1
|
Bell JF, Ravine MA, Caplinger MA, Schaffner JA, Brylow SM, Clark MJ, Peckham DA, Otjens PT, Price GJ, Rowell T, Ravine JW, Laramee JD, Juergens RC, Morgan W, Parker AG, Williams DA, Winhold A, Dibb S, Cisneros E, Walworth M, Zigo H, Auchterlonie L, Warner N, Bates-Tarasewicz H, Amiri N, Polanskey C, Mastrodemos N, Park RS, Alonge NK, Jaumann R, Binzel RP, McCoy TJ, Martin MG, Arthur PA. The Psyche Multispectral Imager Investigation: Characterizing the Geology, Topography, and Multispectral Properties of a Metal-Rich World. SPACE SCIENCE REVIEWS 2025; 221:47. [PMID: 40417382 PMCID: PMC12095399 DOI: 10.1007/s11214-025-01169-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/28/2025] [Indexed: 05/27/2025]
Abstract
The Psyche Multispectral Imager ("the Imager") is a payload system designed to directly achieve or to indirectly enable the key scientific goals and optical navigation requirements of NASA's Psyche mission, which will conduct the first up-close orbital investigation of the metal-rich Main Belt asteroid (16) Psyche. The Imager consists of a pair of block redundant cameras and electronics that are mounted inside the thermally controlled spacecraft body, with a view out the spacecraft -X panel that will be nadir-pointed during nominal asteroid orbital mapping operations. The two identical Camera Heads are connected to a separate Digital Electronics Assembly (DEA) box that interfaces to the spacecraft avionics and that provides power, commanding, data processing, and onboard image storage. The Imager system shares significant heritage with imaging instruments flown on the Mars Climate Orbiter, the Mars Science Laboratory and Mars 2020 rovers, and Juno. Each camera consists of a 1600 × 1200 photosensitive pixel charge-coupled device (CCD) detector and its associated electronics, a 9-position filter wheel assembly, a compact catadioptric f /2.9 telescope with a fixed focal length of 148 mm, and a sunshade to minimize stray and scattered light. The Imager CCD, filters, and optics enable broadband polychromatic (∼540 ± 250 nm) imaging plus narrowband imaging in 7 colors centered from 439 to 1015 nm. An additional neutral density filter enables protection of the CCD from direct solar illumination. Each camera has a field of view of 4.6° × 3.4° and an instantaneous field of view of 50 μrad/pixel that enables imaging of the asteroid at scales ranging from ∼35 m/pix from 700 km altitude to ∼4 m/pix at 75 km altitude. The primary camera ("Imager A") is pointed along the spacecraft -X axis, and the backup camera ("Imager B") is toed-out by 3.7° to potentially enable greater surface area coverage per unit time if both Imagers are operated simultaneously during some mission phases. Stereoscopic mapping is performed by observing the same surface regions with either camera over a range of off-nadir pointing angles.
Collapse
Affiliation(s)
- J. F. Bell
- School of Earth & Space Exploration, Arizona State University, Tempe, AZ USA
| | - M. A. Ravine
- Malin Space Science Systems, Inc., San Diego, CA USA
| | | | | | - S. M. Brylow
- Malin Space Science Systems, Inc., San Diego, CA USA
| | - M. J. Clark
- Malin Space Science Systems, Inc., San Diego, CA USA
| | - D. A. Peckham
- Malin Space Science Systems, Inc., San Diego, CA USA
| | - P. T. Otjens
- Malin Space Science Systems, Inc., San Diego, CA USA
| | - G. J. Price
- Malin Space Science Systems, Inc., San Diego, CA USA
| | - T. Rowell
- Malin Space Science Systems, Inc., San Diego, CA USA
| | - J. W. Ravine
- Malin Space Science Systems, Inc., San Diego, CA USA
| | | | | | - W. Morgan
- II-VI Optical Systems, Tustin, CA USA
| | | | - D. A. Williams
- School of Earth & Space Exploration, Arizona State University, Tempe, AZ USA
| | - A. Winhold
- School of Earth & Space Exploration, Arizona State University, Tempe, AZ USA
| | - S. Dibb
- School of Earth & Space Exploration, Arizona State University, Tempe, AZ USA
| | - E. Cisneros
- School of Earth & Space Exploration, Arizona State University, Tempe, AZ USA
| | - M. Walworth
- School of Earth & Space Exploration, Arizona State University, Tempe, AZ USA
| | - H. Zigo
- School of Earth & Space Exploration, Arizona State University, Tempe, AZ USA
| | - L. Auchterlonie
- School of Earth & Space Exploration, Arizona State University, Tempe, AZ USA
| | - N. Warner
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA USA
| | - H. Bates-Tarasewicz
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA USA
| | - N. Amiri
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA USA
| | - C. Polanskey
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA USA
| | - N. Mastrodemos
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA USA
| | - R. S. Park
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA USA
| | - N. K. Alonge
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA USA
| | - R. Jaumann
- Freie Universität Berlin, Institute of Geological Sciences, Berlin, Germany
| | - R. P. Binzel
- Massachusetts Institute of Technology, Cambridge, MA USA
| | | | - M. G. Martin
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA USA
| | - P. A. Arthur
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA USA
| |
Collapse
|
2
|
Knutsen EW, McConnochie TH, Lemmon M, Donaldson C, Francis R, Legett C, Viet SB, Soret L, Toledo D, Apéstigue V, Witasse O, Montmessin F, Jolitz R, Schneider NM, Tamppari L, Cousin A, Wiens RC, Maurice S, Bell JF, Forni O, Lasue J, Pilleri P, Bertrand T, Patel P, Schröder S, Curry S, Lee CO, Rahmati A. Detection of visible-wavelength aurora on Mars. SCIENCE ADVANCES 2025; 11:eads1563. [PMID: 40367182 PMCID: PMC12077521 DOI: 10.1126/sciadv.ads1563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 04/03/2025] [Indexed: 05/16/2025]
Abstract
Mars hosts various auroral processes despite the planet's tenuous atmosphere and lack of a global magnetic field. To date, all aurora observations have been at ultraviolet wavelengths from orbit. We describe the discovery of green visible-wavelength aurora, originating from the atomic oxygen line at 557.7 nanometers, detected with the SuperCam and Mastcam-Z instruments on the Mars 2020 Perseverance rover. Near-real-time simulations of a Mars-directed coronal mass ejection (CME) provided sufficient lead-time to schedule an observation with the rover. The emission was observed 3 days after the CME eruption, suggesting that the aurora was induced by particles accelerated by the moving shock front. To our knowledge, detection of aurora from a planetary surface other than Earth has never been reported, nor has visible aurora been observed at Mars. This detection demonstrates that auroral forecasting at Mars is possible, and that during events with higher particle precipitation, or under less dusty atmospheric conditions, aurorae will be visible to future astronauts.
