterizing most of these materials. In this context, NGs obtained by atomically precise synthesis routes represent optimal benchmarks to unambiguously relate their properties to well-defined structures. Here we investigate in deep detail the optical response of three curved hexa-peri-hexabenzocoronene (HBC) derivatives obtained by atomically precise synthesis routes. They are constituted by the same graphenic core, characterized by the presence of a heptagon ring determining a saddle distortion of their sp2 network, and differ from each other for slightly different edge functionalization. The quite similar structure allows for performing a direct comparison of their spectroscopic features, from steady-state down to the femtosecond scale, and precisely disentangling the role played by the different edge chemistry.
Collapse
Affiliation(s)
- Marco Reale
- Dipartimento di Fisica e Chimica—Emilio Segrè, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Alice Sciortino
- Dipartimento di Fisica e Chimica—Emilio Segrè, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
- Advanced Technologies Network Center, Università degli Studi di Palermo, Viale delle Scienze Ed. 18/A, 90128 Palermo, Italy
| | - Marco Cannas
- Dipartimento di Fisica e Chimica—Emilio Segrè, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Ermelinda Maçoas
- Centro de Química Estrutural e Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa (Portugal), Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Arthur H. G. David
- Department of Organic Chemistry, Unidad de Excelencia de Química (UEQ), Faculty of Sciences, University of Granada, Avda. Fuente Nueva s/n, 18071 Granada, Spain
| | - Carlos M. Cruz
- Department of Organic Chemistry, Unidad de Excelencia de Química (UEQ), Faculty of Sciences, University of Granada, Avda. Fuente Nueva s/n, 18071 Granada, Spain
| | - Araceli G. Campaña
- Department of Organic Chemistry, Unidad de Excelencia de Química (UEQ), Faculty of Sciences, University of Granada, Avda. Fuente Nueva s/n, 18071 Granada, Spain
| | - Fabrizio Messina
- Dipartimento di Fisica e Chimica—Emilio Segrè, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
- Advanced Technologies Network Center, Università degli Studi di Palermo, Viale delle Scienze Ed. 18/A, 90128 Palermo, Italy
| |
Collapse
|
8
|
Forero‐Martinez NC, Lin K, Kremer K, Andrienko D. Virtual Screening for Organic Solar Cells and Light Emitting Diodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200825. [PMID: 35460204 PMCID: PMC9259727 DOI: 10.1002/advs.202200825] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The field of organic semiconductors is multifaceted and the potentially suitable molecular compounds are very diverse. Representative examples include discotic liquid crystals, dye-sensitized solar cells, conjugated polymers, and graphene-based low-dimensional materials. This huge variety not only represents enormous challenges for synthesis but also for theory, which aims at a comprehensive understanding and structuring of the plethora of possible compounds. Eventually computational methods should point to new, better materials, which have not yet been synthesized. In this perspective, it is shown that the answer to this question rests upon the delicate balance between computational efficiency and accuracy of the methods used in the virtual screening. To illustrate the fundamentals of virtual screening, chemical design of non-fullerene acceptors, thermally activated delayed fluorescence emitters, and nanographenes are discussed.
Collapse
Affiliation(s)
| | - Kun‐Han Lin
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Kurt Kremer
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Denis Andrienko
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| |
Collapse
|
9
|
Liu Z, Fu S, Liu X, Narita A, Samorì P, Bonn M, Wang HI. Small Size, Big Impact: Recent Progress in Bottom-Up Synthesized Nanographenes for Optoelectronic and Energy Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106055. [PMID: 35218329 PMCID: PMC9259728 DOI: 10.1002/advs.202106055] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/31/2022] [Indexed: 05/20/2023]
Abstract
Bottom-up synthesized graphene nanostructures, including 0D graphene quantum dots and 1D graphene nanoribbons, have recently emerged as promising candidates for efficient, green optoelectronic, and energy storage applications. The versatility in their molecular structures offers a large and novel library of nanographenes with excellent and adjustable optical, electronic, and catalytic properties. In this minireview, recent progress on the fundamental understanding of the properties of different graphene nanostructures, and their state-of-the-art applications in optoelectronics and energy storage are summarized. The properties of pristine nanographenes, including high emissivity and intriguing blinking effect in graphene quantum dots, superior charge transport properties in graphene nanoribbons, and edge-specific electrochemistry in various graphene nanostructures, are highlighted. Furthermore, it is shown that emerging nanographene-2D material-based van der Waals heterostructures provide an exciting opportunity for efficient green optoelectronics with tunable characteristics. Finally, challenges and opportunities of the field are highlighted by offering guidelines for future combined efforts in the synthesis, assembly, spectroscopic, and electrical studies as well as (nano)fabrication to boost the progress toward advanced device applications.
