1
|
Lecoutre S, Rebière C, Maqdasy S, Lambert M, Dussaud S, Abatan JB, Dugail I, Gautier EL, Clément K, Marcelin G. Enhancing adipose tissue plasticity: progenitor cell roles in metabolic health. Nat Rev Endocrinol 2025:10.1038/s41574-024-01071-y. [PMID: 39757324 DOI: 10.1038/s41574-024-01071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2024] [Indexed: 01/07/2025]
Abstract
Adipose tissue demonstrates considerable plasticity and heterogeneity, enabling metabolic, cellular and structural adaptations to environmental signals. This adaptability is key for maintaining metabolic homeostasis. Impaired adipose tissue plasticity can lead to abnormal adipose tissue responses to metabolic cues, which contributes to the development of cardiometabolic diseases. In chronic obesity, white adipose tissue undergoes pathological remodelling marked by adipocyte hypertrophy, chronic inflammation and fibrosis, which are linked to local and systemic insulin resistance. Research data suggest that the capacity for healthy or unhealthy white adipose tissue remodelling might depend on the intrinsic diversity of adipose progenitor cells (APCs), which sense and respond to metabolic cues. This Review highlights studies on APCs as key determinants of adipose tissue plasticity, discussing differences between subcutaneous and visceral adipose tissue depots during development, growth and obesity. Modulating APC functions could improve strategies for treating adipose tissue dysfunction and metabolic diseases in obesity.
Collapse
Affiliation(s)
- Simon Lecoutre
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France.
| | - Clémentine Rebière
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France
| | - Salwan Maqdasy
- Department of Medicine, Karolinska Institutet Hospital, Stockholm, Sweden
| | - Mélanie Lambert
- Institut National de la Santé et de la Recherche Médicale, Bobigny, France
- Labex Inflamex, Université Sorbonne Paris Nord, Alliance Sorbonne Paris Cité, Bobigny, France
| | - Sébastien Dussaud
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France
| | - Jimon Boniface Abatan
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France
| | - Isabelle Dugail
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France
| | - Emmanuel L Gautier
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France
| | - Karine Clément
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France.
- Department of Nutrition, Pitie-Salpêtriere Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.
| | - Geneviève Marcelin
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France.
| |
Collapse
|
2
|
Yue Q, Cao Z, Li R, Wang Y, Rui S, Yin N, Liu L. Analysis of Physiological Oxygen Concentrations in Different Abdominal Fat Layers by Body Mass Index. Aesthetic Plast Surg 2024:10.1007/s00266-024-04479-z. [PMID: 39466422 DOI: 10.1007/s00266-024-04479-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Physiological oxygen concentration in adipose tissue is closely linked to metabolic disorders such as chronic inflammation and insulin resistance. However, the nature of the variation in the oxygen levels of adipose tissue with body mass index (BMI) and depths of abdominal fat remain unclear. Therefore, this study aimed to elucidate the patterns of oxygen concentration in adipose tissue layers according to BMI. METHODS In this study, patients undergoing abdominal fat removal surgery were divided into the normal-weight (NW) or overweight-obese (OW) groups based on their BMI. Oxygen concentrations in abdominal superficial (sSAT) and deep subcutaneous adipose tissue (dSAT) were measured. The oxygen consumption rate, mean cell area, and capillary density in both tissue layers were compared between the two groups. Furthermore, the interaction between these three variables, BMI, and adipose tissue oxygen concentration, was analyzed using linear regression. RESULTS A total of 42 patients were recruited in this study and we observed that oxygen concentration in the sSAT was significantly lower than in the dSAT, irrespective of BMI. In terms of the oxygen concentration in the dSAT, OW's was significantly lower than that of NW's. Linear regression analysis revealed a significant correlation between dSAT oxygen concentration and BMI, mean adipocyte area, and vascular density. CONCLUSION Individuals who are obese have significantly lower oxygen levels in the deep abdominal adipose tissue, and this is influenced by BMI, adipocyte area, and capillary density. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Qiang Yue
- The Department of Perineal Plastic Surgery and Gender Reshaping of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Zilong Cao
- The Department of Perineal Plastic Surgery and Gender Reshaping of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Rui Li
- The Department of Perineal Plastic Surgery and Gender Reshaping of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Yunzhang Wang
- The Department of Perineal Plastic Surgery and Gender Reshaping of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Shu Rui
- The Department of Perineal Plastic Surgery and Gender Reshaping of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Ningbei Yin
- The Department of Cleft Lip and Palate of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China.
