1
|
Savina ED, Tsentalovich YP, Sherin PS. Influence of viscosity on mechanism and products of radical reactions of kynurenic acid and tryptophan. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3350-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
2
|
Sherin PS, Vyšniauskas A, López-Duarte I, Ogilby PR, Kuimova MK. Visualising UV-A light-induced damage to plasma membranes of eye lens. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 225:112346. [PMID: 34736070 DOI: 10.1016/j.jphotobiol.2021.112346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/01/2021] [Accepted: 10/19/2021] [Indexed: 01/16/2023]
Abstract
An eye lens is constantly exposed to the solar UV radiation, which is considered the most important external source of age-related changes to eye lens constituents. The accumulation of modifications of proteins and lipids with age can eventually lead to the development of progressive lens opacifications, such as cataracts. Though the impact of solar UV radiation on the structure and function of proteins is actively studied, little is known about the effect of photodamage on plasma membranes of lens cells. In this work we exploit Fluorescence Lifetime Imaging Microscopy (FLIM), together with viscosity-sensitive fluorophores termed molecular rotors, to study the changes in viscosity of plasma membranes of porcine eye lens resulting from two different types of photodamage: Type I (electron transfer) and Type II (singlet oxygen) reactions. We demonstrate that these two types of photodamage result in clearly distinct changes in viscosity - a decrease in the case of Type I damage and an increase in the case of Type II processes. Finally, to simulate age-related changes that occur in vivo, we expose an intact eye lens to UV-A light under anaerobic conditions. The observed decrease in viscosity within plasma membranes is consistent with the ability of eye lens constituents to sensitize Type I photodamage under natural irradiation conditions. These changes are likely to alter the transport of metabolites and predispose the whole tissue to the development of pathological processes such as cataracts.
Collapse
Affiliation(s)
- Peter S Sherin
- Chemistry Department, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, UK; International Tomography Center SB RAS, Institutskaya street 3A, Novosibirsk 630090, Russia.
| | - Aurimas Vyšniauskas
- Center for Physical Sciences and Technology, Saulėtekio av. 3, Vilnius LT-10257, Lithuania; Chemistry Department, Vilnius University, Naugarduko st. 24, Vilnius LT-03225, Lithuania
| | - Ismael López-Duarte
- Chemistry Department, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus DK-8000, Denmark
| | - Marina K Kuimova
- Chemistry Department, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, UK.
| |
Collapse
|
3
|
Zhuravleva YS, Sherin PS. Influence of pH on radical reactions between kynurenic acid and amino acids tryptophan and tyrosine. Part II. Amino acids within the protein globule of lysozyme. Free Radic Biol Med 2021; 174:211-224. [PMID: 34363946 DOI: 10.1016/j.freeradbiomed.2021.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/29/2021] [Accepted: 08/01/2021] [Indexed: 12/20/2022]
Abstract
An acidosis, a decrease of pH within a living tissue, may alter yields of radical reactions if participating radicals undergo partial or complete protonation. One of photosensitizers found in the human eye lens, kynurenic acid (KNA-), possesses pKa 5.5 for its radical form that is close to physiological pH 6.89 for a healthy lens. In this work we studied the influence of pH on mechanisms and products of photoinduced radical reactions between KNA- and amino acids tryptophan (Trp) and tyrosine (Tyr) within a globule of model protein, Hen White Egg Lysozyme (HEWL). Our results show that the rate constant of back electron transfer from kynurenyl to HEWL• radicals with the restoration of initial reagents - the major decay pathway for these radicals - does not change in the pH 3-7. The quantum yield of HEWL degradation is also pH independent, however a shift of pH from 7 to 5 completely changes the outcome of photoinduced damage to HEWL from intermolecular cross-linking to oxygenation. HPLC-MS analysis has shown that four of six Trp and all Tyr residues of HEWL are modified in different extents at all pH, but the lowering of pH from 7 to 5 significantly changes the direction of main photodamage from Trp62 to Trp108 located at the entrance and bottom of enzymatic center, respectively. A decrease of intermolecular cross-links via Trp62 is followed by an increase in quantities of intramolecular cross-links Tyr20-Tyr23 and Tyr23-Tyr53. The obtained results point out the competence of cross-linking and oxygenation reactions for Trp and Tyr radicals within a protein globule and significant increase of oxygenation to the total damage of protein in the case of cross-linking deceleration by coulombic repulsion of positively charged protein globules.
