1
|
Pishchalnikov RY, Chesalin DD, Kurkov VA, Shkirina UA, Laptinskaya PK, Novikov VS, Kuznetsov SM, Razjivin AP, Moskovskiy MN, Dorokhov AS, Izmailov AY, Gudkov SV. A Prototype Method for the Detection and Recognition of Pigments in the Environment Based on Optical Property Simulation. PLANTS (BASEL, SWITZERLAND) 2023; 12:4178. [PMID: 38140505 PMCID: PMC10747873 DOI: 10.3390/plants12244178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
The possibility of pigment detection and recognition in different environments such as solvents or proteins is a challenging, and at the same time demanding, task. It may be needed in very different situations: from the nondestructive in situ identification of pigments in paintings to the early detection of fungal infection in major agro-industrial crops and products. So, we propose a prototype method, the key feature of which is a procedure analyzing the lineshape of a spectrum. The shape of the absorption spectrum corresponding to this transition strongly depends on the immediate environment of a pigment and can serve as a marker to detect the presence of a particular pigment molecule in a sample. Considering carotenoids as an object of study, we demonstrate that the combined operation of the differential evolution algorithm and semiclassical quantum modeling of the optical response based on a generalized spectral density (the number of vibronic modes is arbitrary) allows us to distinguish quantum models of the pigment for different solvents. Moreover, it is determined that to predict the optical properties of monomeric pigments in protein, it is necessary to create a database containing, for each pigment, in addition to the absorption spectra measured in a predefined set of solvents, the parameters of the quantum model found using differential evolution.
Collapse
Affiliation(s)
- Roman Y. Pishchalnikov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.D.C.); (V.A.K.); (U.A.S.); (P.K.L.); (V.S.N.); (S.M.K.); (S.V.G.)
| | - Denis D. Chesalin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.D.C.); (V.A.K.); (U.A.S.); (P.K.L.); (V.S.N.); (S.M.K.); (S.V.G.)
| | - Vasiliy A. Kurkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.D.C.); (V.A.K.); (U.A.S.); (P.K.L.); (V.S.N.); (S.M.K.); (S.V.G.)
| | - Uliana A. Shkirina
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.D.C.); (V.A.K.); (U.A.S.); (P.K.L.); (V.S.N.); (S.M.K.); (S.V.G.)
| | - Polina K. Laptinskaya
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.D.C.); (V.A.K.); (U.A.S.); (P.K.L.); (V.S.N.); (S.M.K.); (S.V.G.)
| | - Vasiliy S. Novikov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.D.C.); (V.A.K.); (U.A.S.); (P.K.L.); (V.S.N.); (S.M.K.); (S.V.G.)
| | - Sergey M. Kuznetsov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.D.C.); (V.A.K.); (U.A.S.); (P.K.L.); (V.S.N.); (S.M.K.); (S.V.G.)
| | - Andrei P. Razjivin
- Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia;
| | - Maksim N. Moskovskiy
- Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM” (FSAC VIM), 109428 Moscow, Russia; (M.N.M.); (A.S.D.); (A.Y.I.)
| | - Alexey S. Dorokhov
- Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM” (FSAC VIM), 109428 Moscow, Russia; (M.N.M.); (A.S.D.); (A.Y.I.)
| | - Andrey Yu. Izmailov
- Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM” (FSAC VIM), 109428 Moscow, Russia; (M.N.M.); (A.S.D.); (A.Y.I.)
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.D.C.); (V.A.K.); (U.A.S.); (P.K.L.); (V.S.N.); (S.M.K.); (S.V.G.)