Collapse
Affiliation(s)
| | | | | | | | - Raymond Francis
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Carey Legett
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Shayla B. Viet
- Norwegian University of Science and Technology, Trondheim, Norway
| | - Lauriane Soret
- Laboratoire de Physique Atmosphérique et Planétaire, STAR Institute, Université de Liège, Liege, Belgium
| | - Daniel Toledo
- Instituto Nacional De Técnica Aerospacial (INTA), Madrid, Spain
| | | | | | - Franck Montmessin
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Paris, France
| | - Rebecca Jolitz
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA
| | - Nicolas M. Schneider
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA
| | - Leslie Tamppari
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Agnès Cousin
- IRAP–Institut de recherche en astrophysique et planétologie, Toulouse, France
| | | | - Sylvestre Maurice
- IRAP–Institut de recherche en astrophysique et planétologie, Toulouse, France
| | - James F. Bell
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
| | - Olivier Forni
- IRAP–Institut de recherche en astrophysique et planétologie, Toulouse, France
| | - Jeremie Lasue
- IRAP–Institut de recherche en astrophysique et planétologie, Toulouse, France
| | - Paolo Pilleri
- IRAP–Institut de recherche en astrophysique et planétologie, Toulouse, France
| | | | - Priya Patel
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
- Mullard Space Science Laboratory, University College London, London, England
| | - Susanne Schröder
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institute of Optical Sensor Systems, Berlin, Germany
| | - Shannon Curry
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA
| | - Christina O. Lee
- Space Sciences Laboratory, University of California, Berkeley, CA, USA
| | - Ali Rahmati
- Space Sciences Laboratory, University of California, Berkeley, CA, USA
| |
Collapse
|
3
|
Schmidt ME, Kizovski TV, Liu Y, Hernandez-Montenegro JD, Tice MM, Treiman AH, Hurowitz JA, Klevang DA, Knight AL, Labrie J, Tosca NJ, VanBommel SJ, Benaroya S, Crumpler LS, Horgan BHN, Morris RV, Simon JI, Udry A, Yanchilina A, Allwood AC, Cable ML, Christian JR, Clark BC, Flannery DT, Heirwegh CM, Henley TLJ, Henneke J, Jones MWM, Orenstein BJ, Herd CDK, Randazzo N, Shuster D, Wadhwa M. Diverse and highly differentiated lava suite in Jezero crater, Mars: Constraints on intracrustal magmatism revealed by Mars 2020 PIXL. SCIENCE ADVANCES 2025; 11:eadr2613. [PMID: 39854469 PMCID: PMC11778241 DOI: 10.1126/sciadv.adr2613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025]
Abstract
The Jezero crater floor features a suite of related, iron-rich lavas that were examined and sampled by the Mars 2020 rover Perseverance, and whose textures, minerals, and compositions were characterized by the Planetary Instrument for X-ray Lithochemistry (PIXL). This suite, known as the Máaz formation (fm), includes dark-toned basaltic/trachy-basaltic rocks with intergrown pyroxene, plagioclase feldspar, and altered olivine and overlying trachy-andesitic lava with reversely zoned plagioclase phenocrysts in a K-rich groundmass. Feldspar thermal disequilibrium textures indicate that they were carried from their crustal staging area. Bulk and mafic minerals have very high FeO and low MgO to FeOtotal ratios, which are partially reproduced by thermodynamic models involving high-degree fractional crystallization of a gabbroic assemblage and possibly also assimilation of iron-rich basement. Together, these in situ constraints on petrogenesis provide a uniquely detailed record of intracrustal processes beneath Jezero crater during a time period not represented by Mars samples to date.
Collapse
Affiliation(s)
- Mariek E. Schmidt
- Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Tanya V. Kizovski
- Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Yang Liu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | - Michael M. Tice
- Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843, USA
| | | | - Joel A. Hurowitz
- Department of Geosciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - David A. Klevang
- Technical University of Denmark, DTU Space, Department of Measurement and Instrumentation, Kongens Lyngby, 2800, Denmark
| | - Abigail L. Knight
- McDonnell Center for the Space Sciences, Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Joshua Labrie
- Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Nicholas J. Tosca
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| | - Scott J. VanBommel
- McDonnell Center for the Space Sciences, Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Sophie Benaroya
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Larry S. Crumpler
- New Mexico Museum of Natural History and Science, Albuquerque, NM 87104, USA
| | - Briony H. N. Horgan
- Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | - Arya Udry
- Department of Geosciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Anastasia Yanchilina
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Abigail C. Allwood
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Morgan L. Cable
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - John R. Christian
- McDonnell Center for the Space Sciences, Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - David T. Flannery
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | | | - Thomas L. J. Henley
- Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Jesper Henneke
- Technical University of Denmark, DTU Space, Department of Measurement and Instrumentation, Kongens Lyngby, 2800, Denmark
| | - Michael W. M. Jones
- School of Chemistry and Physics and Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Brendan J. Orenstein
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Christopher D. K. Herd
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Nicholas Randazzo
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - David Shuster
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720-4767, USA
| | - Meenakshi Wadhwa
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
4
|
Weiss BP, Mansbach EN, Maurel C, Sprain CJ, Swanson-Hysell NL, Williams W. What we can learn about Mars from the magnetism of returned samples. Proc Natl Acad Sci U S A 2025; 122:e2404259121. [PMID: 39761391 PMCID: PMC11745385 DOI: 10.1073/pnas.2404259121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/21/2024] [Indexed: 01/23/2025] Open
Abstract
The Red Planet is a magnetic planet. The Martian crust contains strong magnetization from a core dynamo that likely was active during the Noachian period when the surface may have been habitable. The evolution of the dynamo may have played a central role in the evolution of the early atmosphere and the planet's transition to the current cold and dry state. However, the nature and history of the dynamo and crustal magnetization are poorly understood given the lack of well-preserved, oriented, ancient samples with geologic context available for laboratory study. Here, we describe how magnetic measurements of returned samples could transform our understanding of six key unknowns about Mars' planetary evolution and habitability. Such measurements could i) determine the history of the Martian dynamo field's intensity; ii) determine the history of the Martian dynamo field's direction; iii) test the hypothesis that Mars experienced plate tectonics or true polar wander; iv) constrain the thermal and aqueous alteration history of the samples; v) identify sources of Martian crustal magnetization and vi) characterize sedimentary and magmatic processes on Mars. We discuss how these goals can be achieved using future laboratory analyses of samples acquired by the Perseverance rover.