Collapse
Affiliation(s)
- Yuliya S Zhuravleva
- International Tomography Center SB RAS, Institutskaya street 3a, Novosibirsk, Russia; Novosibirsk State University, Pirogova street 2, Novosibirsk, Russia
| | - Peter S Sherin
- International Tomography Center SB RAS, Institutskaya street 3a, Novosibirsk, Russia; Novosibirsk State University, Pirogova street 2, Novosibirsk, Russia.
| |
Collapse
|
4
|
Osik NA, Zelentsova EA, Tsentalovich YP. Kinetic Studies of Antioxidant Properties of Ovothiol A. Antioxidants (Basel) 2021; 10:antiox10091470. [PMID: 34573105 PMCID: PMC8470380 DOI: 10.3390/antiox10091470] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 02/01/2023] Open
Abstract
Ovothiol A (OSH) is one of the strongest natural antioxidants. So far, its presence was found in tissues of marine invertebrates, algae and fish. Due to very low pKa value of the SH group, under physiological conditions, this compound is almost entirely present in chemically active thiolate form and reacts with ROS and radicals significantly faster than other natural thiols. In biological systems, OSH acts in tandem with glutathione GSH, with OSH neutralizing oxidants and GSH maintaining ovothiol in the reduced state. In the present work, we report the rate constants of OSH oxidation by H2O2 and of reduction of oxidized ovothiol OSSO by GSH and we estimate the Arrhenius parameters for these rate constants. The absorption spectra of reaction intermediates, adduct OSSG and sulfenic acid OSOH, were obtained. We also found that OSH effectively quenches the triplet state of kynurenic acid with an almost diffusion-controlled rate constant. This finding indicates that OSH may serve as a good photoprotector to inhibit the deleterious effect of solar UV irradiation; this assumption explains the high concentrations of OSH in the fish lens. The unique antioxidant and photoprotecting properties of OSH open promising perspectives for its use in the treatment of human diseases.
Collapse
Affiliation(s)
- Nataliya A. Osik
- International Tomography Center SB RAS, Institutskaya 3a, 630090 Novosibirsk, Russia; (N.A.O.); (E.A.Z.)
- Physical Department, Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
| | - Ekaterina A. Zelentsova
- International Tomography Center SB RAS, Institutskaya 3a, 630090 Novosibirsk, Russia; (N.A.O.); (E.A.Z.)
- Physical Department, Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
| | - Yuri P. Tsentalovich
- International Tomography Center SB RAS, Institutskaya 3a, 630090 Novosibirsk, Russia; (N.A.O.); (E.A.Z.)
- Physical Department, Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
5
|
Dontsov AE, Sakina NL, Yakovleva MA, Bastrakov AI, Bastrakova IG, Zagorinsky AA, Ushakova NA, Feldman TB, Ostrovsky MA. Ommochromes from the Compound Eyes of Insects: Physicochemical Properties and Antioxidant Activity. BIOCHEMISTRY (MOSCOW) 2021; 85:668-678. [PMID: 32586230 DOI: 10.1134/s0006297920060048] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The objective of this study was screening of ommochromes from the compound eyes of insects and comparison of their antioxidant properties. Ommochromes were isolated in preparative quantities from insects of five different families: Stratiomyidae, Sphingidae, Blaberidae, Acrididae, and Tenebrionidae. The yield of ommochromes (dry pigment weight) was 0.9-5.4% of tissue wet weight depending on the insect species. Isolated pigments were analyzed by high-performance liquid chromatography and represented a mixture of several ommochromes of the ommatin series. The isolated ommochromes displayed a pronounced fluorescence with the emission maxima at 435-450 nm and 520-535 nm; furthermore, the emission intensity increased significantly upon ommochrome oxidation with hydrogen peroxide. The ommochromes produced a stable EPR signal consisting of a singlet line with g = 2.0045-2.0048, width of 1.20-1.27 mT, and high concentration of paramagnetic centers (> 1017 spin/g dry weight). All the investigated ommochromes demonstrated high antiradical activity measured from the degree of chemiluminescence quenching in a model system containing luminol, hemoglobin, and hydrogen peroxide. The ommochromes strongly inhibited peroxidation of the photoreceptor cell outer segments induced by visible light in the presence of lipofuscin granules from the human retinal pigment epithelium, as well as suppressed iron/ascorbate-mediated lipid peroxidation. The obtained results are important for understanding the biological functions of ommochromes in invertebrates and identifying invertebrate species that could be used as efficient sources of ommochromes for pharmacological preparations to prevent and treat pathologies associated with the oxidative stress development.
