1
|
Mosquera FEC, Guevara-Montoya MC, Serna-Ramirez V, Liscano Y. Neuroinflammation and Schizophrenia: New Therapeutic Strategies through Psychobiotics, Nanotechnology, and Artificial Intelligence (AI). J Pers Med 2024; 14:391. [PMID: 38673018 PMCID: PMC11051547 DOI: 10.3390/jpm14040391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
The prevalence of schizophrenia, affecting approximately 1% of the global population, underscores the urgency for innovative therapeutic strategies. Recent insights into the role of neuroinflammation, the gut-brain axis, and the microbiota in schizophrenia pathogenesis have paved the way for the exploration of psychobiotics as a novel treatment avenue. These interventions, targeting the gut microbiome, offer a promising approach to ameliorating psychiatric symptoms. Furthermore, advancements in artificial intelligence and nanotechnology are set to revolutionize psychobiotic development and application, promising to enhance their production, precision, and effectiveness. This interdisciplinary approach heralds a new era in schizophrenia management, potentially transforming patient outcomes and offering a beacon of hope for those afflicted by this complex disorder.
Collapse
Affiliation(s)
| | | | | | - Yamil Liscano
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia; (F.E.C.M.); (M.C.G.-M.); (V.S.-R.)
| |
Collapse
|
2
|
Mhanna A, Martini N, Hmaydoosh G, Hamwi G, Jarjanazi M, Zaifah G, Kazzazo R, Haji Mohamad A, Alshehabi Z. The correlation between gut microbiota and both neurotransmitters and mental disorders: A narrative review. Medicine (Baltimore) 2024; 103:e37114. [PMID: 38306525 PMCID: PMC10843545 DOI: 10.1097/md.0000000000037114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/09/2024] [Indexed: 02/04/2024] Open
Abstract
The gastrointestinal tract is embedded with microorganisms of numerous genera, referred to as gut microbiota. Gut microbiota has multiple effects on many body organs, including the brain. There is a bidirectional connection between the gut and brain called the gut-brain-axis, and these connections are formed through immunological, neuronal, and neuroendocrine pathways. In addition, gut microbiota modulates the synthesis and functioning of neurotransmitters. Therefore, the disruption of the gut microbiota in the composition or function, which is known as dysbiosis, is associated with the pathogenesis of many mental disorders, such as schizophrenia, depression, and other psychiatric disorders. This review aims to summarize the modulation role of the gut microbiota in 4 prominent neurotransmitters (tryptophan and serotonergic system, dopamine, gamma-aminobutyric acid, and glutamate), as well as its association with 4 psychiatric disorders (schizophrenia, depression, anxiety disorders, and autism spectrum disorder). More future research is required to develop efficient gut-microbiota-based therapies for these illnesses.
Collapse
Affiliation(s)
- Amjad Mhanna
- Faculty of Medicine, Tishreen University, Latakia, Syrian Arab Republic
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
| | - Nafiza Martini
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
- Damascus University, Faculty of Medicine, Damascus, Syrian Arab Republic
| | - Ghefar Hmaydoosh
- Faculty of Medicine, Tishreen University, Latakia, Syrian Arab Republic
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
| | - George Hamwi
- Faculty of Medicine, Tishreen University, Latakia, Syrian Arab Republic
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
| | - Mulham Jarjanazi
- Pediatric Surgery Resident, Pediatric Surgery Department, Aleppo University Hospital, Aleppo, Syrian Arab Republic
| | - Ghaith Zaifah
- Faculty of Medicine, Tishreen University, Latakia, Syrian Arab Republic
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
| | - Reem Kazzazo
- Faculty of Medicine, Tishreen University, Latakia, Syrian Arab Republic
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
| | - Aya Haji Mohamad
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
- Faculty of Medicine, Aleppo University, Aleppo University Hospital, Aleppo, Syrian Arab Republic
| | - Zuheir Alshehabi
- Department of Pathology, Tishreen University Hospital, Latakia, Syrian Arab Republic
