1
|
Ilić T, Đuričić I, Kodranov I, Ušjak L, Kolašinac S, Milenković M, Marčetić M, Božić DD, B Vidović B. Nutritional Value, Phytochemical Composition and Biological Activities of Lycium barbarum L. fruits from Serbia. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:662-668. [PMID: 38961030 DOI: 10.1007/s11130-024-01208-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Cultivation of goji berries (GB), fruits of Lycium barbarum L. (Solanaceae), is expanding worldwide, including in Europe. In this study, a comparative analysis of the nutritional value, chemical composition and in vitro biological activities of GB from different locations in Serbia was performed. Proximate compositions were evaluated according to standard methods. Minerals were assessed by inductively coupled plasma techniques, while fatty acids, sterols, and phenolic profiles were analyzed by gas- and liquid chromatography-based techniques coupled with flame-ionization, mass spectrometry, or diode array detection. The total content of phenolics, flavonoids, carotenoids, and polysaccharides was assessed using spectrophotometric methods. Methanol extracts from GB were examined for their antioxidant, enzyme inhibitory (α-amylase, α-glucosidase, acetylcholinesterase and tyrosinase) and antibacterial activities. Despite significant variations among samples from different locations, the results confirmed that GB are a valuable source of dietary fiber and protein and are characterized by favorable fatty acid profiles. Phytochemical analysis revealed that β-sitosterol, Δ5-avenasterol, and 24-methyldesmosterol are the predominant sterols and caffeic acid, gallic acid, quercetin and rutin are the main phenols. All GB samples showed both antioxidant and mild antimicrobial activity. A dose-dependent anti-enzymatic activity (IC50 ranging 1.68-6.88 mg/mL) was demonstrated. The results support further promotion of GB cultivation in Serbia and further investigations on their potential applications in various industries.
Collapse
Affiliation(s)
- Tijana Ilić
- Faculty of Pharmacy, Department of Bromatology, University of Belgrade, Belgrade, Serbia.
| | - Ivana Đuričić
- Faculty of Pharmacy, Department of Bromatology, University of Belgrade, Belgrade, Serbia
| | - Igor Kodranov
- Faculty of Chemistry, Department of Analytical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Ljuboš Ušjak
- Faculty of Pharmacy, Department of Pharmacognosy, University of Belgrade, Belgrade, Serbia
| | - Stefan Kolašinac
- Faculty of Agriculture, Department of Agrobotany, University of Belgrade, Belgrade, Serbia
| | - Milan Milenković
- Center for Hygiene and Human Ecology, Institute of Public Health of Serbia "Dr Milan Jovanović Batut", Belgrade, Serbia
| | - Mirjana Marčetić
- Faculty of Pharmacy, Department of Pharmacognosy, University of Belgrade, Belgrade, Serbia
| | - Dragana D Božić
- Faculty of Pharmacy, Department of Microbiology and Immunology, University of Belgrade, Belgrade, Serbia
| | - Bojana B Vidović
- Faculty of Pharmacy, Department of Bromatology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Soni D, Upadhayay S, Dhureja M, Arthur R, Kumar P. Crosstalk between gut-brain axis: unveiling the mysteries of gut ROS in progression of Parkinson's disease. Inflammopharmacology 2024:10.1007/s10787-024-01510-2. [PMID: 38992324 DOI: 10.1007/s10787-024-01510-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024]
Abstract
"Path to a good mood lies through the gut." This statement seems to imply that it has long been believed that the gut is connected with the brain. Research has shown that eating food activates the reward system and releases dopamine (DA), establishing a link between the peripheral and central nervous system. At the same time, researchers also trust that the gut is involved in the onset of many diseases, including Parkinson's disease (PD), in which gastrointestinal dysfunction is considered a prevalent symptom. Reports suggest that PD starts from the gut and reaches the brain via the vagus nerve. Recent studies have revealed an intriguing interaction between the gut and brain, which links gut dysbiosis to the etiology of PD. This review aims to explore the mechanistic pathway how reactive oxygen species (ROS) generation in the gut affects the makeup and operation of the dopamine circuitry in the brain. Our primary concern is ROS generation in the gut, which disrupts the gut microbiome (GM), causing α-synuclein accumulation and inflammation. This trio contributes to the loss of DA neurons in the brain, resulting in PD development. This review also compiles pre-clinical and clinical studies on antioxidants, demonstrating that antioxidants reduce ROS and increase DA levels. Collectively, the study highlights the necessity of comprehending the gut-brain axis for unraveling the riddles of PD pathogenesis and considering new therapeutic approaches.