Collapse
Affiliation(s)
- A E Dontsov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - N L Sakina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - M A Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - A I Bastrakov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, 119071, Russia
| | - I G Bastrakova
- All-Russian Research Institute of Silviculture and Mechanization of Forestry, Pushkino, Moscow Region, 141200, Russia
| | - A A Zagorinsky
- Russian Forest Protection Center, Pushkino, Moscow Region, 141202, Russia
| | - N A Ushakova
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, 119071, Russia
| | - T B Feldman
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - M A Ostrovsky
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia. .,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| |
Collapse
|
6
|
Zhuravleva YS, Morozova OB, Tsentalovich YP, Sherin PS. Proton-coupled electron transfer as the mechanism of reaction between triplet state of kynurenic acid and tryptophan. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Savina ED, Tsentalovich YP, Sherin PS. UV-A induced damage to lysozyme via Type I photochemical reactions sensitized by kynurenic acid. Free Radic Biol Med 2020; 152:482-493. [PMID: 31751763 DOI: 10.1016/j.freeradbiomed.2019.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Abstract
In this work we studied the mechanisms of Type I photodamage to a model protein, hen egg white lysozyme (HEWL), sensitized by kynurenic acid (KNA) - one of the most efficient photosensitizers of the human eye lens present in trace amounts within tissue. The kynurenic acid radical, KNA•-, formed in the quenching of triplet KNA by HEWL, can be readily oxidized by molecular oxygen with the formation of superoxide anion radical O2•-. This leads to two ways of damage to proteins: either via the direct reactions between KNA•- and HEWL• radicals (Type Ia) or via the reactions between superoxide anion O2•- and HEWL• radicals (Type Ib). Our results demonstrate significant degradation of the protein during Type Ia photolysis with the formation of various oligomeric and oxygenated forms of HEWL and several deoxygenated products of KNA. Liquid chromatography-mass spectrometry analysis revealed the cross-linking of HEWL via tryptophan (Trp62) and tyrosine (Tyr23) residues and, for the first time, the covalent binding of KNA to protein via tryptophan (Trp62 and Trp123) residues. It was found that Type Ib reactions lead to substantially smaller damage to HEWL; the degradation quantum yields (Φdeg) of HEWL are 1.3 ± 0.3% and 0.12 ± 0.03% for Type Ia and Ib photolyses, respectively. Low Φdeg values for both types of photolysis indicate the Back Electron Transfer (BET) with the restoration of initial reagents as the main radical decay path with significantly higher BET efficiency in the case of Type Ib reactions. Therefore, in essentially oxygen-free tissues like the eye lens, the direct radical reactions via Type Ia mechanism could induce significantly larger damage to proteins, leading to their cross-linking and oxidation. The accumulation of these modifications can cause the development of various diseases, in particular, cataracts in the eye lens.
Collapse
Affiliation(s)
- Ekaterina D Savina
- International Tomography Center SB RAS, Institutskaya str. 3A, 630090, Novosibirsk, Russia; Novosibirsk State University, Pirogova str. 2, 630090, Novosibirsk, Russia
| | - Yuri P Tsentalovich
- International Tomography Center SB RAS, Institutskaya str. 3A, 630090, Novosibirsk, Russia; Novosibirsk State University, Pirogova str. 2, 630090, Novosibirsk, Russia
| | - Peter S Sherin
- International Tomography Center SB RAS, Institutskaya str. 3A, 630090, Novosibirsk, Russia; Novosibirsk State University, Pirogova str. 2, 630090, Novosibirsk, Russia.
