2
|
Mabrouk MM, Hamed NA, Mansour FR. Physicochemical and electrochemical methods for determination of critical micelle concentrations of surfactants: a comprehensive review. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02891-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Mustafa IF, Hussein MZ. Synthesis and Technology of Nanoemulsion-Based Pesticide Formulation. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1608. [PMID: 32824489 PMCID: PMC7466655 DOI: 10.3390/nano10081608] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022]
Abstract
Declines in crop yield due to pests and diseases require the development of safe, green and eco-friendly pesticide formulations. A major problem faced by the agricultural industry is the use of conventional agrochemicals that contribute broad-spectrum effects towards the environment and organisms. As a result of this issue, researchers are currently developing various pesticide formulations using different nanotechnology approaches. The progress and opportunities in developing nanoemulsions as carriers for plant protection or nanodelivery systems for agrochemicals in agricultural practice have been the subject of intense research. New unique chemical and biologic properties have resulted in a promising pesticide nanoformulations for crop protection. These innovations-particularly the nanoemulsion-based agrochemicals-are capable of enhancing the solubility of active ingredients, improving agrochemical bioavailability, and improving stability and wettability properties during the application, thus resulting in better efficacy for pest control and treatment. All of these-together with various preparation methods towards a greener and environmentally friendly agrochemicals-are also discussed and summarized in this review.
Collapse
Affiliation(s)
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia;
| |
Collapse
|
5
|
Franco CA, Giraldo LJ, Candela CH, Bernal KM, Villamil F, Montes D, Lopera SH, Franco CA, Cortés FB. Design and Tuning of Nanofluids Applied to Chemical Enhanced Oil Recovery Based on the Surfactant-Nanoparticle-Brine Interaction: From Laboratory Experiments to Oil Field Application. NANOMATERIALS 2020; 10:nano10081579. [PMID: 32796762 PMCID: PMC7466570 DOI: 10.3390/nano10081579] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/27/2022]
Abstract
The primary objective of this study is to develop a novel experimental nanofluid based on surfactant–nanoparticle–brine tuning, subsequently evaluate its performance in the laboratory under reservoir conditions, then upscale the design for a field trial of the nanotechnology-enhanced surfactant injection process. Two different mixtures of commercial anionic surfactants (SA and SB) were characterized by their critical micelle concentration (CMC), density, and Fourier transform infrared (FTIR) spectra. Two types of commercial nanoparticles (CNA and CNB) were utilized, and they were characterized by SBET, FTIR spectra, hydrodynamic mean sizes (dp50), isoelectric points (pHIEP), and functional groups. The evaluation of both surfactant–nanoparticle systems demonstrated that the best performance was obtained with a total dissolved solid (TDS) of 0.75% with the SA surfactant and the CNA nanoparticles. A nanofluid formulation with 100 mg·L−1 of CNA provided suitable interfacial tension (IFT) values between 0.18 and 0.15 mN·m−1 for a surfactant dosage range of 750–1000 mg·L−1. Results obtained from adsorption tests indicated that the surfactant adsorption on the rock would be reduced by at least 40% under static and dynamic conditions due to nanoparticle addition. Moreover, during core flooding tests, it was observed that the recovery factor was increased by 22% for the nanofluid usage in contrast with a 17% increase with only the use of the surfactant. These results are related to the estimated capillary number of 3 × 10−5, 3 × 10−4, and 5 × 10−4 for the brine, the surfactant, and the nanofluid, respectively, as well as to the reduction in the surfactant adsorption on the rock which enhances the efficiency of the process. The field trial application was performed with the same nanofluid formulation in the two different injection patterns of a Colombian oil field and represented the first application worldwide of nanoparticles/nanofluids in enhanced oil recovery (EOR) processes. The cumulative incremental oil production was nearly 30,035 Bbls for both injection patterns by May 19, 2020. The decline rate was estimated through an exponential model to be −0.104 month−1 before the intervention, to −0.016 month−1 after the nanofluid injection. The pilot was designed based on a production increment of 3.5%, which was successfully surpassed with this field test with an increment of 27.3%. This application is the first, worldwide, to demonstrate surfactant flooding assisted by nanotechnology in a chemical enhanced oil recovery (CEOR) process in a low interfacial tension region.
