1
|
Bacchetti F, Schito AM, Milanese M, Castellaro S, Alfei S. Anti Gram-Positive Bacteria Activity of Synthetic Quaternary Ammonium Lipid and Its Precursor Phosphonium Salt. Int J Mol Sci 2024; 25:2761. [PMID: 38474008 DOI: 10.3390/ijms25052761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Organic ammonium and phosphonium salts exert excellent antimicrobial effects by interacting lethally with bacterial membranes. Particularly, quaternary ammonium lipids have demonstrated efficiency both as gene vectors and antibacterial agents. Here, aiming at finding new antibacterial devices belonging to both classes, we prepared a water-soluble quaternary ammonium lipid (6) and a phosphonium salt (1) by designing a synthetic path where 1 would be an intermediate to achieve 6. All synthesized compounds were characterized by Fourier-transform infrared spectroscopy and Nuclear Magnetic Resonance. Additionally, potentiometric titrations of NH3+ groups 1 and 6 were performed to further confirm their structure by determining their experimental molecular weight. The antibacterial activities of 1 and 6 were assessed first against a selection of multi-drug-resistant clinical isolates of both Gram-positive and Gram-negative species, observing remarkable antibacterial activity of both compounds against Gram-positive isolates of Enterococcus and Staphylococcus genus. Further investigations on a wider variety of strains of these species confirmed the remarkable antibacterial effects of 1 and 6 (MICs = 4-16 and 4-64 µg/mL, respectively), while 24 h-time-killing experiments carried out with 1 on different S. aureus isolates evidenced a bacteriostatic behavior. Moreover, both compounds 1 and 6, at the lower MIC concentration, did not show significant cytotoxic effects when exposed to HepG2 human hepatic cell lines, paving the way for their potential clinical application.
Collapse
Affiliation(s)
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
| | - Marco Milanese
- Department of Pharmacy, University of Genoa, 16148 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Sara Castellaro
- Department of Pharmacy, University of Genoa, 16148 Genoa, Italy
| | - Silvana Alfei
- Department of Pharmacy, University of Genoa, 16148 Genoa, Italy
| |
Collapse
|
2
|
Frolov NA, Seferyan MA, Valeev AB, Saverina EA, Detusheva EV, Vereshchagin AN. The Antimicrobial and Antibiofilm Potential of New Water-Soluble Tris-Quaternary Ammonium Compounds. Int J Mol Sci 2023; 24:10512. [PMID: 37445691 DOI: 10.3390/ijms241310512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
The invention and innovation of highly effective antimicrobials are always crucial tasks for medical and organic chemistry, especially at the current time, when there is a serious threat of shortages of effective antimicrobials following the pandemic. In the study presented in this article, we established a new approach to synthesizing three novel series of bioactive water-soluble tris-quaternary ammonium compounds using an optimized one-pot method, and we assessed their antimicrobial and antibiofilm potential. Five pathogenic microorganisms of the ESKAPE group, including highly resistant clinical isolates, were used as the test samples. Moreover, we highlighted the dependence of antibacterial activity from the hydrophilic-hydrophobic balance of the QACs and noted the significant performance of the desired products on biofilms with MBEC as low as 16 mg/L against bacteria and 8 mg/L against fungi. Particularly notable was the high activity against Pseudomonas aeruginosa and Acinetobacter baumannii, which are among the most resilient bacteria known. The presented work will provide useful insights for future research on the topic.
Collapse
Affiliation(s)
- Nikita A Frolov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Mary A Seferyan
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Anvar B Valeev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
- Higher Chemical College of the Russian Academy of Sciences, D. Mendeleev University of Chemical Technology of Russia, Miusskaya Square 9, 125047 Moscow, Russia
| | - Evgeniya A Saverina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
- Laboratory of Biologically Active Compounds and Biocomposites, Tula State University, Lenin Prospect. 92, 300012 Tula, Russia
| | - Elena V Detusheva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Anatoly N Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| |
Collapse
|
3
|
Seferyan MA, Saverina EA, Frolov NA, Detusheva EV, Kamanina OA, Arlyapov VA, Ostashevskaya II, Ananikov VP, Vereshchagin AN. Multicationic Quaternary Ammonium Compounds: A Framework for Combating Bacterial Resistance. ACS Infect Dis 2023; 9:1206-1220. [PMID: 37161274 DOI: 10.1021/acsinfecdis.2c00546] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
During previous stages of research, high biocidal activity toward microorganism archival strains has been used as the main indicator in the development of new antiseptic formulations. Although this factor remains one of the most important characteristics of biocide efficiency, the scale of antimicrobial resistance spread causes serious concern. Therefore, focus shifts toward the development of formulations with a stable effect even in the case of prolonged contact with pathogens. Here, we introduce an original isocyanuric acid alkylation method with the use of available alkyl dichlorides, which opened access to a wide panel of multi-QACs with alkyl chains of various lengths between the nitrogen atoms of triazine and pyridine cycles. We used a complex approach for the resulting series of 17 compounds, including their antibiofilm properties, bacterial tolerance development, and antimicrobial activity toward multiresistant pathogenic strains. As a result of these efforts, available compounds have shown higher levels of antibacterial activity against ESKAPE pathogens than widely used commercial QACs. Hit compounds possessed high activity toward clinical bacterial strains and have also demonstrated a long-term biocidal effect without significant development of microorganism tolerance. The overall results indicated a high level of antibacterial activity and the broad application prospects of multi-QACs based on isocyanuric acid against multiresistant bacterial strains.