| |
Collapse
|
8
|
Zhuravleva YS, Tsentalovich YP. Acid-alkaline properties of triplet state and radical of kynurenic acid. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.07.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Sherin PS, Tsentalovich YP, Vauthey E, Benassi E. Ultrafast excited state decay of natural UV filters: from intermolecular hydrogen bonds to a conical intersection. Phys Chem Chem Phys 2018; 20:15074-15085. [DOI: 10.1039/c8cp02183j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unsaturated bond in the side chain leads to the ultrafast decay of the excited statesviaa conical intersection independent of solvent properties.
Collapse
Affiliation(s)
- Peter S. Sherin
- International Tomography Center SB RAS
- Novosibirsk
- Russia
- Novosibirsk State University
- Novosibirsk
| | - Yuri P. Tsentalovich
- International Tomography Center SB RAS
- Novosibirsk
- Russia
- Novosibirsk State University
- Novosibirsk
| | - Eric Vauthey
- Department of Physical Chemistry
- University of Geneva
- Geneva
- Switzerland
| | - Enrico Benassi
- Novosibirsk State University
- Novosibirsk
- Russia
- School of Science and Technology
- Nazarbayev University
| |
Collapse
|
10
|
Sormacheva ED, Sherin PS, Tsentalovich YP. Dimerization and oxidation of tryptophan in UV-A photolysis sensitized by kynurenic acid. Free Radic Biol Med 2017; 113:372-384. [PMID: 29024806 DOI: 10.1016/j.freeradbiomed.2017.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 11/24/2022]
Abstract
Photoinduced generation of radicals in the eye lens may play an important role in the modification of proteins leading to their coloration, aggregation, and insolubilization. The radicals can be formed via the reactions of photoexcited endogenous chromophores of the human lens with lens proteins, in particular with tryptophan residues. In the present work we studied the reactions induced by UV-A (315-400nm) light between kynurenic acid (KNA), an effective photosensitizer present in the human lens, and N-acetyl-L-tryptophan (NTrpH) under aerobic and anaerobic conditions. Our results show that the reaction mechanism strongly depends on the presence of oxygen in solution. Under aerobic conditions, the generation of singlet oxygen is the major channel of the effective NTrpH oxidation. In argon-bubbled solutions, the quenching of triplet KNA by NTrpH results in the formation of KNA•- and NTrp• radicals. Under laser pulse irradiation, when the radical concentration is high, the main pathway of the radical decay is the back electron transfer with the restoration of initial reagents. Other reactions include (i) the radical combination yielding NTrp dimers and (ii) the oxygen atom transfer from KNA•- to NTrp• with the formation of oxidized NTrp species and deoxygenated KNA products. In continuous-wave photolysis, even trace amounts of molecular oxygen are sufficient to oxidize the majority of KNA•- radicals with the rate constant of (2.0 ± 0.2) × 109M-1s-1, leading to the restoration of KNA and the formation of superoxide radical O2•-. The latter reacts with NTrp• via either the radical combination to form oxidized NTrp (minor pathway), or the electron transfer to restore NTrpH in the ground state (major pathway). As the result, the quantum yields of the starting compound decomposition under continuous-wave anaerobic photolysis are rather low: 1.6% for NTrpH and 0.02% for KNA. The photolysis of KNA with alpha-crystallin yields the same deoxygenated KNA products as the photolysis of KNA with NTrpH, indicating the similarity of the photolysis mechanisms. Thus, inside the eye lens KNA can sensitize both protein photooxidation and protein covalent cross-linking with the minor self-degradation. This may play an important role in the lens protein modifications during the normal aging and cataract development.