Collapse
Affiliation(s)
- Benjamin P. Weiss
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Elias N. Mansbach
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Clara Maurel
- CNRS, Aix Marseille Université, Institut de Recherche Pour le Développement (IRD), Institut National de Recherche Pour L’Agriculture, L’Alimentation et L’Environnement (INRAE), Centre Européen de Recherche et D’Enseignement des Géosciences de L’Environnement (CEREGE), Aix-en-Provence 13545, France
| | - Courtney J. Sprain
- Department of Geological Sciences, University of Florida, Gainesville, FL32611
| | | | - Wyn Williams
- School of GeoSciences, University of Edinburgh, EdinburghEH9 3FE, United Kingdom
| |
Collapse
|
5
|
Yan J, Ye Z, Jiang T, Chen S, Feng H, Xu Z, Li Q, Chen Y. Image restoration for optical zooming system based on Alvarez lenses. OPTICS EXPRESS 2023; 31:35765-35776. [PMID: 38017741 DOI: 10.1364/oe.500967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/29/2023] [Indexed: 11/30/2023]
Abstract
Alvarez lenses are known for their ability to achieve a broad range of optical power adjustment by utilizing complementary freeform surfaces. However, these lenses suffer from optical aberrations, which restrict their potential applications. To address this issue, we propose a field of view (FOV) attention image restoration model for continuous zooming. In order to simulate the degradation of optical zooming systems based on Alvarez lenses (OZA), a baseline OZA is designed where the polynomial for the Alvarez lenses consists of only three coefficients. By computing spatially varying point spread functions (PSFs), we simulate the degraded images of multiple zoom configurations and conduct restoration experiments. The results demonstrate that our approach surpasses the compared methods in the restoration of degraded images across various zoom configurations while also exhibiting strong generalization capabilities under untrained configurations.
Collapse
|
6
|
Corenblit D, Decaux O, Delmotte S, Toumazet JP, Arrignon F, André MF, Darrozes J, Davies NS, Julien F, Otto T, Ramillien G, Roussel E, Steiger J, Viles H. Signatures of Life Detected in Images of Rocks Using Neural Network Analysis Demonstrate New Potential for Searching for Biosignatures on the Surface of Mars. ASTROBIOLOGY 2023; 23:308-326. [PMID: 36668995 DOI: 10.1089/ast.2022.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Microorganisms play a role in the construction or modulation of various types of landforms. They are especially notable for forming microbially induced sedimentary structures (MISS). Such microbial structures have been considered to be among the most likely biosignatures that might be encountered on the martian surface. Twenty-nine algorithms have been tested with images taken during a laboratory experiment for testing their performance in discriminating mat cracks (MISS) from abiotic mud cracks. Among the algorithms, neural network types produced excellent predictions with similar precision of 0.99. Following that step, a convolutional neural network (CNN) approach has been tested to see whether it can conclusively detect MISS in images of rocks and sediment surfaces taken at different natural sites where present and ancient (fossil) microbial mat cracks and abiotic desiccation cracks were observed. The CNN approach showed excellent prediction of biotic and abiotic structures from the images (global precision, sensitivity, and specificity, respectively, 0.99, 0.99, and 0.97). The key areas of interest of the machine matched well with human expertise for distinguishing biotic and abiotic forms (in their geomorphological meaning). The images indicated clear differences between the abiotic and biotic situations expressed at three embedded scales: texture (size, shape, and arrangement of the grains constituting the surface of one form), form (outer shape of one form), and pattern of form arrangement (arrangement of the forms over a few square meters). The most discriminative components for biogenicity were the border of the mat cracks with their tortuous enlarged and blistered morphology more or less curved upward, sometimes with thin laminations. To apply this innovative biogeomorphological approach to the images obtained by rovers on Mars, the main physical and biological sources of variation in abiotic and biotic outcomes must now be further considered.
Collapse
Affiliation(s)
- Dov Corenblit
- Université Clermont Auvergne, CNRS, GEOLAB, Clermont-Ferrand, France
- CNRS, Laboratoire écologie fonctionnelle et environnement, Université Paul Sabatier, CNRS, INPT, UPS, Toulouse, France
| | | | | | | | | | | | - José Darrozes
- Université Paul Sabatier, CNRS/IRD, GET, Toulouse, France
| | - Neil S Davies
- Department of Earth Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Frédéric Julien
- CNRS, Laboratoire écologie fonctionnelle et environnement, Université Paul Sabatier, CNRS, INPT, UPS, Toulouse, France
| | - Thierry Otto
- CNRS, Laboratoire écologie fonctionnelle et environnement, Université Paul Sabatier, CNRS, INPT, UPS, Toulouse, France
| | | | - Erwan Roussel
- Université Clermont Auvergne, CNRS, GEOLAB, Clermont-Ferrand, France
| | - Johannes Steiger
- Université Clermont Auvergne, CNRS, GEOLAB, Clermont-Ferrand, France
| | - Heather Viles
- School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Dibb SD, Bell JF, Elkins‐Tanton LT, Williams DA. Visible to Near-Infrared Reflectance Spectroscopy of Asteroid (16) Psyche: Implications for the Psyche Mission's Science Investigations. EARTH AND SPACE SCIENCE (HOBOKEN, N.J.) 2023; 10:e2022EA002694. [PMID: 37034273 PMCID: PMC10078513 DOI: 10.1029/2022ea002694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/09/2022] [Accepted: 12/23/2022] [Indexed: 06/19/2023]
Abstract
The NASA Psyche mission will explore the structure, composition, and other properties of asteroid (16) Psyche to test hypotheses about its formation. Variations in radar reflectivity, density, thermal inertia, and visible to near-infrared (VNIR) reflectance spectra of Psyche suggest a highly metallic composition with mafic silicate minerals (e.g., pyroxene) heterogeneously distributed on the surface in low abundance (<10 vol.%). The Psyche spacecraft's Multispectral Imager is designed to map ≥80% of the surface at high spatial resolution (≤20 m/pixel) through a panchromatic filter and provide compositional information for about ≥80% of the surface using seven narrowband filters at VNIR wavelengths (∼400-1,100 nm) and at spatial scales of ≤500 m/pixel. We analyzed 359 reflectance spectra from samples consistent with current uncertainties in Psyche's composition and compared them to published reflectance spectra of the asteroid using a chi-square test for goodness of fit. The best matches for Psyche include iron meteorite powder, powders from the sulfide minerals troilite and pentlandite, and powder from the CH/CBb chondrite Isheyevo. Comparison of absorption features support the interpretation that Psyche's surface is a metal-silicate mixture, although the exact abundance and chemistry of the silicate component remains poorly constrained. We convolve our spectra to the Imager's spectral throughput to demonstrate preliminary strategies for mapping the surface composition of the asteroid using filter ratios and reconstructed band parameters. Our results provide predictions of the kinds of surface compositional information that the Psyche mission could reveal on the solar system's largest M-type asteroid.