| | - Liqiang Liu
- The Department of Perineal Plastic Surgery and Gender Reshaping of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China.
| |
Collapse
|
3
|
Jiang Y, Guo JQ, Wu Y, Zheng P, Wang SF, Yang MC, Ma GS, Yao YY. Excessive or sustained endoplasmic reticulum stress: one of the culprits of adipocyte dysfunction in obesity. Ther Adv Endocrinol Metab 2024; 15:20420188241282707. [PMID: 39381518 PMCID: PMC11459521 DOI: 10.1177/20420188241282707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/22/2024] [Indexed: 10/10/2024] Open
Abstract
As the prevalence of obesity continues to rise globally, the research on adipocytes has attracted more and more attention. In the presence of nutrient overload, adipocytes are exposed to pressures such as hypoxia, inflammation, mechanical stress, metabolite, and oxidative stress that can lead to organelle dysfunction. Endoplasmic reticulum (ER) is a vital organelle for sensing cellular pressure, and its homeostasis is essential for maintaining adipocyte function. Under conditions of excess nutrition, ER stress (ERS) will be triggered by the gathering of abnormally folded proteins in the ER lumen, resulting in the activation of a signaling response known as the unfolded protein responses (UPRs), which is a response system to relieve ERS and restore ER homeostasis. However, if the UPRs fail to rescue ER homeostasis, ERS will activate pathways to damage cells. Studies have shown a role for disturbed activation of adipocyte ERS in the pathophysiology of obesity and its complications. Prolonged or excessive ERS in adipocytes can aggravate lipolysis, insulin resistance, and apoptosis and affect the bioactive molecule production. In addition, ERS also impacts the expression of some important genes. In view of the fact that ERS influences adipocyte function through various mechanisms, targeting ERS may be a viable strategy to treat obesity. This article summarizes the effects of ERS on adipocytes during obesity.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jia-Qi Guo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Ya Wu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Peng Zheng
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Shao-Fan Wang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Meng-Chen Yang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Gen-Shan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yu-Yu Yao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| |
Collapse
|
4
|
Giangregorio F, Mosconi E, Debellis MG, Provini S, Esposito C, Garolfi M, Oraka S, Kaloudi O, Mustafazade G, Marín-Baselga R, Tung-Chen Y. A Systematic Review of Metabolic Syndrome: Key Correlated Pathologies and Non-Invasive Diagnostic Approaches. J Clin Med 2024; 13:5880. [PMID: 39407941 PMCID: PMC11478146 DOI: 10.3390/jcm13195880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background and Objectives: Metabolic syndrome (MetS) is a condition marked by a complex array of physiological, biochemical, and metabolic abnormalities, including central obesity, insulin resistance, high blood pressure, and dyslipidemia (characterized by elevated triglycerides and reduced levels of high-density lipoproteins). The pathogenesis develops from the accumulation of lipid droplets in the hepatocyte (steatosis). This accumulation, in genetically predisposed subjects and with other external stimuli (intestinal dysbiosis, high caloric diet, physical inactivity, stress), activates the production of pro-inflammatory molecules, alter autophagy, and turn on the activity of hepatic stellate cells (HSCs), provoking the low grade chronic inflammation and the fibrosis. This syndrome is associated with a significantly increased risk of developing type 2 diabetes mellitus (T2D), cardiovascular diseases (CVD), vascular, renal, pneumologic, rheumatological, sexual, cutaneous syndromes and overall mortality, with the risk rising five- to seven-fold for T2DM, three-fold for CVD, and one and a half-fold for all-cause mortality. The purpose of this narrative review is to examine metabolic syndrome as a "systemic disease" and its interaction with major internal medicine conditions such as CVD, diabetes, renal failure, and respiratory failure. It is essential for internal medicine practitioners to approach this widespread condition in a "holistic" rather than a fragmented manner, particularly in Western countries. Additionally, it is important to be aware of the non-invasive tools available for assessing this condition. Materials and Methods: We conducted an exhaustive search on PubMed up to July 2024, focusing on terms related to metabolic syndrome and other pathologies (heart, Lung (COPD, asthma, pulmonary hypertension, OSAS) and