Collapse
Affiliation(s)
- Ekaterina D Sormacheva
- International Tomography Center SB RAS, Institutskaya str. 3A, 630090 Novosibisrk, Russia
| | - Peter S Sherin
- International Tomography Center SB RAS, Institutskaya str. 3A, 630090 Novosibisrk, Russia; Novosibirsk State University, Pirogova str. 2, 630090 Novosibisrk, Russia.
| | - Yuri P Tsentalovich
- International Tomography Center SB RAS, Institutskaya str. 3A, 630090 Novosibisrk, Russia; Novosibirsk State University, Pirogova str. 2, 630090 Novosibisrk, Russia
| |
Collapse
|
11
|
Influence of medium viscosity on photophysical properties of kynurenic acid and kynurenine yellow. Russ Chem Bull 2017. [DOI: 10.1007/s11172-017-1727-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Effect of the spacer length and nitroxide sterical shielding upon photostability of spin-labeled kynurenines. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2016.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Sherin PS, Zelentsova EA, Sormacheva ED, Yanshole VV, Duzhak TG, Tsentalovich YP. Aggregation of α-crystallins in kynurenic acid-sensitized UVA photolysis under anaerobic conditions. Phys Chem Chem Phys 2016; 18:8827-39. [DOI: 10.1039/c5cp06693j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extensive protein aggregation is the major outcome of kynurenic acid-sensitized photolysis of α-crystallin under anaerobic conditions. The main lens antioxidants ascorbate and glutathione effectively inhibit the protein aggregation.
Collapse
Affiliation(s)
- P. S. Sherin
- International Tomography Center of Siberian Branch of Russian Academy of Science
- Novosibirsk
- Russia
- Novosibirsk State University
- Novosibirsk
| | - E. A. Zelentsova
- International Tomography Center of Siberian Branch of Russian Academy of Science
- Novosibirsk
- Russia
- Novosibirsk State University
- Novosibirsk
| | - E. D. Sormacheva
- International Tomography Center of Siberian Branch of Russian Academy of Science
- Novosibirsk
- Russia
- Novosibirsk State University
- Novosibirsk
| | - V. V. Yanshole
- International Tomography Center of Siberian Branch of Russian Academy of Science
- Novosibirsk
- Russia
- Novosibirsk State University
- Novosibirsk
| | - T. G. Duzhak
- International Tomography Center of Siberian Branch of Russian Academy of Science
- Novosibirsk
- Russia
- Novosibirsk State University
- Novosibirsk
| | - Yu. P. Tsentalovich
- International Tomography Center of Siberian Branch of Russian Academy of Science
- Novosibirsk
- Russia
- Novosibirsk State University
- Novosibirsk
| |
Collapse
|
14
|
Tsentalovich YP, Verkhovod TD, Yanshole VV, Kiryutin AS, Yanshole LV, Fursova AZ, Stepakov DA, Novoselov VP, Sagdeev RZ. Metabolomic composition of normal aged and cataractous human lenses. Exp Eye Res 2015; 134:15-23. [PMID: 25773987 DOI: 10.1016/j.exer.2015.03.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/06/2015] [Accepted: 03/11/2015] [Indexed: 10/23/2022]
Abstract
Quantitative metabolomic profiles of normal and cataractous human lenses were obtained with the combined use of high-frequency nuclear magnetic resonance (NMR) and high-performance liquid chromatography with high-resolution mass-spectrometric detection (LC-MS) methods. The concentration of more than fifty metabolites in the lens cortex and nucleus has been determined. For the majority of metabolites, their concentrations in the lens cortex and nucleus are similar, which confirms low metabolic activity in the lens core. The difference between the metabolite levels in the cortex and nucleus of the normal lens is observed for antioxidants and UV filters, which demonstrates the activity of redox processes in the lens. A huge difference is found between the metabolomic compositions of normal and age-matched cataractous lenses: the concentrations of almost all metabolites in the normal lens are higher than in the cataractous one. The most pronounced difference is observed for compounds playing a key role in the lens cell protection and metabolic activity, including antioxidants, UV filters, and osmolytes. The results obtained imply that the development of the age-related cataracts might originate from the metabolic dysfunction of the lens epithelial cells.