Collapse
Affiliation(s)
- Zhaoyang Liu
- University of StrasbourgCNRSISIS UMR 70068 allée Gaspard MongeStrasbourg67000France
| | - Shuai Fu
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Xiaomin Liu
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate University1919‐1 Tancha, Onna‐sonKunigamiOkinawa904‐0495Japan
| | - Paolo Samorì
- University of StrasbourgCNRSISIS UMR 70068 allée Gaspard MongeStrasbourg67000France
| | - Mischa Bonn
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Hai I. Wang
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| |
Collapse
|
10
|
Laine RM. Unconventional Conjugation in macromonomers and polymers. Chem Commun (Camb) 2022; 58:10596-10618. [DOI: 10.1039/d2cc03968k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiple reviews have been written concerning conjugated macromonomers and polymers both as general descriptions and for specific applications. In most examples, conjugation occurs via elec-tronic communication via continuous overlap of...
Collapse
|
11
|
Herperger KR, Krumland J, Cocchi C. Laser-Induced Electronic and Vibronic Dynamics in the Pyrene Molecule and Its Cation. J Phys Chem A 2021; 125:9619-9631. [PMID: 34714646 DOI: 10.1021/acs.jpca.1c06538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Among polycyclic aromatic hydrocarbons, pyrene is widely used as an optical probe thanks to its peculiar ultraviolet absorption and infrared emission features. Interestingly, this molecule is also an abundant component of the interstellar medium, where it is detected via its unique spectral fingerprints. In this work, we present a comprehensive first-principles study on the electronic and vibrational response of pyrene and its cation to ultrafast, coherent pulses in resonance with their optically active excitations in the ultraviolet region. The analysis of molecular symmetries, electronic structure, and linear optical spectra is used to interpret transient absorption spectra and kinetic energy spectral densities computed for the systems excited by ultrashort laser fields. By disentangling the effects of the electronic and vibrational dynamics via ad hoc simulations with stationary and moving ions, and, in specific cases, with the aid of auxiliary model systems, we rationalize that the nuclear motion is mainly harmonic in the neutral species, while strong anharmonic oscillations emerge in the cation, driven by electronic coherence. Our results provide additional insights into the ultrafast vibronic dynamics of pyrene and related compounds and set the stage for future investigations on more complex carbon-conjugated molecules.
Collapse
Affiliation(s)
- Katherine R Herperger
- Department of Physics, University of Ottawa, Ottawa ON K1N 6N5, Canada.,Physics Department and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Jannis Krumland
- Physics Department and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Caterina Cocchi
- Physics Department and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany.,Institute of Physics, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
12
|
Biagiotti G, Perini I, Richichi B, Cicchi S. Novel Synthetic Approach to Heteroatom Doped Polycyclic Aromatic Hydrocarbons: Optimizing the Bottom-Up Approach to Atomically Precise Doped Nanographenes. Molecules 2021; 26:6306. [PMID: 34684887 PMCID: PMC8537472 DOI: 10.3390/molecules26206306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
The success of the rational bottom-up approach to nanostructured carbon materials and the discovery of the importance of their doping with heteroatoms puts under the spotlight all synthetic organic approaches to polycyclic aromatic hydrocarbons. The construction of atomically precise heteroatom doped nanographenes has evidenced the importance of controlling its geometry and the position of the doping heteroatoms, since these parameters influence their chemical-physical properties and their applications. The growing interest towards this research topic is testified by the large number of works published in this area, which have transformed a once "fundamental research" into applied research at the cutting edge of technology. This review analyzes the most recent synthetic approaches to this class of compounds.
Collapse
Affiliation(s)
- Giacomo Biagiotti
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
| | - Ilaria Perini
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
| | - Barbara Richichi
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
| | - Stefano Cicchi
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
- Institute of Chemistry of Organometallic Compounds, ICCOM-CNR, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|