Collapse
Affiliation(s)
- Carlos A. Franco
- Gerencia de Desarrollo Sur, Ecopetrol S.A., Neiva, Huila 410010, Colombia; (C.A.F.); (C.H.C.); (K.M.B.); (F.V.)
| | - Lady J. Giraldo
- Grupo de Investigación en Fenómenos de Superficie—Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia Sede Medellín, Kr 80 No. 65-223, Medellín, Antioquia 050034, Colombia; (L.J.G.); (D.M.)
| | - Carlos H. Candela
- Gerencia de Desarrollo Sur, Ecopetrol S.A., Neiva, Huila 410010, Colombia; (C.A.F.); (C.H.C.); (K.M.B.); (F.V.)
| | - Karla M. Bernal
- Gerencia de Desarrollo Sur, Ecopetrol S.A., Neiva, Huila 410010, Colombia; (C.A.F.); (C.H.C.); (K.M.B.); (F.V.)
| | - Fabio Villamil
- Gerencia de Desarrollo Sur, Ecopetrol S.A., Neiva, Huila 410010, Colombia; (C.A.F.); (C.H.C.); (K.M.B.); (F.V.)
| | - Daniel Montes
- Grupo de Investigación en Fenómenos de Superficie—Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia Sede Medellín, Kr 80 No. 65-223, Medellín, Antioquia 050034, Colombia; (L.J.G.); (D.M.)
| | - Sergio H. Lopera
- Grupo de Investigación en Yacimientos de Hidrocarburos, Facultad de Minas, Universidad Nacional de Colombia Sede Medellín, Kr 80 No. 65-223, Medellín, Antioquia 050034, Colombia;
| | - Camilo A. Franco
- Grupo de Investigación en Fenómenos de Superficie—Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia Sede Medellín, Kr 80 No. 65-223, Medellín, Antioquia 050034, Colombia; (L.J.G.); (D.M.)
- Correspondence: (C.A.F.); (F.B.C.); Tel.: +57-(4)-4255000 (ext. 44313) (C.A.F.); +57-(4)-4255137 (F.B.C.)
| | - Farid B. Cortés
- Grupo de Investigación en Fenómenos de Superficie—Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia Sede Medellín, Kr 80 No. 65-223, Medellín, Antioquia 050034, Colombia; (L.J.G.); (D.M.)
- Correspondence: (C.A.F.); (F.B.C.); Tel.: +57-(4)-4255000 (ext. 44313) (C.A.F.); +57-(4)-4255137 (F.B.C.)
| |
Collapse
|
6
|
Temperature Effect on the Adsorption and Volumetric Properties of Aqueous Solutions of Kolliphor ®ELP. Molecules 2020; 25:molecules25030743. [PMID: 32050404 PMCID: PMC7037185 DOI: 10.3390/molecules25030743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/01/2022] Open
Abstract
Density, viscosity and surface tension of Kolliphor® ELP, the nonionic surfactant aqueous solutions were measured at temperature T = 293–318 K and at 5K interval. Steady-state fluorescence measurements have been also made using pyrene as a probe. On the basis of the obtained results, a number of thermodynamic, thermo-acoustic and anharmonic parameters of the studied surfactant have been evaluated and interpreted in terms of structural effects and solute–solvent interactions. The results suggest that the molecules of studied surfactant at concentrations higher than the critical micelle concentration act as structure makers of the water structure.
Collapse
|
7
|
Váňová J, Vavříková M, Smetanová Z, Česla P. Comparison of Electrophoretic Methods for Determination of Critical Micelle Concentration of Anionic Alkylsulfate Surfactants in Water/Organic Environment. Chromatographia 2018. [DOI: 10.1007/s10337-018-3664-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Malik S, Ghosh A, Sar P, Mondal MH, Mahali K, Saha B. Employment of different spectroscopic tools for the investigation of chromium(VI) oxidation of acetaldehyde in aqueous micellar medium. J CHEM SCI 2017. [DOI: 10.1007/s12039-017-1276-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|