Collapse
Affiliation(s)
- S. D. Dibb
- Bay Area Environmental Research InstituteNASA Ames Research CenterMoffett FieldCAUSA
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - J. F. Bell
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | | | - D. A. Williams
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| |
Collapse
|
8
|
Lemmon MT, Lorenz RD, Rabinovitch J, Newman CE, Williams NR, Sullivan R, Golombek MP, Bell JF, Maki JN, Vicente‐Retortillo A. Lifting and Transport of Martian Dust by the Ingenuity Helicopter Rotor Downwash as Observed by High-Speed Imaging From the Perseverance Rover. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2022; 127:e2022JE007605. [PMID: 37033154 PMCID: PMC10078181 DOI: 10.1029/2022je007605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/19/2022] [Accepted: 11/29/2022] [Indexed: 06/19/2023]
Abstract
Martian atmospheric dust is a major driver of weather, with feedback between atmospheric dust distribution, circulation changes from radiative heating and cooling driven by this dust, and winds that mobilize surface dust and distribute it in the atmosphere. Wind-driven mobilization of surface dust is a poorly understood process due to significant uncertainty about minimum wind stress and whether the saltation of sand particles is required. This study utilizes video of six Ingenuity helicopter flights to measure dust lifting during helicopter ascents, traverses, and descents. Dust mobilization persisted on takeoff until the helicopter exceeded 3 m altitude, with dust advecting at 4-6 m/s. During landing, dust mobilization initiated at 2.3-3.6 m altitude. Extensive dust mobilization occurred during traverses at 5.1-5.7 m altitude. Dust mobilization threshold friction velocity of rotor-induced winds during landing is modeled at 0.4-0.6 m/s (factor of two uncertainty in this estimate), with higher winds required when the helicopter was over undisturbed terrain. Modeling dust mobilization from >5 m cruising altitude indicates mobilization by 0.3 m/s winds, suggesting nonsaltation mechanisms such as mobilization and destruction of dust aggregates. No dependence on background winds was seen for the initiation of dust lifting but one case of takeoff in 7 m/s winds created a track of darkened terrain downwind of the helicopter, which may have been a saltation cluster. When the helicopter was cruising at 5-6 m altitude, recirculation was seen in the dust clouds.
Collapse
Affiliation(s)
| | | | | | | | - N. R. Williams
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | | | - M. P. Golombek
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | | | - J. N. Maki
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | | |
Collapse
|
9
|
Bell JF, Maki JN, Alwmark S, Ehlmann BL, Fagents SA, Grotzinger JP, Gupta S, Hayes A, Herkenhoff KE, Horgan BHN, Johnson JR, Kinch KB, Lemmon MT, Madsen MB, Núñez JI, Paar G, Rice M, Rice JW, Schmitz N, Sullivan R, Vaughan A, Wolff MJ, Bechtold A, Bosak T, Duflot LE, Fairén AG, Garczynski B, Jaumann R, Merusi M, Million C, Ravanis E, Shuster DL, Simon J, St. Clair M, Tate C, Walter S, Weiss B, Bailey AM, Bertrand T, Beyssac O, Brown AJ, Caballo-Perucha P, Caplinger MA, Caudill CM, Cary F, Cisneros E, Cloutis EA, Cluff N, Corlies P, Crawford K, Curtis S, Deen R, Dixon D, Donaldson C, Barrington M, Ficht M, Fleron S, Hansen M, Harker D, Howson R, Huggett J, Jacob S, Jensen E, Jensen OB, Jodhpurkar M, Joseph J, Juarez C, Kah LC, Kanine O, Kristensen J, Kubacki T, Lapo K, Magee A, Maimone M, Mehall GL, Mehall L, Mollerup J, Viúdez-Moreiras D, Paris K, Powell KE, Preusker F, Proton J, Rojas C, Sallurday D, Saxton K, Scheller E, Seeger CH, Starr M, Stein N, Turenne N, Van Beek J, Winhold AG, Yingling R. Geological, multispectral, and meteorological imaging results from the Mars 2020 Perseverance rover in Jezero crater. SCIENCE ADVANCES 2022; 8:eabo4856. [PMID: 36417517 PMCID: PMC9683734 DOI: 10.1126/sciadv.abo4856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/20/2022] [Indexed: 06/15/2023]
Abstract
Perseverance's Mastcam-Z instrument provides high-resolution stereo and multispectral images with a unique combination of spatial resolution, spatial coverage, and wavelength coverage along the rover's traverse in Jezero crater, Mars. Images reveal rocks consistent with an igneous (including volcanic and/or volcaniclastic) and/or impactite origin and limited aqueous alteration, including polygonally fractured rocks with weathered coatings; massive boulder-forming bedrock consisting of mafic silicates, ferric oxides, and/or iron-bearing alteration minerals; and coarsely layered outcrops dominated by olivine. Pyroxene dominates the iron-bearing mineralogy in the fine-grained regolith, while olivine dominates the coarse-grained regolith. Solar and atmospheric imaging observations show significant intra- and intersol variations in dust optical depth and water ice clouds, as well as unique examples of boundary layer vortex action from both natural (dust devil) and Ingenuity helicopter-induced dust lifting. High-resolution stereo imaging also provides geologic context for rover operations, other instrument observations, and sample selection, characterization, and confirmation.
