Hernández-Del Castillo PC, Oliva J, Núñez-Luna BP, Rodríguez-González V. Novel polypropylene-TiO
2:Bi spherical floater for the efficient photocatalytic degradation of the recalcitrant 2,4,6-TCP herbicide.
JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023;
329:117057. [PMID:
36549056 DOI:
10.1016/j.jenvman.2022.117057]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/27/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
In this work, spherical photocatalytic floaters were fabricated by depositing TiO2:Bi (TBi) particles on polypropylene (PP) spheres (recycled from beer cans). These particles were deposited on the sphere (TBi-sphere) by the spray coating technique and evaluated their performance for the photocatalytic degradation of 2,4,6-trichlorophenol (2,4,6-TCP) herbicide. SEM images demonstrated that the BTi powders consisted in conglomerated grains with sizes of 20-80 nm and the analysis by X-ray diffraction confirmed the presence of rutile and anatase phases in the BTi. The photocatalytic experiments showed that the TBi and TBi-sphere produced maximum degradation of 90 and 97% for 2,4,6-TCP, respectively, after 4 h under UV-Vis light. The photocatalytic powders/composites were reused 3 times and the loss of degradation efficiency was 3 and 16% for the TBi powder and TBi-sphere, respectively. This means that the TBi-sphere is more stable for the continuous degradation of the 2,4,6-TCP contaminant. The TiO2:Bi powder was compared with the commercial TiO2 (P25) and found that the TiO2:Bi powder had higher light absorption (≈42%) and higher surface area (≈105%) than the P25. Therefore, the degradation percentage for the 2,4,6-TCP was 52% higher in the sample doped with Bi. Also, scavenger experiments were carried out and found that the main oxidizing agents produced for the degradation of 2,4,6-TCP were •OH- radicals and •O2- anions. Other species such as h+ were also produced at lower amount. Hence, our results demonstrated that spherical/floatable photocatalytic composites are a viable option to remove herbicide residuals from the water, which is of interest in water-treatment-plants.
Collapse