kidney failure, vascular, rheumatological (osteoarthritis, rheumatoid arthritis), endocrinological, sexual pathologies and neoplastic risks. The review was managed in accordance with the PRISMA statement. Finally, we selected 300 studies (233 papers for the first search strategy and 67 for the second one). Our review included studies that provided insights into metabolic syndrome and non-invasive techniques for evaluating liver fibrosis and steatosis. Studies that were not conducted on humans, were published in languages other than English, or did not assess changes related to heart failure were excluded. Results: The findings revealed a clear correlation between metabolic syndrome and all the pathologies above described, indicating that non-invasive assessments of hepatic fibrosis and steatosis could potentially serve as markers for the severity and progression of the diseases. Conclusions: Metabolic syndrome is a multisystem disorder that impacts organs beyond the liver and disrupts the functioning of various organs. Notably, it is linked to a higher incidence of cardiovascular diseases, independent of traditional cardiovascular risk factors. Non-invasive assessments of hepatic fibrosis and fibrosis allow clinicians to evaluate cardiovascular risk. Additionally, the ability to assess liver steatosis may open new diagnostic, therapeutic, and prognostic avenues for managing metabolic syndrome and its complications, particularly cardiovascular disease, which is the leading cause of death in these patients.
Collapse
Affiliation(s)
- Francesco Giangregorio
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Emilio Mosconi
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Maria Grazia Debellis
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Stella Provini
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Ciro Esposito
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Matteo Garolfi
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Simona Oraka
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Olga Kaloudi
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Gunel Mustafazade
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Raquel Marín-Baselga
- Department of Internal Medicine, Hospital Universitario La Paz, Paseo Castellana 241, 28046 Madrid, Spain;
| | - Yale Tung-Chen
- Department of Internal Medicine, Hospital Universitario La Paz, Paseo Castellana 241, 28046 Madrid, Spain;
| |
Collapse
|
5
|
Aragón-Herrera A, Feijóo-Bandín S, Vázquez-Abuín X, Anido-Varela L, Moraña-Fernández S, Bravo SB, Tarazón E, Roselló-Lletí E, Portolés M, García-Seara J, Seijas J, Rodríguez-Penas D, Bani D, Gualillo O, González-Juanatey JR, Lago F. Human recombinant relaxin-2 (serelaxin) regulates the proteome, lipidome, lipid metabolism and inflammatory profile of rat visceral adipose tissue. Biochem Pharmacol 2024; 223:116157. [PMID: 38518995 DOI: 10.1016/j.bcp.2024.116157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Recombinant human relaxin-2 (serelaxin) has been widely proven as a novel drug with myriad effects at different cardiovascular levels, which support its potential therapeutic efficacy in several cardiovascular diseases (CVD). Considering these effects, together with the influence of relaxin-2 on adipocyte physiology and adipokine secretion, and the connection between visceral adipose tissue (VAT) dysfunction and the development of CVD, we could hypothesize that relaxin-2 may regulate VAT metabolism. Our objective was to evaluate the impact of a 2-week serelaxin treatment on the proteome and lipidome of VAT from Sprague-Dawley rats. We found that serelaxin increased 1 polyunsaturated fatty acid and 6 lysophosphatidylcholines and decreased 4 triglycerides in VAT employing ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) based platforms, and that regulates 47 phosphoproteins using SWATH/MS analysis. Through RT-PCR, we found that serelaxin treatment also caused an effect on VAT lipolysis through an increase in the mRNA expression of hormone-sensitive lipase (HSL) and a decrease in the expression of adipose triglyceride lipase (ATGL), together with a reduction in the VAT expression of the fatty acid transporter cluster of differentiation 36 (Cd36). Serelaxin also caused an anti-inflammatory effect in VAT by the decrease in the mRNA expression of tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), chemerin, and its receptor. In conclusion, our results highlight the regulatory role of serelaxin in the VAT proteome and lipidome, lipolytic function, and inflammatory profile, suggesting the implication of several mechanisms supporting the potential benefit of serelaxin for the prevention of obesity and metabolic disorders.