| |
Collapse
|
3
|
Seeman MV. What is the significance of the impact of antipsychotics on the gut microbiome? Expert Opin Drug Metab Toxicol 2023; 19:125-127. [PMID: 37036818 DOI: 10.1080/17425255.2023.2200161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Affiliation(s)
- Mary V Seeman
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Potential relationship between Tourette syndrome and gut microbiome. J Pediatr (Rio J) 2023; 99:11-16. [PMID: 35914739 PMCID: PMC9875241 DOI: 10.1016/j.jped.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE In this article, the author aims to discuss and review the relationship between gut microbiota and Tourette syndrome, and whether the change in gut microbiota can affect the severity of Tourette syndrome. SOURCES Literature from PubMed, Google Scholar, and China National Knowledge Infrastructure was mainly reviewed. Both original studies and review articles were discussed. The articles were required to be published as of May 2022. SUMMARY OF THE FINDINGS Current studies on the gut microbiome have found that the gut microbiome and brain seem to interact. It is named the brain-gut-axis. The relationship between the brain-gut axis and neurological and psychiatric disorders has been a topic of intense interest. Tourette syndrome is a chronic neurological disease that seriously affects the quality of life of children, and there appears to be an increase in Ruminococcaceae and Bacteroides in the gut of patients with Tourette syndrome. After clinical observation and animal experiments, there appear to be particular gut microbiota changes in Tourette syndrome. It provides a new possible idea for the treatment of Tourette syndrome. Probiotics and fecal microbial transplantation have been tried to treat Tourette syndrome, especially Tourette syndrome which is not sensitive to drugs, and some results have been achieved. CONCLUSIONS The relationship between gut microbiota and Tourette syndrome and how to alleviate Tourette syndrome by improving gut microbiota are new topics, more in-depth and larger sample size research is still needed.
Collapse
|
5
|
Shnayder NA, Khasanova AK, Strelnik AI, Al-Zamil M, Otmakhov AP, Neznanov NG, Shipulin GA, Petrova MM, Garganeeva NP, Nasyrova RF. Cytokine Imbalance as a Biomarker of Treatment-Resistant Schizophrenia. Int J Mol Sci 2022; 23:ijms231911324. [PMID: 36232626 PMCID: PMC9570417 DOI: 10.3390/ijms231911324] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Treatment-resistant schizophrenia (TRS) is an important and unresolved problem in biological and clinical psychiatry. Approximately 30% of cases of schizophrenia (Sch) are TRS, which may be due to the fact that some patients with TRS may suffer from pathogenetically “non-dopamine” Sch, in the development of which neuroinflammation is supposed to play an important role. The purpose of this narrative review is an attempt to summarize the data characterizing the patterns of production of pro-inflammatory and anti-inflammatory cytokines during the development of therapeutic resistance to APs and their pathogenetic and prognostic significance of cytokine imbalance as TRS biomarkers. This narrative review demonstrates that the problem of evaluating the contribution of pro-inflammatory and anti-inflammatory cytokines to maintaining or changing the cytokine balance can become a new key in unlocking the mystery of “non-dopamine” Sch and developing new therapeutic strategies for the treatment of TRS and psychosis in the setting of acute and chronic neuroinflammation. In addition, the inconsistency of the results of previous studies on the role of pro-inflammatory and anti-inflammatory cytokines indicates that the TRS biomarker, most likely, is not the serum level of one or more cytokines, but the cytokine balance. We have confirmed the hypothesis that cytokine imbalance is one of the most important TRS biomarkers. This hypothesis is partially supported by the variable response to immunomodulators in patients with TRS, which were prescribed without taking into account the cytokine balance of the relation between serum levels of the most important pro-inflammatory and anti-inflammatory cytokines for TRS.