Collapse
Affiliation(s)
- Divya Soni
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Shubham Upadhayay
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Maanvi Dhureja
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Richmond Arthur
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
3
|
Pandey M, Karmakar V, Majie A, Dwivedi M, Md S, Gorain B. The SH-SY5Y cell line: a valuable tool for Parkinson's disease drug discovery. Expert Opin Drug Discov 2024; 19:303-316. [PMID: 38112196 DOI: 10.1080/17460441.2023.2293158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
INTRODUCTION Owing to limited efficient treatment strategies for highly prevalent and distressing Parkinson's disease (PD), an impending need emerged for deciphering new modes and mechanisms for effective management. SH-SY5Y-based in vitro neuronal models have emerged as a new possibility for the elucidation of cellular and molecular processes in the pathogenesis of PD. SH-SY5Y cells are of human origin, adhered to catecholaminergic neuronal attributes, which consequences in imparting wide acceptance and significance to this model over conventional in vitro PD models for high-throughput screening of therapeutics. AREAS COVERED Herein, the authors review the SH-SY5Y cell line and its value to PD research. The authors also provide the reader with their expert perspectives on how these developments can lead to the development of new impactful therapeutics. EXPERT OPINION Encouraged by recent research on SH-SY5Y cell lines, it was envisaged that this in vitro model can serve as a primary model for assessing efficacy and toxicity of new therapeutics as well as for nanocarriers' capacity in delivering therapeutic agents across BBB. Considering the proximity with human neuronal environment as in pathogenic PD conditions, SH-SY5Y cell lines vindicated consistency and reproducibility in experimental results. Accordingly, exploitation of this standardized SH-SY5Y cell line can fast-track the drug discovery and development path for novel therapeutics.
Collapse
Affiliation(s)
- Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, India
| | - Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Ankit Majie
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Monika Dwivedi
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
4
|
Zhang W, Ju Y, Ren Y, Miao Y, Wang Y. Exploring the Efficient Natural Products for the Therapy of Parkinson's Disease via Drosophila Melanogaster (Fruit Fly) Models. Curr Drug Targets 2024; 25:77-93. [PMID: 38213160 DOI: 10.2174/0113894501281402231218071641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 01/13/2024]
Abstract
Parkinson's disease (PD) is a severe neurodegenerative disorder, partly attributed to mutations, environmental toxins, oxidative stress, abnormal protein aggregation, and mitochondrial dysfunction. However, the precise pathogenesis of PD and its treatment strategy still require investigation. Fortunately, natural products have demonstrated potential as therapeutic agents for alleviating PD symptoms due to their neuroprotective properties. To identify promising lead compounds from herbal medicines' natural products for PD management and understand their modes of action, suitable animal models are necessary. Drosophila melanogaster (fruit fly) serves as an essential model for studying genetic and cellular pathways in complex biological processes. Diverse Drosophila PD models have been extensively utilized in PD research, particularly for discovering neuroprotective natural products. This review emphasizes the research progress of natural products in PD using the fruit fly PD model, offering valuable insights into utilizing invertebrate models for developing novel anti-PD drugs.
Collapse
Affiliation(s)
- Wen Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yingjie Ju
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yunuo Ren
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yaodong Miao
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 300250, Tianjin, China
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| |
Collapse
|
5
|
Yu Z, Xia M, Lan J, Yang L, Wang Z, Wang R, Tao H, Shi Y. A comprehensive review on the ethnobotany, phytochemistry, pharmacology and quality control of the genus Lycium in China. Food Funct 2023; 14:2998-3025. [PMID: 36912477 DOI: 10.1039/d2fo03791b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The Lycium genus, perennial herbs of the Solanaceae family, has been an important source of medicines and nutrient supplements for thousands of years in China, where seven species and three varieties are cultivated. Among these, Lycium barbarum L. and Lycium chinense Mill., two "superfoods", together with Lycium ruthenicum Murr, have been extensively commercialized and studied for their health-related properties. The dried ripe fruits of the genus Lycium are well recognized as functional foods for the management of various ailments including waist and knee pain, tinnitus, impotence, spermatorrhea, blood deficiency and weak eyes since ancient times. Phytochemical studies have reported numerous chemical components in the Lycium genus, categorized as polysaccharides, carotenoids, polyphenols, phenolic acids, flavonoids, alkaloids and fatty acids, and its therapeutic roles in antioxidation, immunomodulation, antitumor treatment, hepatoprotection and neuroprotection have been further confirmed by modern pharmacological studies. As a multi-functional food, the quality control of Lycium fruits has also attracted attention internationally. Despite its popularity in research, limited systematic and comprehensive information has been provided on the Lycium genus. Therefore, herein, we provide an up-to-date review of the distribution, botanical features, phytochemistry, pharmacology and quality control of the Lycium genus in China, which will provide evidence for further in-depth exploration and comprehensive utilization of Lycium, especially its fruits and active ingredients in the healthcare field.