Collapse
Affiliation(s)
- James F. Bell
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | - Justin N. Maki
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Sanna Alwmark
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
- Department of Geology, Lund University, 22362 Lund, Sweden
| | - Bethany L. Ehlmann
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Sarah A. Fagents
- Hawai’i Institute of Geophysics and Planetology, University of Hawaii, Honolulu, HI 96822, USA
| | | | - Sanjeev Gupta
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Alexander Hayes
- Department of Astronomy, Cornell University, Ithaca, NY 14850, USA
| | | | - Briony H. N. Horgan
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jeffrey R. Johnson
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
| | - Kjartan B. Kinch
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | - Morten B. Madsen
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jorge I. Núñez
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
| | | | - Melissa Rice
- Western Washington University, Bellingham, WA 98225, USA
| | - James W. Rice
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | | | - Robert Sullivan
- Department of Astronomy, Cornell University, Ithaca, NY 14850, USA
| | - Alicia Vaughan
- USGS Astrogeology Science Center, Flagstaff, AZ 86001, USA
| | | | - Andreas Bechtold
- Department of Lithospheric Research, University of Vienna, 1090 Vienna, Austria
- Austrian Academy of Sciences, Vienna 1010, Austria
| | - Tanja Bosak
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Alberto G. Fairén
- Department of Astronomy, Cornell University, Ithaca, NY 14850, USA
- Astrobiology Center (CSIC-INTA), Madrid, Spain
| | - Brad Garczynski
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Ralf Jaumann
- Institute for Geological Sciences, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - Marco Merusi
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | - Eleni Ravanis
- Hawai’i Institute of Geophysics and Planetology, University of Hawaii, Honolulu, HI 96822, USA
| | - David L. Shuster
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Justin Simon
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | - Christian Tate
- Department of Astronomy, Cornell University, Ithaca, NY 14850, USA
| | - Sebastian Walter
- Institute for Geological Sciences, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - Benjamin Weiss
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alyssa M. Bailey
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | | | - Olivier Beyssac
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS, Muséum National d’Histoire Naturelle, Sorbonne University, Paris 75005, France
| | | | | | | | | | - Francesca Cary
- Hawai’i Institute of Geophysics and Planetology, University of Hawaii, Honolulu, HI 96822, USA
| | - Ernest Cisneros
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | | | - Nathan Cluff
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | - Paul Corlies
- Department of Astronomy, Cornell University, Ithaca, NY 14850, USA
| | - Kelsie Crawford
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | - Sabrina Curtis
- Western Washington University, Bellingham, WA 98225, USA
| | - Robert Deen
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Darian Dixon
- Malin Space Science Systems Inc., San Diego, CA 92121, USA
| | | | - Megan Barrington
- Department of Astronomy, Cornell University, Ithaca, NY 14850, USA
| | - Michelle Ficht
- Malin Space Science Systems Inc., San Diego, CA 92121, USA
| | | | | | - David Harker
- Malin Space Science Systems Inc., San Diego, CA 92121, USA
| | - Rachel Howson
- Malin Space Science Systems Inc., San Diego, CA 92121, USA
| | - Joshua Huggett
- Malin Space Science Systems Inc., San Diego, CA 92121, USA
| | - Samantha Jacob
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | - Elsa Jensen
- Malin Space Science Systems Inc., San Diego, CA 92121, USA
| | - Ole B. Jensen
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mohini Jodhpurkar
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | - Jonathan Joseph
- Department of Astronomy, Cornell University, Ithaca, NY 14850, USA
| | | | - Linda C. Kah
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37916, USA
| | - Oak Kanine
- California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Tex Kubacki
- Malin Space Science Systems Inc., San Diego, CA 92121, USA
| | - Kristiana Lapo
- Western Washington University, Bellingham, WA 98225, USA
| | - Angela Magee
- Malin Space Science Systems Inc., San Diego, CA 92121, USA
| | | | - Greg L. Mehall
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | - Laura Mehall
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | - Jess Mollerup
- Western Washington University, Bellingham, WA 98225, USA
| | - Daniel Viúdez-Moreiras
- Astrobiology Center (CSIC-INTA), Madrid, Spain
- National Institute for Aerospace Technology, Madrid, Spain
| | - Kristen Paris
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | - Kathryn E. Powell
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | | | | | - Corrine Rojas
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | | | - Kim Saxton
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Eva Scheller
- California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Mason Starr
- Malin Space Science Systems Inc., San Diego, CA 92121, USA
| | - Nathan Stein
- California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Jason Van Beek
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Andrew G. Winhold
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | | |
Collapse
|
10
|
Stefanuk B, Skonieczny K. Novelty detection in rover-based planetary surface images using autoencoders. Front Robot AI 2022; 9:974397. [PMID: 36313243 PMCID: PMC9613947 DOI: 10.3389/frobt.2022.974397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022] Open
Abstract
In the domain of planetary science, novelty detection is gaining attention because of the operational opportunities it offers, including annotated data products and downlink prioritization. Using a variational autoencoder (VAE), this work improves upon state-of-the-art novelty detection performance in the context of Martian exploration by > 7 % (measured by the area under the receiver operating characteristic curve (ROC AUC)). Autoencoders, especially VAEs, perform well across all classes of novelties defined for Martian exploration. VAEs are shown to have high recall in the Martian context, making them particularly useful for on-ground processing. Convolutional autoencoders (CAEs), on the other hand, demonstrate high precision making them good candidates for onboard downlink prioritization. In our implementation adversarial autoencoders (AAEs) are also shown to perform on par with state-of-the-art. Dimensionality reduction is a key feature of autoencoders for novelty detection. In this study the impact of dimensionality reduction on detection quality is explored, showing that both VAEs and AAEs achieve comparable ROC AUCs to CAEs despite observably poorer (blurred) image reconstructions; this is observed both in Martian data and in lunar analogue data.
Collapse
Affiliation(s)
| | - Krzysztof Skonieczny
- Aerospace Robotics Laboratory, Electrical and Computer Engineering, Concordia University, Montreal, QC, Canada
| |
Collapse
|
11
|
Lemmon MT, Smith MD, Viudez‐Moreiras D, de la Torre‐Juarez M, Vicente‐Retortillo A, Munguira A, Sanchez‐Lavega A, Hueso R, Martinez G, Chide B, Sullivan R, Toledo D, Tamppari L, Bertrand T, Bell JF, Newman C, Baker M, Banfield D, Rodriguez‐Manfredi JA, Maki JN, Apestigue V. Dust, Sand, and Winds Within an Active Martian Storm in Jezero Crater. GEOPHYSICAL RESEARCH LETTERS 2022; 49:e2022GL100126. [PMID: 36245893 PMCID: PMC9540647 DOI: 10.1029/2022gl100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Rovers and landers on Mars have experienced local, regional, and planetary-scale dust storms. However, in situ documentation of active lifting within storms has remained elusive. Over 5-11 January 2022 (LS 153°-156°), a dust storm passed over the Perseverance rover site. Peak visible optical depth was ∼2, and visibility across the crater was briefly reduced. Pressure amplitudes and temperatures responded to the storm. Winds up to 20 m s-1 rotated around the site before the wind sensor was damaged. The rover imaged 21 dust-lifting events-gusts and dust devils-in one 25-min period, and at least three events mobilized sediment near the rover. Rover tracks and drill cuttings were extensively modified, and debris was moved onto the rover deck. Migration of small ripples was seen, but there was no large-scale change in undisturbed areas. This work presents an overview of observations and initial results from the study of the storm.
Collapse
Affiliation(s)
| | - M. D. Smith
- NASA Goddard Space Flight CenterGreenbeltMDUSA
| | | | | | | | - A. Munguira
- Física Aplicada, Escuela de Ingeniería de BilbaoUPV/EHUBilbaoSpain
| | | | - R. Hueso
- Física Aplicada, Escuela de Ingeniería de BilbaoUPV/EHUBilbaoSpain
| | | | - B. Chide
- Space and Planetary Exploration TeamLos Alamos National LaboratoryLos AlamosNMUSA
| | | | - D. Toledo
- Instituto Nacional de Técnica AerospacialMadridSpain
| | - L. Tamppari
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | | | | | | | - M. Baker
- Smithsonian National Air and Space MuseumWashingtonDCUSA
| | | | | | - J. N. Maki
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - V. Apestigue
- Instituto Nacional de Técnica AerospacialMadridSpain
| |
Collapse
|
12
|
Lemmon MT, Toledo D, Apestigue V, Arruego I, Wolff MJ, Patel P, Guzewich S, Colaprete A, Vicente‐Retortillo Á, Tamppari L, Montmessin F, de la Torre Juarez M, Maki J, McConnochie T, Brown A, Bell JF. Hexagonal Prisms Form in Water-Ice Clouds on Mars, Producing Halo Displays Seen by Perseverance Rover. GEOPHYSICAL RESEARCH LETTERS 2022; 49:e2022GL099776. [PMID: 36245894 PMCID: PMC9539710 DOI: 10.1029/2022gl099776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Observations by several cameras on the Perseverance rover showed a 22° scattering halo around the Sun over several hours during northern midsummer (solar longitude 142°). Such a halo has not previously been seen beyond Earth. The halo occurred during the aphelion cloud belt season and the cloudiest time yet observed from the Perseverance site. The halo required crystalline water-ice cloud particles in the form of hexagonal columns large enough for refraction to be significant, at least 11 μm in diameter and length. From a possible 40-50 km altitude, and over the 3.3 hr duration of the halo, particles could have fallen 3-12 km, causing downward transport of water and dust. Halo-forming clouds are likely rare due to the high supersaturation of water that is required but may be more common in northern subtropical regions during northern midsummer.