Collapse
Affiliation(s)
- Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-02-20-78-13 (N.A.S. & R.F.N.)
| | - Aiperi K. Khasanova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Anna I. Strelnik
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
- Department of Psychiatry, Narcology and Psychotherapy, Samara State Medical University, 443016 Samara, Russia
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Andrey P. Otmakhov
- Basic Department of Psychological and Social Support, St. Petersburg State Institute of Psychology and Social Work, 199178 Saint Petersburg, Russia
- St. Nikolay Psychiatric Hospital, 190121 Saint Petersburg, Russia
| | - Nikolay G. Neznanov
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - German A. Shipulin
- Centre for Strategic Planning and Management of Biomedical Health Risks Management, 119121 Moscow, Russia
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Natalia P. Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, 634050 Tomsk, Russia
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-02-20-78-13 (N.A.S. & R.F.N.)
| |
Collapse
|
6
|
Shobeiri P, Kalantari A, Teixeira AL, Rezaei N. Shedding light on biological sex differences and microbiota-gut-brain axis: a comprehensive review of its roles in neuropsychiatric disorders. Biol Sex Differ 2022; 13:12. [PMID: 35337376 PMCID: PMC8949832 DOI: 10.1186/s13293-022-00422-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/14/2022] [Indexed: 12/15/2022] Open
Abstract
Women and men are suggested to have differences in vulnerability to neuropsychiatric disorders, including major depressive disorder (MDD), generalized anxiety disorder (GAD), schizophrenia, eating disorders, including anorexia nervosa, and bulimia nervosa, neurodevelopmental disorders, such as autism spectrum disorder (ASD), and neurodegenerative disorders including Alzheimer’s disease, Parkinson’s disease. Genetic factors and sex hormones are apparently the main mediators of these differences. Recent evidence uncovers that reciprocal interactions between sex-related features (e.g., sex hormones and sex differences in the brain) and gut microbiota could play a role in the development of neuropsychiatric disorders via influencing the gut–brain axis. It is increasingly evident that sex–microbiota–brain interactions take part in the occurrence of neurologic and psychiatric disorders. Accordingly, integrating the existing evidence might help to enlighten the fundamental roles of these interactions in the pathogenesis of neuropsychiatric disorders. In addition, an increased understanding of the biological sex differences on the microbiota–brain may lead to advances in the treatment of neuropsychiatric disorders and increase the potential for precision medicine. This review discusses the effects of sex differences on the brain and gut microbiota and the putative underlying mechanisms of action. Additionally, we discuss the consequences of interactions between sex differences and gut microbiota on the emergence of particular neuropsychiatric disorders. The human microbiome is a unique set of organisms affecting health via the gut–brain axis. Neuropsychiatric disorders, eating disorders, neurodevelopmental disorders, and neurodegenerative disorders are regulated by the microbiota–gut–brain axis in a sex-specific manner. Understanding the role of the microbiota–gut–brain axis and its sex differences in various diseases can lead to better therapeutic methods.
Collapse
Affiliation(s)
- Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, 14194, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran
| | - Amirali Kalantari
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, 14194, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Antônio L Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran. .,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran. .,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Caffeine consumption and schizophrenia: A highlight on adenosine receptor-independent mechanisms. Curr Opin Pharmacol 2021; 61:106-113. [PMID: 34688994 DOI: 10.1016/j.coph.2021.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
Schizophrenia is a common psychiatric disorder which affects approximately 1% of the population worldwide. However, the complexity of etiology, treatment resistance and side effects induced by current antipsychotics, relapse prevention, and psychosocial rehabilitation are still to be uncovered. Caffeine, as the world's most widely consumed psychoactive drug, plays a crucial role in daily life. Plenty of preclinical and clinical evidence has illustrated that caffeine consumption could have a beneficial effect on schizophrenia. In this review, we firstly summarize the factors associated with the caffeine-induced beneficial effect. Then, a variety of mechanism of actions independent of adenosine receptor signaling will be discussed with an emphasis on the potential contribution of the microbiome-gut-brain axis to provide more possibilities for future therapeutic, prognosis, and social rehabilitation strategy.