Collapse
Affiliation(s)
- Alana Aragón-Herrera
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain.
| | - Sandra Feijóo-Bandín
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Xocas Vázquez-Abuín
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Laura Anido-Varela
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Moraña-Fernández
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain; Cardiology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Susana B Bravo
- Proteomics Unit, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Estefanía Tarazón
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital, Valencia, Spain
| | - Esther Roselló-Lletí
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital, Valencia, Spain
| | - Manuel Portolés
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital, Valencia, Spain
| | - Javier García-Seara
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Arrhytmia Unit, Cardiology Department, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain; Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José Seijas
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Cardiology Department Clinical Trial Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Diego Rodríguez-Penas
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain; Cardiology Department Clinical Trial Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Daniele Bani
- Research Unit of Histology & Embryology, Department of Experimental & Clinical Medicine, University of Florence, Florence, Italy
| | - Oreste Gualillo
- Laboratory of Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - José Ramón González-Juanatey
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Cardiology Department, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Hagberg CE, Spalding KL. White adipocyte dysfunction and obesity-associated pathologies in humans. Nat Rev Mol Cell Biol 2024; 25:270-289. [PMID: 38086922 DOI: 10.1038/s41580-023-00680-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 02/10/2024]
Abstract
The prevalence of obesity and associated chronic diseases continues to increase worldwide, negatively impacting on societies and economies. Whereas the association between excess body weight and increased risk for developing a multitude of diseases is well established, the initiating mechanisms by which weight gain impairs our metabolic health remain surprisingly contested. In order to better address the myriad of disease states associated with obesity, it is essential to understand adipose tissue dysfunction and develop strategies for reinforcing adipocyte health. In this Review we outline the diverse physiological functions and pathological roles of human white adipocytes, examining our current knowledge of why white adipocytes are vital for systemic metabolic control, yet poorly adapted to our current obesogenic environment.
Collapse
Affiliation(s)
- Carolina E Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kirsty L Spalding
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
7
|
Alemany M. The Metabolic Syndrome, a Human Disease. Int J Mol Sci 2024; 25:2251. [PMID: 38396928 PMCID: PMC10888680 DOI: 10.3390/ijms25042251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review focuses on the question of metabolic syndrome (MS) being a complex, but essentially monophyletic, galaxy of associated diseases/disorders, or just a syndrome of related but rather independent pathologies. The human nature of MS (its exceptionality in Nature and its close interdependence with human action and evolution) is presented and discussed. The text also describes the close interdependence of its components, with special emphasis on the description of their interrelations (including their syndromic development and recruitment), as well as their consequences upon energy handling and partition. The main theories on MS's origin and development are presented in relation to hepatic steatosis, type 2 diabetes, and obesity, but encompass most of the MS components described so far. The differential effects of sex and its biological consequences are considered under the light of human social needs and evolution, which are also directly related to MS epidemiology, severity, and relations with senescence. The triggering and maintenance factors of MS are discussed, with especial emphasis on inflammation, a complex process affecting different levels of organization and which is a critical element for MS development. Inflammation is also related to the operation of connective tissue (including the adipose organ) and the widely studied and acknowledged influence of diet. The role of diet composition, including the transcendence of the anaplerotic maintenance of the Krebs cycle from dietary amino acid supply (and its timing), is developed in the context of testosterone and β-estradiol control of the insulin-glycaemia hepatic core system of carbohydrate-triacylglycerol energy handling. The high probability of MS acting as a unique complex biological control system (essentially monophyletic) is presented, together with additional perspectives/considerations on the treatment of this 'very' human disease.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
