1
|
Gening ML, Polyanskaya AV, Kuznetsov AN, Titova AD, Yudin VI, Yashunskiy DV, Tsvetkov YE, Yudina ON, Krylov VB, Nifantiev NE. Characterization of Carbohydrate Specificity of Monoclonal Antibodies to Fungal Antigenic Markers Using Biotinylated Oligosaccharides as Coating Antigens. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:2194-2203. [PMID: 39865032 DOI: 10.1134/s0006297924120083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 01/28/2025]
Abstract
Mannan and β-(1→3)-glucan are two polysaccharide markers that are characteristic for a number of fungal pathogens, including Candida albicans, which is the most common cause of invasive mycoses in humans. In this study, we examined epitope specificity of two monoclonal antibodies, CM532 and FG70, which recognize certain oligosaccharide fragments of these fungal polysaccharides. Using a panel of biotinylated oligosaccharides as coating antigens, we found that the CM532 antibody obtained by immunization with the pentamannoside β-Man-(1→2)-β-Man-(1→2)-α-Man-(1→2)-α-Man-(1→2)-α-Man KLH conjugate, selectively recognizes the trisaccharide β-Man-(1→2)-α-Man-(1→2)-α-Man epitope. Another antibody, FG70, obtained by immunization with heptaglucan β-Glc-(1→3)-[β-Glc-(1→3)]5-β-Glc conjugate with KLH, interacts with the linear β-(1→3)-linked pentaglucoside fragment, and presence of 3,6-branches within this epitope does not significantly affect the interaction efficiency. The data obtained indicate that the monoclonal antibodies under consideration could be used to create effective diagnostics for detection of fungal infections, which are not available at present.
Collapse
Affiliation(s)
- Marina L Gening
- Laboratory of Synthetic Glycovaccines, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alina V Polyanskaya
- Laboratory of Synthetic Glycovaccines, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anton N Kuznetsov
- Laboratory of Synthetic Glycovaccines, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexandra D Titova
- Laboratory of Synthetic Glycovaccines, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Viktor I Yudin
- Laboratory of Synthetic Glycovaccines, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Dmitry V Yashunskiy
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Yury E Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Olga N Yudina
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Vadim B Krylov
- Laboratory of Synthetic Glycovaccines, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
2
|
Solovev AS, Tsarapaev PV, Krylov VB, Yashunsky DV, Kushlinskii NE, Nifantiev NE. A repertoire of anti-mannan Candida albicans antibodies in the blood sera of healthy donors. Russ Chem Bull 2023. [DOI: 10.1007/s11172-023-3731-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
3
|
Krylov VB, Solovev AS, Puchkin IA, Yashunsky DV, Antonets AV, Kutsevalova OY, Nifantiev NE. Reinvestigation of Carbohydrate Specificity of EBCA-1 Monoclonal Antibody Used for the Detection of Candida Mannan. J Fungi (Basel) 2021; 7:jof7070504. [PMID: 34202579 PMCID: PMC8303853 DOI: 10.3390/jof7070504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 01/10/2023] Open
Abstract
Monoclonal antibody EBCA-1 is used in the sandwich immune assay for the detection of circulating Candida mannan in blood sera samples for the diagnosis of invasive candidiasis. To reinvestigate carbohydrate specificity of EBCA-1, a panel of biotinylated oligosaccharides structurally related to distinct fragments of Candida mannan were loaded onto a streptavidin-coated plate to form a glycoarray. Its use demonstrated that EBCA-1 recognizes the trisaccharide β-Man-(1→2)-α-Man-(1→2)-α-Man and not homo-α-(1→2)-linked pentamannoside, as was reported previously.
Collapse
Affiliation(s)
- Vadim B. Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciencesa, Leninsky Prospect 47, 119991 Moscow, Russia; (V.B.K.); (A.S.S.); (I.A.P.); (D.V.Y.); (A.V.A.)
| | - Arsenii S. Solovev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciencesa, Leninsky Prospect 47, 119991 Moscow, Russia; (V.B.K.); (A.S.S.); (I.A.P.); (D.V.Y.); (A.V.A.)
| | - Ilya A. Puchkin
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciencesa, Leninsky Prospect 47, 119991 Moscow, Russia; (V.B.K.); (A.S.S.); (I.A.P.); (D.V.Y.); (A.V.A.)
| | - Dmitry V. Yashunsky
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciencesa, Leninsky Prospect 47, 119991 Moscow, Russia; (V.B.K.); (A.S.S.); (I.A.P.); (D.V.Y.); (A.V.A.)
| | - Anna V. Antonets
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciencesa, Leninsky Prospect 47, 119991 Moscow, Russia; (V.B.K.); (A.S.S.); (I.A.P.); (D.V.Y.); (A.V.A.)