Collapse
Affiliation(s)
| | - D. Toledo
- Instituto Nacional de Técnica AerospacialMadridSpain
| | - V. Apestigue
- Instituto Nacional de Técnica AerospacialMadridSpain
| | - I. Arruego
- Instituto Nacional de Técnica AerospacialMadridSpain
| | | | - P. Patel
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
- Mullard Space Science LaboratoryUniversity College LondonLondonUK
| | - S. Guzewich
- NASA Goddard Space Flight CenterGreenbeltMDUSA
| | | | | | - L. Tamppari
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | | | | | - J. Maki
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | | | - A. Brown
- Plancius ResearchSeverna ParkMDUSA
| | | |
Collapse
|
13
|
Hickman-Lewis K, Moore KR, Hollis JJR, Tuite ML, Beegle LW, Bhartia R, Grotzinger JP, Brown AJ, Shkolyar S, Cavalazzi B, Smith CL. In Situ Identification of Paleoarchean Biosignatures Using Colocated Perseverance Rover Analyses: Perspectives for In Situ Mars Science and Sample Return. ASTROBIOLOGY 2022; 22:1143-1163. [PMID: 35862422 PMCID: PMC9508457 DOI: 10.1089/ast.2022.0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The NASA Mars 2020 Perseverance rover is currently exploring Jezero crater, a Noachian-Hesperian locality that once hosted a delta-lake system with high habitability and biosignature preservation potential. Perseverance conducts detailed appraisals of rock targets using a synergistic payload capable of geological characterization from kilometer to micron scales. The highest-resolution textural and chemical information will be provided by correlated WATSON (imaging), SHERLOC (deep-UV Raman and fluorescence spectroscopy), and PIXL (X-ray lithochemistry) analyses, enabling the distributions of organic and mineral phases within rock targets to be comprehensively established. Herein, we analyze Paleoarchean microbial mats from the ∼3.42 Ga Buck Reef Chert (Barberton greenstone belt, South Africa)-considered astrobiological analogues for a putative ancient martian biosphere-following a WATSON-SHERLOC-PIXL protocol identical to that conducted by Perseverance on Mars during all sampling activities. Correlating deep-UV Raman and fluorescence spectroscopic mapping with X-ray elemental mapping, we show that the Perseverance payload has the capability to detect thermally and texturally mature organic materials of biogenic origin and can highlight organic-mineral interrelationships and elemental colocation at fine spatial scales. We also show that the Perseverance protocol obtains very similar results to high-performance laboratory imaging, Raman spectroscopy, and μXRF instruments. This is encouraging for the prospect of detecting microscale organic-bearing textural biosignatures on Mars using the correlative micro-analytical approach enabled by WATSON, SHERLOC, and PIXL; indeed, laminated, organic-bearing samples such as those studied herein are considered plausible analogues of biosignatures from a potential Noachian-Hesperian biosphere. Were similar materials discovered at Jezero crater, they would offer opportunities to reconstruct aspects of the early martian carbon cycle and search for potential fossilized traces of life in ancient paleoenvironments. Such samples should be prioritized for caching and eventual return to Earth.
Collapse
Affiliation(s)
- Keyron Hickman-Lewis
- Department of Earth Sciences, The Natural History Museum, London, United Kingdom
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Kelsey R. Moore
- NASA Jet Propulsion Laboratory, Pasadena, California, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | | | | | | | | | - John P. Grotzinger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | | | - Svetlana Shkolyar
- Department of Astronomy, University of Maryland, College Park, Maryland, USA
- Planetary Geology, Geophysics and Geochemistry Lab, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Barbara Cavalazzi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
- Department of Geology, University of Johannesburg, Johannesburg, South Africa
| | - Caroline L. Smith
- Department of Earth Sciences, The Natural History Museum, London, United Kingdom
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
14
|
Farley KA, Stack KM, Shuster DL, Horgan BHN, Hurowitz JA, Tarnas JD, Simon JI, Sun VZ, Scheller EL, Moore KR, McLennan SM, Vasconcelos PM, Wiens RC, Treiman AH, Mayhew LE, Beyssac O, Kizovski TV, Tosca NJ, Williford KH, Crumpler LS, Beegle LW, Bell JF, Ehlmann BL, Liu Y, Maki JN, Schmidt ME, Allwood AC, Amundsen HEF, Bhartia R, Bosak T, Brown AJ, Clark BC, Cousin A, Forni O, Gabriel TSJ, Goreva Y, Gupta S, Hamran SE, Herd CDK, Hickman-Lewis K, Johnson JR, Kah LC, Kelemen PB, Kinch KB, Mandon L, Mangold N, Quantin-Nataf C, Rice MS, Russell PS, Sharma S, Siljeström S, Steele A, Sullivan R, Wadhwa M, Weiss BP, Williams AJ, Wogsland BV, Willis PA, Acosta-Maeda TA, Beck P, Benzerara K, Bernard S, Burton AS, Cardarelli EL, Chide B, Clavé E, Cloutis EA, Cohen BA, Czaja AD, Debaille V, Dehouck E, Fairén AG, Flannery DT, Fleron SZ, Fouchet T, Frydenvang J, Garczynski BJ, Gibbons EF, Hausrath EM, Hayes AG, Henneke J, Jørgensen JL, Kelly EM, Lasue J, Le Mouélic S, Madariaga JM, Maurice S, Merusi M, Meslin PY, Milkovich SM, Million CC, Moeller RC, Núñez JI, Ollila AM, Paar G, Paige DA, Pedersen DAK, Pilleri P, Pilorget C, Pinet PC, et alFarley KA, Stack KM, Shuster DL, Horgan BHN, Hurowitz JA, Tarnas JD, Simon JI, Sun VZ, Scheller EL, Moore KR, McLennan SM, Vasconcelos PM, Wiens RC, Treiman AH, Mayhew LE, Beyssac O, Kizovski TV, Tosca NJ, Williford KH, Crumpler LS, Beegle LW, Bell JF, Ehlmann BL, Liu Y, Maki JN, Schmidt ME, Allwood AC, Amundsen HEF, Bhartia R, Bosak T, Brown AJ, Clark BC, Cousin A, Forni O, Gabriel TSJ, Goreva Y, Gupta S, Hamran SE, Herd CDK, Hickman-Lewis K, Johnson JR, Kah LC, Kelemen PB, Kinch KB, Mandon L, Mangold N, Quantin-Nataf C, Rice MS, Russell PS, Sharma S, Siljeström S, Steele A, Sullivan R, Wadhwa M, Weiss BP, Williams AJ, Wogsland BV, Willis PA, Acosta-Maeda TA, Beck P, Benzerara K, Bernard S, Burton AS, Cardarelli EL, Chide B, Clavé E, Cloutis EA, Cohen BA, Czaja AD, Debaille V, Dehouck E, Fairén AG, Flannery DT, Fleron SZ, Fouchet T, Frydenvang J, Garczynski BJ, Gibbons EF, Hausrath EM, Hayes AG, Henneke J, Jørgensen JL, Kelly EM, Lasue J, Le Mouélic S, Madariaga JM, Maurice S, Merusi M, Meslin PY, Milkovich SM, Million CC, Moeller RC, Núñez JI, Ollila AM, Paar G, Paige DA, Pedersen DAK, Pilleri P, Pilorget C, Pinet PC, Rice JW, Royer C, Sautter V, Schulte M, Sephton MA, Sharma SK, Sholes SF, Spanovich N, St Clair M, Tate CD, Uckert K, VanBommel SJ, Yanchilina AG, Zorzano MP. Aqueously altered igneous rocks sampled on the floor of Jezero crater, Mars. Science 2022; 377:eabo2196. [PMID: 36007009 DOI: 10.1126/science.abo2196] [Show More Authors] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Perseverance rover landed in Jezero crater, Mars, to investigate ancient lake and river deposits. We report observations of the crater floor, below the crater's sedimentary delta, finding the floor consists of igneous rocks altered by water. The lowest exposed unit, informally named Séítah, is a coarsely crystalline olivine-rich rock, which accumulated at the base of a magma body. Fe-Mg carbonates along grain boundaries indicate reactions with CO2-rich water, under water-poor conditions. Overlying Séítah is a unit informally named Máaz, which we interpret as lava flows or the chemical complement to Séítah in a layered igneous body. Voids in these rocks contain sulfates and perchlorates, likely introduced by later near-surface brine evaporation. Core samples of these rocks were stored aboard Perseverance for potential return to Earth.