8
|
Hu K, Deya Edelen E, Zhuo W, Khan A, Orbegoso J, Greenfield L, Rahi B, Griffin M, Ilich JZ, Kelly OJ. Understanding the Consequences of Fatty Bone and Fatty Muscle: How the Osteosarcopenic Adiposity Phenotype Uncovers the Deterioration of Body Composition. Metabolites 2023; 13:1056. [PMID: 37887382 PMCID: PMC10608812 DOI: 10.3390/metabo13101056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Adiposity is central to aging and several chronic diseases. Adiposity encompasses not just the excess adipose tissue but also body fat redistribution, fat infiltration, hypertrophy of adipocytes, and the shifting of mesenchymal stem cell commitment to adipogenesis. Bone marrow adipose tissue expansion, inflammatory adipokines, and adipocyte-derived extracellular vesicles are central to the development of osteopenic adiposity. Adipose tissue infiltration and local adipogenesis within the muscle are critical in developing sarcopenic adiposity and subsequent poorer functional outcomes. Ultimately, osteosarcopenic adiposity syndrome is the result of all the processes noted above: fat infiltration and adipocyte expansion and redistribution within the bone, muscle, and adipose tissues, resulting in bone loss, muscle mass/strength loss, deteriorated adipose tissue, and subsequent functional decline. Increased fat tissue, typically referred to as obesity and expressed by body mass index (the latter often used inadequately), is now occurring in younger age groups, suggesting people will live longer with the negative effects of adiposity. This review discusses the role of adiposity in the deterioration of bone and muscle, as well as adipose tissue itself. It reveals how considering and including adiposity in the definition and diagnosis of osteopenic adiposity, sarcopenic adiposity, and osteosarcopenic adiposity will help in better understanding the pathophysiology of each and accelerate possible therapies and prevention approaches for both relatively healthy individuals or those with chronic disease.
Collapse
Affiliation(s)
- Kelsey Hu
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Elizabeth Deya Edelen
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Wenqing Zhuo
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Aliya Khan
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Josselyne Orbegoso
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Lindsey Greenfield
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Berna Rahi
- Department of Human Sciences, Sam Houston State University College of Health Sciences, Huntsville, TX 77341, USA;
| | - Michael Griffin
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Jasminka Z. Ilich
- Institute for Successful Longevity, Florida State University, Tallahassee, FL 32304, USA;
| | - Owen J. Kelly
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| |
Collapse
|
9
|
Fried SK. Adipose 'neighborhoods' collaborate to maintain metabolic health. Curr Opin Genet Dev 2023; 81:102079. [PMID: 37406429 PMCID: PMC10867982 DOI: 10.1016/j.gde.2023.102079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023]
Abstract
Body fat is stored in anatomically distinct adipose depots that vary in their cell composition and play specialized roles in systemic metabolic homeostasis via secreted products. Their local effects on nearby tissues (e.g. the gut and visceral adipose tissues) are increasingly recognized and this local crosstalk is being elucidated. The major subcutaneous fat depots, abdominal and gluteal-femoral, exert opposite effects on the risk of metabolic disease. The pace of research into developmental, sex, and genetic determinants of human adipose depot growth and function is rapidly accelerating, providing insight into the pathogenesis of metabolic dysfunction in persons with obesity.
Collapse
Affiliation(s)
- Susan K Fried
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1152, New York, NY 10029, USA.
| |
Collapse
|
10
|
Memaj P, Ouzerara Z, Jornayvaz FR. Role of Oxidative Stress and Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:11271. [PMID: 37511031 PMCID: PMC10379080 DOI: 10.3390/ijms241411271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a widely studied subject due to its increasing prevalence and links to diseases such as type 2 diabetes and obesity. It has severe complications, including nonalcoholic steatohepatitis, cirrhosis, hepatocellular carcinoma, and portal hypertension that can lead to liver transplantation in some cases. To better prevent and treat this pathology, it is important to understand its underlying physiology. Here, we identify two main factors that play a crucial role in the pathophysiology of NAFLD: oxidative stress and the key role of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). We discuss the pathophysiology linking these factors to NAFLD pathophysiology.