Collapse
Affiliation(s)
- Zhonglian Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Mengqin Xia
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jiping Lan
- Experiment center for teaching & learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hongxun Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212016, China
| | - Yanhong Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,Institute of TCM International Standardization, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
6
|
Xu Y, Liu X, Tang H, Zhong L, Zhu X, Shen J. Chronic Consumption of Trehalose Reduces Lifespan in Drosophila Model. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:228-229. [PMID: 36696078 DOI: 10.1007/s11130-023-01044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Trehalose has been widely used as a kind of food additives. But in recent years, with several new studies of trehalose, some harmful effects had also been found. Drosophila melanogaster was used as a model organism to explore whether trehalose affects the lifespan. The results showed that high concentrations of trehalose could significantly shorten the lifespan of female flies by 12.5%, when compared to controls.
Collapse
Affiliation(s)
- Yifan Xu
- College of Artificial Intelligence, Hangzhou Dianzi University, 310018, Hangzhou, China
| | - Xingyou Liu
- College of Artificial Intelligence, Hangzhou Dianzi University, 310018, Hangzhou, China
| | - Hao Tang
- College of Artificial Intelligence, Hangzhou Dianzi University, 310018, Hangzhou, China
| | - Lichao Zhong
- College of Artificial Intelligence, Hangzhou Dianzi University, 310018, Hangzhou, China
| | - Xiang Zhu
- College of Artificial Intelligence, Hangzhou Dianzi University, 310018, Hangzhou, China
| | - Jie Shen
- College of Artificial Intelligence, Hangzhou Dianzi University, 310018, Hangzhou, China.
| |
Collapse
|
7
|
Du X, Lou N, Hu S, Xiao R, Chu C, Huang Q, Lu L, Li S, Yang J. Anti-Aging of the Nervous System and Related Neurodegenerative Diseases With Chinese Herbal Medicine. Am J Alzheimers Dis Other Demen 2023; 38:15333175231205445. [PMID: 37818604 PMCID: PMC10624054 DOI: 10.1177/15333175231205445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Human beings have always pursued a prolonged lifespan, while the aging of the nervous system is associated with a large variety of diseases. Pathological aging of the nervous system results in a series of neurodegenerative diseases and can cause disability and death in the elderly. Therefore, there is an urgent need for the prevention and treatment of nervous system aging. Chinese herbal medicines have a long history, featuring rich and safe ingredients, and have great potential for the development of anti-aging treatment. We searched the publications on PubMed with key words "anti-aging of the nervous system" and "Chinese herbal medicine" in recent 10 years, and found sixteen Chinese herbal medicines. Then by comparing their popularity of use as well as active components based on the research articles, five common Chinese herbal medicines namely Ginseng Radix, Lycii Fructus, Astragali Radix, Coptidis Rhizoma and Ginkgo Folium, were confirmed to be the most related to anti-nervous system aging and neural degenerative diseases. At the same time, the active ingredients, research models, action mechanisms and curative effects of these five common Chinese herbal medicines were reviewed. From the five common Chinese herbal medicines reviewed in this paper, many encouraging effects of Chinese herbal medicines on treating nervous system aging and related diseases were revealed and more potent herbs would be explored with the help of the proposed possible mechanisms.
Collapse
Affiliation(s)
- Xiaohui Du
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Nanbin Lou
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Sinan Hu
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Ruopeng Xiao
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qiankai Huang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Lin Lu
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Shanshan Li
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Jing Yang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| |
Collapse
|