Collapse
|
8
|
Marazziti D, Buccianelli B, Palermo S, Parra E, Arone A, Beatino MF, Massa L, Carpita B, Barberi FM, Mucci F, Dell’Osso L. The Microbiota/Microbiome and the Gut-Brain Axis: How Much Do They Matter in Psychiatry? Life (Basel) 2021; 11:life11080760. [PMID: 34440503 PMCID: PMC8401073 DOI: 10.3390/life11080760] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
The functioning of the central nervous system (CNS) is the result of the constant integration of bidirectional messages between the brain and peripheral organs, together with their connections with the environment. Despite the anatomical separation, gut microbiota, i.e., the microorganisms colonising the gastrointestinal tract, is highly related to the CNS through the so-called "gut-brain axis". The aim of this paper was to review and comment on the current literature on the role of the intestinal microbiota and the gut-brain axis in some common neuropsychiatric conditions. The recent literature indicates that the gut microbiota may affect brain functions through endocrine and metabolic pathways, antibody production and the enteric network while supporting its possible role in the onset and maintenance of several neuropsychiatric disorders, neurodevelopment and neurodegenerative disorders. Alterations in the gut microbiota composition were observed in mood disorders and autism spectrum disorders and, apparently to a lesser extent, even in obsessive-compulsive disorder (OCD) and related conditions, as well as in schizophrenia. Therefore, gut microbiota might represent an interesting field of research for a better understanding of the pathophysiology of common neuropsychiatric disorders and possibly as a target for the development of innovative treatments that some authors have already labelled "psychobiotics".
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
- Unicamillus—Saint Camillus International University of Medical and Health Sciences, 00131 Rome, Italy
- Correspondence:
| | - Beatrice Buccianelli
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Stefania Palermo
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Elisabetta Parra
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Alessandro Arone
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Maria Francesca Beatino
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Lucia Massa
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Barbara Carpita
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Filippo M. Barberi
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Federico Mucci
- Dipartimento di Biochimica e Biologia Molecolare, University of Siena, 53100 Siena, Italy;
| | - Liliana Dell’Osso
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| |
Collapse
|
9
|
Abstract
Although, gratifyingly, research on the treatment of schizophrenia has increasingly focused on first-episode and prodromal patient populations, it is still recognized that many patients with more chronic illnesses exhibit a suboptimal response to treatments. This suboptimal response with continuation of symptoms is represented in the term treatment-resistant schizophrenia (TRS). This article addresses contemporary definitions as well as updated guidelines for patients with TRS.
Collapse
Affiliation(s)
- Peter F Buckley
- McGlothlin Medical Education Center, Virginia Commonwealth University School of Medicine, Richmond
| |
Collapse
|
10
|
Seeman MV. The gut microbiome and antipsychotic treatment response. Behav Brain Res 2020; 396:112886. [PMID: 32890599 DOI: 10.1016/j.bbr.2020.112886] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/21/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Patients with psychosis usually respond to one antipsychotic drug and not to another; one third fail to respond to any. Some patients, who initially do well, stop responding. Some develop serious side effects even at low doses. While several of the reasons for this variability are known, many are not. The aim of this review is to explore the potential role of intestinal organisms in response/non-response to antipsychotics. Much of the literature in this field is relatively new and still, for the most part, theoretical. A growing number of animal experiments and clinical trials are starting to point, however, to substantial effects of antipsychotics on the composition of gut bacteria and, reciprocally, to the effects of microbiota on the pharmacokinetics of antipsychotic medication. Because so many factors influence the constituents of the human intestine, it is difficult, at present, to sort out how much one or more either enhance or dampen the benefits of antipsychotics or the character/severity of the adverse effects they induce. Dietary and other therapies are being devised to reverse dysbiosis. If successful, such therapies plus the modification of factors that, together, are known to determine the composition of microbiota could help to maximize the effectiveness of currently available antipsychotic therapy.
Collapse
Affiliation(s)
- Mary V Seeman
- Department of Psychiatry, University pf Toronto, Suite #605 260 Heath St. West, Toronto, Ontario, M5P 3L6, Canada.
| |
Collapse
|