Collapse
Affiliation(s)
- Plator Memaj
- Division of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Zayd Ouzerara
- Division of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - François R Jornayvaz
- Division of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, Geneva University, 1205 Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Geneva University, 1205 Geneva, Switzerland
| |
Collapse
|
11
|
Szukiewicz D. Molecular Mechanisms for the Vicious Cycle between Insulin Resistance and the Inflammatory Response in Obesity. Int J Mol Sci 2023; 24:9818. [PMID: 37372966 DOI: 10.3390/ijms24129818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The comprehensive anabolic effects of insulin throughout the body, in addition to the control of glycemia, include ensuring lipid homeostasis and anti-inflammatory modulation, especially in adipose tissue (AT). The prevalence of obesity, defined as a body mass index (BMI) ≥ 30 kg/m2, has been increasing worldwide on a pandemic scale with accompanying syndemic health problems, including glucose intolerance, insulin resistance (IR), and diabetes. Impaired tissue sensitivity to insulin or IR paradoxically leads to diseases with an inflammatory component despite hyperinsulinemia. Therefore, an excess of visceral AT in obesity initiates chronic low-grade inflammatory conditions that interfere with insulin signaling via insulin receptors (INSRs). Moreover, in response to IR, hyperglycemia itself stimulates a primarily defensive inflammatory response associated with the subsequent release of numerous inflammatory cytokines and a real threat of organ function deterioration. In this review, all components of this vicious cycle are characterized with particular emphasis on the interplay between insulin signaling and both the innate and adaptive immune responses related to obesity. Increased visceral AT accumulation in obesity should be considered the main environmental factor responsible for the disruption in the epigenetic regulatory mechanisms in the immune system, resulting in autoimmunity and inflammation.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
12
|
Walpot J, Van Herck P, Van de Heyning CM, Bosmans J, Massalha S, Malbrain ML, Heidbuchel H, Inácio JR. Computed tomography measured epicardial adipose tissue and psoas muscle attenuation: new biomarkers to predict major adverse cardiac events (MACE) and mortality in patients with heart disease and critically ill patients. Part I: Epicardial adipose tissue. Anaesthesiol Intensive Ther 2023; 55:141-157. [PMID: 37728441 PMCID: PMC10496106 DOI: 10.5114/ait.2023.130922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/28/2023] [Indexed: 09/21/2023] Open
Abstract
Over the last two decades, the potential role of epicardial adipocyte tissue (EAT) as a marker for major adverse cardiovascular events has been extensively studied. Unlike other visceral adipocyte tissues (VAT), EAT is not separated from the adjacent myocardium by a fascial layer and shares the same microcirculation with the myocardium. Adipocytokines, secreted by EAT, interact directly with the myocardium through paracrine and vasocrine pathways. The role of the Randle cycle, linking VAT accumulation to insulin resistance, and the relevance of blood flow and mitochondrial function of VAT, are briefly discussed. The three available imaging modalities for the assessment of EAT are discussed. The advantages of echocardiography, cardiac CT, and cardiac magnetic resonance (CMR) are compared. The last section summarises the current stage of knowledge on EAT as a clinical marker for major adverse cardiovascular events (MACE). The association between EAT volume and coronary artery disease (CAD) has robustly been validated. There is growing evidence that EAT volume is associated with computed tomography coronary angiography (CTCA) assessed high-risk plaque features. The EAT CT attenuation coefficient predicts coronary events. Many studies have established EAT volume as a predictor of atrial fibrillation after cardiac surgery. Moreover, EAT thickness has been independently associated with severe aortic stenosis and mitral annular calcification. Studies have demonstrated that EAT volume is associated with heart failure. Finally, we discuss the potential role of EAT in critically ill patients admitted to the intensive care unit. In conclusion, EAT seems to be a promising new biomarker to predict MACE.