Collapse
Affiliation(s)
- Yuri P Tsentalovich
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia.
| | - Timofey D Verkhovod
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia
| | - Vadim V Yanshole
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Alexey S Kiryutin
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia
| | - Lyudmila V Yanshole
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Anjella Zh Fursova
- Novosibirsk State Regional Clinical Hospital, Nemirovicha-Danchenko 130, Novosibirsk 630087, Russia
| | - Denis A Stepakov
- Novosibirsk Regional Clinical Bureau of Forensic Medical Examination, Nemirovicha-Danchenko 134, Novosibirsk 630087, Russia
| | - Vladimir P Novoselov
- Novosibirsk Regional Clinical Bureau of Forensic Medical Examination, Nemirovicha-Danchenko 134, Novosibirsk 630087, Russia
| | - Renad Z Sagdeev
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| |
Collapse
|
15
|
Yanshole VV, Snytnikova OA, Kiryutin AS, Yanshole LV, Sagdeev RZ, Tsentalovich YP. Metabolomics of the rat lens: a combined LC-MS and NMR study. Exp Eye Res 2014; 125:71-8. [PMID: 24910091 DOI: 10.1016/j.exer.2014.05.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/16/2014] [Accepted: 05/27/2014] [Indexed: 11/25/2022]
Abstract
This work is the first comprehensive report on the quantitative metabolomic composition of the rat lens. Quantitative metabolomic profiles of lenses were acquired with the combined use of high-frequency nuclear magnetic resonance (NMR) and high-performance liquid chromatography with high-resolution mass-spectrometric detection (LC-MS) methods. More than forty low molecular weight compounds found in the lens have been reliably identified and quantified. The most abundant metabolites in the 3-month-old Wistar rat lens are taurine, hypotaurine, lactate, phosphocholine and reduced glutathione. The analysis of age-related changes in the lens metabolomic composition shows a gradual decrease of the content of most metabolites. This decrease is the most pronounced between 1 and 3 months, which probably corresponds to the completion of the lens maturation in one-month-old rats and to the high rate of the young lens growth. The enhanced levels of tryptophan, tyrosine, carnitine, glycerophosphate, GSH and GSSG were found in lenses of senescence-accelerated OXYS rats; for some metabolites, this effect may probably be attributed to the compensatory response to oxidative stress.
Collapse
Affiliation(s)
- Vadim V Yanshole
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Olga A Snytnikova
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia
| | - Alexey S Kiryutin
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia
| | - Lyudmila V Yanshole
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia
| | - Renad Z Sagdeev
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia
| | - Yuri P Tsentalovich
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia.
| |
Collapse
|
16
|
Linetsky M, Raghavan CT, Johar K, Fan X, Monnier VM, Vasavada AR, Nagaraj RH. UVA light-excited kynurenines oxidize ascorbate and modify lens proteins through the formation of advanced glycation end products: implications for human lens aging and cataract formation. J Biol Chem 2014; 289:17111-23. [PMID: 24798334 DOI: 10.1074/jbc.m114.554410] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Advanced glycation end products (AGEs) contribute to lens protein pigmentation and cross-linking during aging and cataract formation. In vitro experiments have shown that ascorbate (ASC) oxidation products can form AGEs in proteins. However, the mechanisms of ASC oxidation and AGE formation in the human lens are poorly understood. Kynurenines are tryptophan oxidation products produced from the indoleamine 2,3-dioxygenase (IDO)-mediated kynurenine pathway and are present in the human lens. This study investigated the ability of UVA light-excited kynurenines to photooxidize ASC and to form AGEs in lens proteins. UVA light-excited kynurenines in both free and protein-bound forms rapidly oxidized ASC, and such oxidation occurred even in the absence of oxygen. High levels of GSH inhibited but did not completely block ASC oxidation. Upon UVA irradiation, pigmented proteins from human cataractous lenses also oxidized ASC. When exposed to UVA light (320-400 nm, 100 milliwatts/cm(2), 45 min to 2 h), young human lenses (20-36 years), which contain high levels of free kynurenines, lost a significant portion of their ASC content and accumulated AGEs. A similar formation of AGEs was observed in UVA-irradiated lenses from human IDO/human sodium-dependent vitamin C transporter-2 mice, which contain high levels of kynurenines and ASC. Our data suggest that kynurenine-mediated ASC oxidation followed by AGE formation may be an important mechanism for lens aging and the development of senile cataracts in humans.