| |
Collapse
|
2
|
Razjivin AP, Kozlovsky VS, Ashikhmin AA, Pishchalnikov RY. Gaussian Decomposition vs. Semiclassical Quantum Simulation: Obtaining the High-Order Derivatives of a Spectrum in the Case of Photosynthetic Pigment Optical Properties Studying. SENSORS (BASEL, SWITZERLAND) 2023; 23:8248. [PMID: 37837078 PMCID: PMC10574941 DOI: 10.3390/s23198248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
In this paper, a procedure for obtaining undistorted high derivatives (up to the eighth order) of the optical absorption spectra of biomolecule pigments has been developed. To assess the effectiveness of the procedure, the theoretical spectra of bacteriochlorophyll a, chlorophyll a, spheroidene, and spheroidenone were simulated by fitting the experimental spectra using the differential evolution algorithm. The experimental spectra were also approximated using sets of Gaussians to calculate the model absorption spectra. Theoretical and model spectra can be differentiated without smoothing (high-frequency noise filtering) to obtain high derivatives. Superimposition of the noise track on the model spectra allows us to obtain test spectra similar to the experimental ones. Comparison of the high derivatives of the model spectra with those of the test spectra allows us to find the optimal parameters of the filter, the application of which leads to minimal differences between the high derivatives of the model and test spectra. For all four studied pigments, it was shown that smoothing the experimental spectra with optimal filters makes it possible to obtain the eighth derivatives of the experimental spectra, which were close to the eighth derivatives of their theoretical spectra.
Collapse
Affiliation(s)
- Andrei P. Razjivin
- Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia;
| | - Vladimir S. Kozlovsky
- Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia;
| | - Aleksandr A. Ashikhmin
- Institute of Basic Biological Problems, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Roman Y. Pishchalnikov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
3
|
Leccese S, Wilson A, Kirilovsky D, Spezia R, Jolivalt C, Mezzetti A. Light-induced infrared difference spectroscopy on three different forms of orange carotenoid protein: focus on carotenoid vibrations. Photochem Photobiol Sci 2023:10.1007/s43630-023-00384-7. [PMID: 36853495 DOI: 10.1007/s43630-023-00384-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/27/2023] [Indexed: 03/01/2023]
Abstract
Orange carotenoid protein (OCP) is a photoactive carotenoprotein involved in photoprotection of cyanobacteria, which uses a keto-catorenoid as a chromophore. When it absorbs blue-green light, it converts from an inactive OCPO orange form to an activated OCPR red form, the latter being able to bind the light-harvesting complexes facilitating thermal dissipation of the excess of absorbed light energy. Several research groups have focused their attention on the photoactivation mechanism, characterized by several steps, involving both carotenoid photophysics and protein conformational changes. Among the used techniques, time-resolved IR spectroscopy have the advantage of providing simultaneously information on both the chromophore and the protein, giving thereby the possibility to explore links between carotenoid dynamics and protein dynamics, leading to a better understanding of the mechanism. However, an appropriate interpretation of data requires previous assignment of marker IR bands, for both the carotenoid and the protein. To date, some assignments have concerned specific α-helices of the OCP backbone, but no specific marker band for the carotenoid was identified on solid ground. This paper provides evidence for the assignment of putative marker bands for three carotenoids bound in three different OCPs: 3'-hydroxyechineone (3'-hECN), echinenone (ECN), canthaxanthin (CAN). Light-induced FTIR difference spectra were recorded in H2O and D2O and compared with spectra of isolated carotenoids. The use of DFT calculations allowed to propose a description for the vibrations responsible of several IR bands. Interestingly, most bands are located at the same wavenumber for the three kinds of OCPs suggesting that the conformation of the three carotenoids is the same in the red and in the orange form. These results are discussed in the framework of recent time-resolved IR studies on OCP.
Collapse
Affiliation(s)
- Silvia Leccese
- Laboratoire de Réactivité de Surface, LRS, Sorbonne Université, CNRS, 4 Place Jussieu, 75005, Paris, France
| | - Adjélé Wilson
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif Sur Yvette, France
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif Sur Yvette, France
| | - Riccardo Spezia
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS, 4, Place Jussieu, 75005, Paris, France
| | - Claude Jolivalt
- Laboratoire de Réactivité de Surface, LRS, Sorbonne Université, CNRS, 4 Place Jussieu, 75005, Paris, France
| | - Alberto Mezzetti
- Laboratoire de Réactivité de Surface, LRS, Sorbonne Université, CNRS, 4 Place Jussieu, 75005, Paris, France.
| |
Collapse
|