Collapse
Affiliation(s)
| | - Paul Van Herck
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
- Cardiovascular Sciences, University of Antwerp, Antwerp, Belgium
| | - Caroline M. Van de Heyning
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
- Cardiovascular Sciences, University of Antwerp, Antwerp, Belgium
| | - Johan Bosmans
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
- Cardiovascular Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Manu L.N.G. Malbrain
- International Fluid Academy, Lovenjoel, Belgium
- First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Lublin, Poland
| | - Hein Heidbuchel
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
- Cardiovascular Sciences, University of Antwerp, Antwerp, Belgium
| | - João R. Inácio
- Centro Universitario Hospitalar Lisboa Norte, Faculdade de Medicina de Lisboa, UL, Portugal
| |
Collapse
|
13
|
Saari T, Koffert J, Honka H, Kauhanen S, U-Din M, Wierup N, Lindqvist A, Groop L, Virtanen KA, Nuutila P. Obesity-associated Blunted Subcutaneous Adipose Tissue Blood Flow After Meal Improves After Bariatric Surgery. J Clin Endocrinol Metab 2022; 107:1930-1938. [PMID: 35363252 PMCID: PMC9202692 DOI: 10.1210/clinem/dgac191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Glucose-dependent insulinotropic peptide (GIP) and meal ingestion increase subcutaneous adipose tissue (SAT) perfusion in healthy individuals. The effects of GIP and a meal on visceral adipose tissue (VAT) perfusion are unclear. OBJECTIVE Our aim was to investigate the effects of meal and GIP on VAT and SAT perfusion in obese individuals with type 2 diabetes mellitus (T2DM) before and after bariatric surgery. METHODS We recruited 10 obese individuals with T2DM scheduled for bariatric surgery and 10 control individuals. Participants were studied under 2 stimulations: meal ingestion and GIP infusion. SAT and VAT perfusion was measured using 15O-H2O positron emission tomography-magnetic resonance imaging at 3 time points: baseline, 20 minutes, and 50 minutes after the start of stimulation. Obese individuals were studied before and after bariatric surgery. RESULTS Before bariatric surgery the responses of SAT perfusion to meal (P = .04) and GIP-infusion (P = .002) were blunted in the obese participants compared to controls. VAT perfusion response did not differ between obese and control individuals after a meal or GIP infusion. After bariatric surgery SAT perfusion response to a meal was similar to that of controls. SAT perfusion response to GIP administration remained lower in the operated-on than control participants. There was no change in VAT perfusion response after bariatric surgery. CONCLUSION The vasodilating effects of GIP and meal are blunted in SAT but not in VAT in obese individuals with T2DM. Bariatric surgery improves the effects of a meal on SAT perfusion, but not the effects of GIP. Postprandial increase in SAT perfusion after bariatric surgery seems to be regulated in a GIP-independent manner.
Collapse
Affiliation(s)
- Teemu Saari
- Turku PET Centre, University of Turku, 20520 Turku, Finland
- Turku PET Centre, Turku University Hospital, 20520 Turku, Finland
| | - Jukka Koffert
- Turku PET Centre, University of Turku, 20520 Turku, Finland
- Department of Gastroenterology, Turku University Hospital, 20520 Turku, Finland
| | - Henri Honka
- Turku PET Centre, University of Turku, 20520 Turku, Finland
| | - Saila Kauhanen
- Division of Digestive Surgery and Urology, Turku University Hospital, 20520 Turku, Finland
| | - Mueez U-Din
- Turku PET Centre, University of Turku, 20520 Turku, Finland
- Turku PET Centre, Turku University Hospital, 20520 Turku, Finland
| | - Nils Wierup
- Department of Clinical Sciences, Lund University Diabetes Centre, 20213 Malmö, Sweden
| | - Andreas Lindqvist
- Department of Clinical Sciences, Lund University Diabetes Centre, 20213 Malmö, Sweden
| | - Leif Groop
- Department of Clinical Sciences, Lund University Diabetes Centre, 20213 Malmö, Sweden
| | - Kirsi A Virtanen
- Correspondence: Kirsi A. Virtanen, MD, PhD, Turku PET Centre, University of Turku, Department of Endocrinology, Kiinamyllynkatu 4-8, 2052 Turku, Finland. ,
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, 20520 Turku, Finland
- Turku PET Centre, Turku University Hospital, 20520 Turku, Finland
- Department of Endocrinology, Turku University Hospital, 20520 Turku, Finland
| |
Collapse
|