Collapse
Affiliation(s)
- Mikhail Linetsky
- From the Departments of Chemistry, Ophthalmology and Visual Sciences,
| | | | - Kaid Johar
- the Iladevi Cataract and IOL Research Center, Gurukul Road, Memnagar, Ahmedabad, Gujarat-380052, India
| | | | - Vincent M Monnier
- Pathology, and Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106 and
| | - Abhay R Vasavada
- the Iladevi Cataract and IOL Research Center, Gurukul Road, Memnagar, Ahmedabad, Gujarat-380052, India
| | | |
Collapse
|
17
|
Hamdy MS, Scott EL, Carr RH, Sanders JPM. A Novel Photocatalytic Conversion of Tryptophan to Kynurenine Using Black Light as a Light Source. Catal Letters 2012. [DOI: 10.1007/s10562-012-0775-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
Tsentalovich YP, Yanshole VV, Polienko YF, Morozov SV, Grigor’ev IA. Deactivation of Excited States of Kynurenine Covalently Linked to Nitroxides. Photochem Photobiol 2010; 87:22-31. [DOI: 10.1111/j.1751-1097.2010.00841.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Sherin PS, Grilj J, Kopylova LV, Yanshole VV, Tsentalovich YP, Vauthey E. Photophysics and Photochemistry of the UV Filter Kynurenine Covalently Attached to Amino Acids and to a Model Protein. J Phys Chem B 2010; 114:11909-19. [DOI: 10.1021/jp104485k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peter S. Sherin
- International Tomography Center SB RAS, Institutskaya str. 3a, 630090 Novosibirsk, Russia, and Department of Physical Chemistry, University of Geneva, quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Jakob Grilj
- International Tomography Center SB RAS, Institutskaya str. 3a, 630090 Novosibirsk, Russia, and Department of Physical Chemistry, University of Geneva, quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Lyudmila V. Kopylova
- International Tomography Center SB RAS, Institutskaya str. 3a, 630090 Novosibirsk, Russia, and Department of Physical Chemistry, University of Geneva, quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Vadim V. Yanshole
- International Tomography Center SB RAS, Institutskaya str. 3a, 630090 Novosibirsk, Russia, and Department of Physical Chemistry, University of Geneva, quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Yuri P. Tsentalovich
- International Tomography Center SB RAS, Institutskaya str. 3a, 630090 Novosibirsk, Russia, and Department of Physical Chemistry, University of Geneva, quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Eric Vauthey
- International Tomography Center SB RAS, Institutskaya str. 3a, 630090 Novosibirsk, Russia, and Department of Physical Chemistry, University of Geneva, quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| |
Collapse
|
20
|
Yanshole VV, Sherin PS, Gritsan NP, Snytnikova OA, Mamatyuk VI, Grilj J, Vauthey E, Sagdeev RZ, Tsentalovich YP. Photoinduced tautomeric transformations of xanthurenic acid. Phys Chem Chem Phys 2010; 12:9502-15. [DOI: 10.1039/c000735h] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Sherin PS, Grilj J, Tsentalovich YP, Vauthey E. Ultrafast Excited-State Dynamics of Kynurenine, a UV Filter of the Human Eye. J Phys Chem B 2009; 113:4953-62. [DOI: 10.1021/jp900541b] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peter S. Sherin
- International Tomography Center SB RAS, Institutskaya 3a, 630090 Novosibirsk, Russia, and Department of Physical Chemistry, University of Geneva, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Jakob Grilj
- International Tomography Center SB RAS, Institutskaya 3a, 630090 Novosibirsk, Russia, and Department of Physical Chemistry, University of Geneva, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Yuri P. Tsentalovich
- International Tomography Center SB RAS, Institutskaya 3a, 630090 Novosibirsk, Russia, and Department of Physical Chemistry, University of Geneva, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Eric Vauthey
- International Tomography Center SB RAS, Institutskaya 3a, 630090 Novosibirsk, Russia, and Department of Physical Chemistry, University of Geneva, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
22
|
Sherin PS, Gritsan NP, Tsentalovich YP. Experimental and quantum chemical study of photochemical properties of 4-hydroxyquinoline. Photochem Photobiol Sci 2009; 8:1550-7. [DOI: 10.1039/b9pp00017h] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|