1
|
Bolat E, Sarıtaş S, Duman H, Eker F, Akdaşçi E, Karav S, Witkowska AM. Polyphenols: Secondary Metabolites with a Biological Impression. Nutrients 2024; 16:2550. [PMID: 39125431 PMCID: PMC11314462 DOI: 10.3390/nu16152550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Polyphenols are natural compounds which are plant-based bioactive molecules, and have been the subject of growing interest in recent years. Characterized by multiple varieties, polyphenols are mostly found in fruits and vegetables. Currently, many diseases are waiting for a cure or a solution to reduce their symptoms. However, drug or other chemical strategies have limitations for using a treatment agent or still detection tool of many diseases, and thus researchers still need to investigate preventive or improving treatment. Therefore, it is of interest to elucidate polyphenols, their bioactivity effects, supplementation, and consumption. The disadvantage of polyphenols is that they have a limited bioavailability, although they have multiple beneficial outcomes with their bioactive roles. In this context, several different strategies have been developed to improve bioavailability, particularly liposomal and nanoparticles. As nutrition is one of the most important factors in improving health, the inclusion of plant-based molecules in the daily diet is significant and continues to be enthusiastically researched. Nutrition, which is important for individuals of all ages, is the key to the bioactivity of polyphenols.
Collapse
Affiliation(s)
- Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Bialystok Medical University, 15-089 Bialystok, Poland
| |
Collapse
|
2
|
Tian R, Zhu H, Lu Y, Shi X, Tu P, Li H, Huang H, Chen D. Therapeutic Potential of 2-Methylquinazolin-4(3H)-one as an Antiviral Agent against Influenza A Virus-Induced Acute Lung Injury in Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227857. [PMID: 36431955 PMCID: PMC9697438 DOI: 10.3390/molecules27227857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Qingdai-Mabo (QM), a traditional Chinese herbal formula composed of medicinal herb and fungus, has been used for treatment of cough and viral pneumonia. However, the underlying mechanism and bioactive components against anti-influenza A virus remain unclear. In the present study, ethyl acetate (EA) extract of QM decoctions was tested for its biological activity against acute lung injury (ALI) and its main components were identified using UPLC-MS/MS. In total, 18 bioactive components were identified, including 2-Methylquinaozlin-4(3H)-one (C1), which showed significant antiviral activity in vitro with an IC50 of 23.8 μg/mL. Furthermore, we validated the efficacy of C1 in ameliorating ALI lesions and inflammation in influenza A virus-infected mice. The results showed that C1 significantly reduced the lung index, downregulated neuraminidase (NA) and nucleoprotein (NP), and decreased the expression of pro-inflammatory molecules IFN-α, TNF-α, MCP-1, IL-6, and IL-8; however, they enhanced levels of IL-10 and IFN-γ in lung homogenate from mice infected by influenza A virus. In addition, C1 inhibited the recruitment of macrophages. These in vitro and in vivo studies suggested that the significant anti-influenza A virus activity contributed to its curative effect on lesions and inflammation of viral pneumonia in mice. Given its potential antiviral activity against influenza A virus, C1 is determined to be a main active component in the EA extract of QM. Taken together, the antiviral activity of C1 suggests its potential as an effective treatment against viral pneumonia via the inhibition of virus replication, but the mechanism C1 on antiviral research needs to be explored further.
Collapse
Affiliation(s)
- Rong Tian
- Department of Natural Medicine, School of Pharmacy, Fudan University, No. 3728, Jin Ke Road, Shanghai 201203, China
| | - Haiyan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, No. 3728, Jin Ke Road, Shanghai 201203, China
- Correspondence: (H.Z.); (D.C.)
| | - Yan Lu
- Department of Natural Medicine, School of Pharmacy, Fudan University, No. 3728, Jin Ke Road, Shanghai 201203, China
| | - Xunlong Shi
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, No. 3728, Jin Ke Road, Shanghai 201203, China
| | - Peng Tu
- Department of Natural Medicine, School of Pharmacy, Fudan University, No. 3728, Jin Ke Road, Shanghai 201203, China
| | - Hong Li
- Department of Pharmacy, Fudan University, No. 3728, Jin Ke Road, Shanghai 201203, China
| | - Hai Huang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, No. 3728, Jin Ke Road, Shanghai 201203, China
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, No. 3728, Jin Ke Road, Shanghai 201203, China
- Correspondence: (H.Z.); (D.C.)