Collapse
Affiliation(s)
- K A Farley
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - K M Stack
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - D L Shuster
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720, USA
| | - B H N Horgan
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - J A Hurowitz
- Department of Geosciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - J D Tarnas
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - J I Simon
- Center for Isotope Cosmochemistry and Geochronology, Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX 77058, USA
| | - V Z Sun
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - E L Scheller
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - K R Moore
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - S M McLennan
- Department of Geosciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - P M Vasconcelos
- School of Earth and Environmental Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - R C Wiens
- Planetary Exploration Team, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - A H Treiman
- Lunar and Planetary Institute, Universities Space Research Association, Houston, TX 77058, USA
| | - L E Mayhew
- Department of Geological Sciences, University of Colorado, Boulder, Boulder, CO 80309, USA
| | - O Beyssac
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Centre National de la Recherche Scientifique, Sorbonne Université, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - T V Kizovski
- Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - N J Tosca
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| | - K H Williford
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
| | - L S Crumpler
- New Mexico Museum of Natural History and Science, Albuquerque, NM 8710, USA
| | - L W Beegle
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - J F Bell
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - B L Ehlmann
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Y Liu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - J N Maki
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - M E Schmidt
- Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - A C Allwood
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - H E F Amundsen
- Center for Space Sensors and Systems, University of Oslo, 2007 Kjeller, Norway
| | - R Bhartia
- Photon Systems Inc., Covina, CA 91725, USA
| | - T Bosak
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - A J Brown
- Plancius Research, Severna Park, MD 21146, USA
| | - B C Clark
- Space Science Institute, Boulder, CO 80301, USA
| | - A Cousin
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse 3 Paul Sabatier, Centre National de la Recherche Scientifique, Centre National d'Etude Spatiale, 31400 Toulouse, France
| | - O Forni
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse 3 Paul Sabatier, Centre National de la Recherche Scientifique, Centre National d'Etude Spatiale, 31400 Toulouse, France
| | - T S J Gabriel
- Astrogeology Science Center, US Geological Survey, Flagstaff, AZ 86001, USA
| | - Y Goreva
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - S Gupta
- Department of Earth Sciences and Engineering, Imperial College London, London SW7 2AZ, UK
| | - S-E Hamran
- Center for Space Sensors and Systems, University of Oslo, 2007 Kjeller, Norway
| | - C D K Herd
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - K Hickman-Lewis
- Department of Earth Sciences, The Natural History Museum, London SW7 5BD, UK.,Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, 40126 Bologna, Italy
| | - J R Johnson
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
| | - L C Kah
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - P B Kelemen
- Department of Earth and Environmental Sciences, Lamont Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA
| | - K B Kinch
- Niels Bohr Institute, University of Copenhagen, 1350 Copenhagen, Denmark
| | - L Mandon
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris, Centre National de la Recherche Scientifique, Sorbonne Université, Université Paris Diderot, 92195 Meudon, France
| | - N Mangold
- Laboratoire de Planétologie et Géosciences, Centre National de la Recherche Scientifique, Nantes Université, Université Angers, 44000 Nantes, France
| | - C Quantin-Nataf
- Laboratoire de Géologie de Lyon: Terre, Université de Lyon, Université Claude Bernard Lyon1, Ecole Normale Supérieure de Lyon, Université Jean Monnet Saint Etienne, Centre National de la Recherche Scientifique, 69622 Villeurbanne, France
| | - M S Rice
- Department of Geology, Western Washington University, Bellingham, WA 98225 USA
| | - P S Russell
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - S Sharma
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - S Siljeström
- Department of Methodology, Textiles and Medical Technology, Research Institutes of Sweden, 11486 Stockholm, Sweden
| | - A Steele
- Earth and Planetary Laboratory, Carnegie Science, Washington, DC 20015, USA
| | - R Sullivan
- Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14853, USA
| | - M Wadhwa
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - B P Weiss
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA.,Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - A J Williams
- Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - B V Wogsland
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - P A Willis
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - T A Acosta-Maeda
- Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - P Beck
- Institut de Planétologie et Astrophysique de Grenoble, Centre National de la Recherche Scientifique, Université Grenoble Alpes, 38000 Grenoble, France
| | - K Benzerara
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Centre National de la Recherche Scientifique, Sorbonne Université, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - S Bernard
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Centre National de la Recherche Scientifique, Sorbonne Université, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - A S Burton
- NASA Johnson Space Center, Houston, TX 77058, USA
| | - E L Cardarelli
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - B Chide
- Planetary Exploration Team, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - E Clavé
- Centre Lasers Intenses et Applications, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université de Bordeaux, 33400 Bordeaux, France
| | - E A Cloutis
- Centre for Terrestrial and Planetary Exploration, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| | - B A Cohen
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - A D Czaja
- Department of Geology, University of Cincinnati, Cincinnati, OH 45221, USA
| | - V Debaille