- Medical Genetic Center, Rostov-on-Don State Medical University, Nakhichevansky, 29, 344022 Rostov-on-Don, Russia
| | - Olga Y. Kutsevalova
- National Medical Research Center of Oncology, Laboratory of Clinical Microbiology, 14 Liniya Str., 63, 344037 Rostov-on-Don, Russia;
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciencesa, Leninsky Prospect 47, 119991 Moscow, Russia; (V.B.K.); (A.S.S.); (I.A.P.); (D.V.Y.); (A.V.A.)
- Correspondence: ; Tel.: +7-499-135-87-84
| |
Collapse
|
4
|
Paulovičová E, Paulovičová L, Farkaš P, Karelin AA, Tsvetkov YE, Krylov VB, Nifantiev NE. Importance of Candida Antigenic Factors: Structure-Driven Immunomodulation Properties of Synthetically Prepared Mannooligosaccharides in RAW264.7 Macrophages. Front Cell Infect Microbiol 2019; 9:378. [PMID: 31788453 PMCID: PMC6856089 DOI: 10.3389/fcimb.2019.00378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022] Open
Abstract
The incidence and prevalence of serious fungal infections is rising, especially in immunosuppressed individuals. Moreover, co-administration of antibiotics and immunosuppressants has driven the emergence of new multidrug-resistant pathogens. The significant increase of multidrug-resistant pathogens, together with their ability to form biofilms, is associated with morbidity and mortality. Research on novel synthetically prepared immunomodulators as potential antifungal immunotherapeutics is of serious interest. Our study demonstrated the immunobiological activity of synthetically prepared biotinylated mannooligosaccharides mimicking Candida antigenic factors using RAW264.7 macrophages. Macrophage exposure to the set of eight structurally different mannooligosaccharides induced a release of Th1, Th2, Th17, and Treg cytokine signature patterns. The observed immune responses were tightly associated with structure, dose, exposure time, and selected signature cytokines. The viability/cytotoxicity of the mannooligosaccharide formulas was assessed based on cell proliferation. The structure-based immunomodulatory activity of the formulas was evaluated with respect to the length, branching and conformation of the various formulas. Glycoconjugate formulas with terminal β-mannosyl-units tended to be more potent in terms of Candida relevant cytokines IL-12 p70, IL-17, GM-CSF, IL-6, and TNFα induction and cell proliferation, and this tendency was associated with structural differences between the studied glycoconjugate formulas. The eight tested mannooligosaccharide conjugates can be considered potential in vitro immunomodulative agents suitable for in vitro Candida diagnostics or prospectively for subcellular anti-Candida vaccine design.
Collapse
Affiliation(s)
- Ema Paulovičová
- Cell Culture & Immunology Laboratory, Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Paulovičová
- Cell Culture & Immunology Laboratory, Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pavol Farkaš
- Cell Culture & Immunology Laboratory, Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alexander A Karelin
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yury E Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vadim B Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Xu H, Chen L, Zhang Q, Feng Y, Zu Y, Chai Y. Stereoselective β-Mannosylation with 2,6-Lactone-bridged Thiomannosyl Donor by Remote Acyl Group Participation. Chem Asian J 2019; 14:1424-1428. [PMID: 30831004 DOI: 10.1002/asia.201801740] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Indexed: 11/10/2022]
Abstract
Stereoselective β-mannosylation has been recognized as one of the greatest challenges of carbohydrate chemistry. Herein, we described a practical method for stereoselective construction of β-mannosides by using a 2,6-lactone-bridged thiomannosyl donor through the remote acyl-group participation as well as the steric effect of O-4 substituent. The two effects are enabled through the conversion of a regular mannopyranosyl 4 C1 conformation into a 2,6-lactone bridged conformation. The lactone donor could be readily prepared in three steps on a gram scale and the β-mannosylation proceeded smoothly with high stereoselectivity for primary, secondary and tertiary alcohol acceptors. In addition, this strategy was successfully applied to the synthesis of a naturally occurring trisaccharide.