| |
Collapse
|
3
|
Chen B, Jin X, Wang H, Zhou Q, Li G, Lu X. Network Pharmacology, Integrated Bioinformatics, and Molecular Docking Reveals the Anti-Ovarian Cancer Molecular Mechanisms of Cinnamon ( Cinnamomum cassia (L.) J. Presl). Nat Prod Commun 2022. [DOI: 10.1177/1934578x221119118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cinnamon ( Cinnamomum cassia (L.) J. Presl) is a popular natural spice with various pharmacological properties. This study was based on network pharmacology integrating bioinformatics and molecular docking to explore the potential molecular mechanisms of cinnamon in the treatment of ovarian cancer (OC). The chemical composition of cinnamon was collected from the TCMSP database to predict its targets and construct a “cinnamon active component target” network. OC-related genes were retrieved from Genecards and DisGeNET databases. The “disease-target” network was established, and the drug targets were mapped to the disease targets, and the key targets obtained from the mapping were subjected to DAVID analysis to construct a “component-target-pathway” network diagram. The active ingredients of cinnamon were molecularly docked to the core targets to predict the molecular mechanism of cinnamon in the treatment of ovarian cancer. From cinnamon, 105 chemical components were screened and de-duplicated to obtain 15 active components and 74 drug target proteins, and 26 common targets were obtained after mapping drug targets to disease targets. 368 entries were identified by GO enrichment analysis, mainly including biological progresses such as regulation of smooth muscle contraction and regulation of tube diameter, and molecular functions such as antioxidant activity, and peroxidase activity. The KEGG pathway enrichment analysis identified 4 signaling pathways, neuroactive ligand-receptor interaction, HIF-1 signaling pathway, regulation of lipolysis in adipocytes, and complement and coagulation cascades. Molecular docking analysis showed good affinity of these key targets with representative components of OC. There was a stable interaction between DIBP and ADRB2 and NR3C1. There is a stable interaction between oleic acid and C2K, EDN1, ERBB2, PLAU, PLG, PRSS3, PTGS1, PTGS2, SERPINE1 and SLC2A1. Cinnamon exerted its therapeutic effects on OC through multiple pathways and targets.
Collapse
Affiliation(s)
- Buze Chen
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Jin
- Department of Gynecology, Maternal and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Haihong Wang
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qingmei Zhou
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guilin Li
- Department of Gynecology, Maternal and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoyuan Lu
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
4
|
Li W, Cheng M, Zhang W, He R, Yang H. New Insights into the Mechanisms of Polyphenol from Plum Fruit Inducing Apoptosis in Human Lung Cancer A549 Cells Via PI3K/AKT/FOXO1 Pathway. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:125-132. [PMID: 33641052 DOI: 10.1007/s11130-021-00882-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Recent studies have been found that polyphenols from plums fruits can inhibit the proliferation of multiple cancer cells, while the molecular mechanism was unclear. This study aimed to investigate the molecular mechanism underlying the pro-apoptotic effect of purified plum polyphenols (PPP) on human lung cancer A549 cells. Quercitrin (quercetin-3-O-glucoside, 814.19 ± 40.71 mg/g) was identified as the primary polyphenol in PPP via ultra high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QqQ-MS/MS). PPP showed a strong capacity for inhibiting the proliferation of the A549 cells by inducing apoptosis, which was reflected by an increase in the Bax/Bcl-2 ratio. Additionally, the inhibitory rate of PPP on the A549 cells were higher than that of vitamin C when the treatment dose exceeded 160 μg/mL. Transcriptome analysis suggested that PPP-induced apoptosis was closely associated with regulating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/forkhead box protein O 1 (FOXO1) pathway in the A549 cells. Subsequently, as an activator of AKT, SC79 was applied to confirm that the inhibition of AKT phosphorylation play an important role in the PPP-induced apoptosis of the A549 cells. These results illustrated the potential of PPP as a dietary compound for the prevention of cancer or for use during chemotherapy.
Collapse
Affiliation(s)
- Wenfeng Li
- School of Life Science and Biotechnology, Yangtze Normal University, 16 Juxian Road, Fuling district, Chongqing, 408100, China.
| | - Mengting Cheng
- School of Life Science and Biotechnology, Yangtze Normal University, 16 Juxian Road, Fuling district, Chongqing, 408100, China
| | - Wentao Zhang
- School of Life Science and Biotechnology, Yangtze Normal University, 16 Juxian Road, Fuling district, Chongqing, 408100, China
| | - Ruiyan He
- School of Life Science and Biotechnology, Yangtze Normal University, 16 Juxian Road, Fuling district, Chongqing, 408100, China
| | - Hongyan Yang
- School of Aerospace Medicine, Fourth Military Medical University, No. 169, Changle-West road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
5
|
Gao L, Gou N, Yao M, Amakye WK, Ren J. Food-derived natural compounds in the management of chronic diseases via Wnt signaling pathway. Crit Rev Food Sci Nutr 2021; 62:4769-4799. [PMID: 33554630 DOI: 10.1080/10408398.2021.1879001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Wnt signaling pathway is an evolutionarily conserved pathway that control embryonic development, adult tissue homeostasis, and pathological processes of organisms throughout life. However, dysregulation of the Wnt signaling is associated with the occurrence of chronic diseases. In comparison with the application of chemical drugs as traditional treatment for chronic diseases, dietary agents have unique advantages, such as less side effects, multiple targets, convenience in accessibility and higher acceptability in long-term intervention. In this review, we summarized current progress in manipulating the Wnt signaling using food components and its benefits in managing chronic diseases. The underlying mechanisms of bioactive food components in the management of the disease progression via the Wnt signaling was illustrated. Then, the review focused on the function of dietary pattern (which might act via combination of foods with multiple nutrients or food ingredients) on targeting Wnt signaling at multiple level. The potential caveats and challenges in developing new strategy via modulating Wnt-associated diseases with food-based agents and appropriate dietary pattern are also discussed in detail. This review shed light on the understanding of the regulatory effect of food bioactive components on chronic diseases management through the Wnt signaling, which can be expanded to other specific signaling pathway associated with disease.
Collapse
Affiliation(s)
- Li Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Na Gou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Maojin Yao
- Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - William Kwame Amakye
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Research Institute for Food Nutrition and Human Health, Guangzhou, China
| |
Collapse
|