Collapse
Affiliation(s)
- Mary A Seferyan
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
| | - Evgeniya A Saverina
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
- Tula State University, Lenin pr. 92, 300012 Tula, Russia
| | - Nikita A Frolov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
| | - Elena V Detusheva
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, 142279 Serpukhov, Moscow Region, Russia
| | | | | | - Irina I Ostashevskaya
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
- Faculty of Chemistry, Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
| | | |
Collapse
|
4
|
Toles ZEA, Wu A, Sanchez CA, Michaud ME, Thierer LM, Wuest WM, Minbiole KP. Double BAC and Triple BAC: A Systematic Analysis of the Disinfectant Properties of Multicationic Derivatives of Benzalkonium Chloride (BAC). ChemMedChem 2023; 18:e202300018. [PMID: 36823400 PMCID: PMC10192024 DOI: 10.1002/cmdc.202300018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 02/25/2023]
Abstract
Over the past decades, the shortcomings of established quaternary ammonium disinfectants have become increasingly clear. Although benzalkonium chloride (BAC) has enjoyed nearly a century of significantly protecting human health through surgical preparation, home use, and industrial applications, increasing levels of bacterial resistance have rendered it decreasingly effective. In light of more recent efforts that have informed us that multicationic amphiphilic disinfectants show both higher activity as well as diminished susceptibility to resistance, we embarked on the preparation of 27 multicationic QACs in an attempt to clearly document structure-activity relationships of next-generation BAC structures. Select biscationic BAC derivatives demonstrate single-digit micromolar activity against all seven bacteria tested and MIC values of 2- to 32-fold better than BAC. Particularly notable is the improvement against the more concerning bacteria like Acinetobacter baumannii and Pseudomonas aeruginosa, which pose a modern threat to legacy disinfectants like BAC. With simple synthetic paths, consistently high yields (averaging ∼80 %), and strong biological activity, potent structures with clear SAR trends and strong therapeutic indices have been established.
Collapse
Affiliation(s)
| | - Alice Wu
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | | | | | - Laura M. Thierer
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | - William M. Wuest
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
5
|
Shtyrlin NV, Vafina RM, Bulatova ES, Sapozhnikov SV, Kalugin LE, Garipov MR, Yandimirova AS, Gnezdilov OI, Nikishova TV, Agafonova MN, Kazakova RR, Shtyrlin YG. Synthesis and antibacterial activity of quaternary ammonium compounds based on 3-hydroxypyridine. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3695-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
6
|
Klimenko RV, Starykh SA, Baranin SV, Bubnov YN. Synthesis of 5,5-diallyl-substituted oxazolidin-2-one derivatives, based on reductive diallylation of amino acids. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3452-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Vereshchagin AN, Frolov NA, Egorova KS, Seitkalieva MM, Ananikov VP. Quaternary Ammonium Compounds (QACs) and Ionic Liquids (ILs) as Biocides: From Simple Antiseptics to Tunable Antimicrobials. Int J Mol Sci 2021; 22:6793. [PMID: 34202677 PMCID: PMC8268321 DOI: 10.3390/ijms22136793] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
Quaternary ammonium compounds (QACs) belong to a well-known class of cationic biocides with a broad spectrum of antimicrobial activity. They are used as essential components in surfactants, personal hygiene products, cosmetics, softeners, dyes, biological dyes, antiseptics, and disinfectants. Simple but varied in their structure, QACs are divided into several subclasses: Mono-, bis-, multi-, and poly-derivatives. Since the beginning of the 20th century, a significant amount of work has been dedicated to the advancement of this class of biocides. Thus, more than 700 articles on QACs were published only in 2020, according to the modern literature. The structural variability and diverse biological activity of ionic liquids (ILs) make them highly prospective for developing new types of biocides. QACs and ILs bear a common key element in the molecular structure-quaternary positively charged nitrogen atoms within a cyclic or acyclic structural framework. The state-of-the-art research level and paramount demand in modern society recall the rapid development of a new generation of tunable antimicrobials. This review focuses on the main QACs exhibiting antimicrobial and antifungal properties, commercial products based on QACs, and the latest discoveries in QACs and ILs connected with biocide development.
Collapse
Affiliation(s)
- Anatoly N. Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia; (N.A.F.); (K.S.E.); (M.M.S.)
| | | | | | | | - Valentine P. Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia; (N.A.F.); (K.S.E.); (M.M.S.)
| |
Collapse
|