Collapse
Affiliation(s)
- Huanfang Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, Shaanxi, 710119, China
| | - Long Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, Shaanxi, 710119, China
| | - Qi Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, Shaanxi, 710119, China
| | - Yingle Feng
- Key Laboratory of Applied Surface and Colloid Chemistry, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, Shaanxi, 710119, China
| | - Yujia Zu
- Key Laboratory of Applied Surface and Colloid Chemistry, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, Shaanxi, 710119, China
| | - Yonghai Chai
- Key Laboratory of Applied Surface and Colloid Chemistry, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, Shaanxi, 710119, China
| |
Collapse
|
6
|
Krylov VB, Nifantiev NE. Synthetic Oligosaccharides Mimicking Fungal Cell Wall Polysaccharides. Curr Top Microbiol Immunol 2019; 425:1-16. [PMID: 31875266 DOI: 10.1007/82_2019_187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cell wall of pathogenic fungi is highly important for the development of fungal infections and is the first cellular component to interact with the host immune system. The fungal cell wall is mainly built up of different polysaccharides representing ligands for pattern recognition receptors (PRRs) on immune cells and antibodies. Purified fungal polysaccharides are not easily available; in addition, they are structurally heterogenic and have wide molecular weight distribution that limits the possibility to use natural polysaccharides to assess the structure of their active determinants. The synthetic oligosaccharides of definite structure representing distinct polysaccharide fragments are indispensable tools for a variety of biological investigations and represent an advantageous alternative to natural polysaccharides. The attachment of a spacer group to these oligosaccharides permits their efficient transformation into immunogenic glycoconjugates as well as their immobilization on plates or microbeads. Herein, we summarize current information on synthetic availability of the variety of oligosaccharides related to main types of fungal cell wall components: galactomannan, α- and β-mannan, α- and β-(1 → 3)-glucan, chitin, chitosan, and others. These data are supplemented with published results of biochemical and immunological applications of synthetic oligosaccharides as molecular probes especially as the components of thematic glycoarrays suitable for characterization of anti-polysaccharide antibodies and cellular lectins or PRRs.
Collapse
Affiliation(s)
- Vadim B Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991, Moscow, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991, Moscow, Russia.
| |
Collapse
|
7
|
Vereshchagin AN. Classical and interdisciplinary approaches to the design of organic and hybrid molecular systems. Russ Chem Bull 2018. [DOI: 10.1007/s11172-017-1950-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
Krylov VB, Paulovičová L, Paulovičová E, Tsvetkov YE, Nifantiev NE. Recent advances in the synthesis of fungal antigenic oligosaccharides. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2016-1011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AbstractThe driving force for the constant improvement and development of new synthetic methodologies in carbohydrate chemistry is a growing demand for biologically important oligosaccharide ligands and neoglycoconjugates thereof for numerous biochemical investigations such as cell-to-pathogen interactions, immune response, cell adhesion, etc. Here we report our syntheses of the spacer-armed antigenic oligosaccharides related to three groups of the polysaccharides of the fungal cell-wall including α- and β-mannan, α- and β-glucan and galactomannan chains, which include new rationally designed synthetic blocks, efficient solutions for the stereoselective construction of glycoside bonds, and novel strategy for preparation of furanoside-containing oligosaccharides based on recently discovered pyranoside-into-furanoside (PIF) rearrangement.
Collapse
Affiliation(s)
- Vadim B. Krylov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Lucia Paulovičová
- Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovakia Slovak Academy of Sciences, Dubravská cesta 9, 84538 Bratislava, Slovakia
| | - Ema Paulovičová
- Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovakia Slovak Academy of Sciences, Dubravská cesta 9, 84538 Bratislava, Slovakia
| | - Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia,
| |
Collapse
|
9
|
Rational design of complex molecular structures starting from readily available precursors. Russ Chem Bull 2017. [DOI: 10.1007/s11172-016-1470-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|