- Laboratoire G-Time, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - E Dehouck
- Laboratoire de Géologie de Lyon: Terre, Université de Lyon, Université Claude Bernard Lyon1, Ecole Normale Supérieure de Lyon, Université Jean Monnet Saint Etienne, Centre National de la Recherche Scientifique, 69622 Villeurbanne, France
| | - A G Fairén
- Centro de Astrobiología, Consejo Superior de Investigaciones Científicas-Instituto Nacional de Técnica Aeroespacial, 28850 Madrid, Spain.,Department of Astronomy, Cornell University, Ithaca, NY 14853, USA
| | - D T Flannery
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - S Z Fleron
- Department of Geosciences and Natural Resource Management, University of Copenhagen, 1350 Copenhagen, Denmark
| | - T Fouchet
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris, Centre National de la Recherche Scientifique, Sorbonne Université, Université Paris Diderot, 92195 Meudon, France
| | - J Frydenvang
- Globe Institute, University of Copenhagen, 1350 Copenhagen, Denmark
| | - B J Garczynski
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - E F Gibbons
- Department of Earth and Planetary Sciences, McGill University, Montreal, QC H3A 0E8, Canada
| | - E M Hausrath
- Department of Geoscience, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
| | - A G Hayes
- Department of Astronomy, Cornell University, Ithaca, NY 14853, USA
| | - J Henneke
- National Space Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - J L Jørgensen
- National Space Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - E M Kelly
- Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - J Lasue
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse 3 Paul Sabatier, Centre National de la Recherche Scientifique, Centre National d'Etude Spatiale, 31400 Toulouse, France
| | - S Le Mouélic
- Laboratoire de Planétologie et Géosciences, Centre National de la Recherche Scientifique, Nantes Université, Université Angers, 44000 Nantes, France
| | - J M Madariaga
- Department of Analytical Chemistry, University of the Basque Country, 48940 Leioa, Spain
| | - S Maurice
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse 3 Paul Sabatier, Centre National de la Recherche Scientifique, Centre National d'Etude Spatiale, 31400 Toulouse, France
| | - M Merusi
- Niels Bohr Institute, University of Copenhagen, 1350 Copenhagen, Denmark
| | - P-Y Meslin
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse 3 Paul Sabatier, Centre National de la Recherche Scientifique, Centre National d'Etude Spatiale, 31400 Toulouse, France
| | - S M Milkovich
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | - R C Moeller
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - J I Núñez
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
| | - A M Ollila
- Los Alamos National Laboratory, Los Alamos, NM 87545 USA
| | - G Paar
- Institute for Information and Communication Technologies, Joanneum Research, 8010 Graz, Austria
| | - D A Paige
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - D A K Pedersen
- National Space Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - P Pilleri
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse 3 Paul Sabatier, Centre National de la Recherche Scientifique, Centre National d'Etude Spatiale, 31400 Toulouse, France
| | - C Pilorget
- Institut d'Astrophysique Spatiale, Université Paris-Saclay, 91405 Orsay, France.,Institut Universitaire de France, Paris, France
| | - P C Pinet
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse 3 Paul Sabatier, Centre National de la Recherche Scientifique, Centre National d'Etude Spatiale, 31400 Toulouse, France
| | - J W Rice
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - C Royer
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Centre National de la Recherche Scientifique, Sorbonne Université, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - V Sautter
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Centre National de la Recherche Scientifique, Sorbonne Université, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - M Schulte
- Mars Exploration Program, Planetary Science Division, NASA Headquarters, Washington, DC 20546, USA
| | - M A Sephton
- Department of Earth Sciences and Engineering, Imperial College London, London SW7 2AZ, UK
| | - S K Sharma
- Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - S F Sholes
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - N Spanovich
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - M St Clair
- Million Concepts, Louisville, KY 40204, USA
| | - C D Tate
- Department of Astronomy, Cornell University, Ithaca, NY 14853, USA
| | - K Uckert
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - S J VanBommel
- McDonnell Center for the Space Sciences and Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - M-P Zorzano
- Department of Astronomy, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
15
|
Liu Y, Tice MM, Schmidt ME, Treiman AH, Kizovski TV, Hurowitz JA, Allwood AC, Henneke J, Pedersen DAK, VanBommel SJ, Jones MWM, Knight AL, Orenstein BJ, Clark BC, Elam WT, Heirwegh CM, Barber T, Beegle LW, Benzerara K, Bernard S, Beyssac O, Bosak T, Brown AJ, Cardarelli EL, Catling DC, Christian JR, Cloutis EA, Cohen BA, Davidoff S, Fairén AG, Farley KA, Flannery DT, Galvin A, Grotzinger JP, Gupta S, Hall J, Herd CDK, Hickman-Lewis K, Hodyss RP, Horgan BHN, Johnson JR, Jørgensen JL, Kah LC, Maki JN, Mandon L, Mangold N, McCubbin FM, McLennan SM, Moore K, Nachon M, Nemere P, Nothdurft LD, Núñez JI, O'Neil L, Quantin-Nataf CM, Sautter V, Shuster DL, Siebach KL, Simon JI, Sinclair KP, Stack KM, Steele A, Tarnas JD, Tosca NJ, Uckert K, Udry A, Wade LA, Weiss BP, Wiens RC, Williford KH, Zorzano MP. An olivine cumulate outcrop on the floor of Jezero crater, Mars. Science 2022; 377:1513-1519. [PMID: 36007094 DOI: 10.1126/science.abo2756] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The geological units on the floor of Jezero crater, Mars, are part of a wider regional stratigraphy of olivine-rich rocks, which extends well beyond the crater. We investigate the petrology of olivine and carbonate-bearing rocks of the Séítah formation in the floor of Jezero. Using multispectral images and x-ray fluorescence data, acquired by the Perseverance rover, we performed a petrographic analysis of the Bastide and Brac outcrops within this unit. We find that these outcrops are composed of igneous rock, moderately altered by aqueous fluid. The igneous rocks are mainly made of coarse-grained olivine, similar to some Martian meteorites. We interpret them as an olivine cumulate, formed by settling and enrichment of olivine through multi-stage cooling of a thick magma body.
Collapse
Affiliation(s)
- Y Liu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - M M Tice
- Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843, USA
| | - M E Schmidt
- Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - A H Treiman
- Lunar and Planetary Institute, Universities Space Research Association, Houston TX 77058, USA
| | - T V Kizovski
- Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - J A Hurowitz
- Department of Geosciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - A C Allwood
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - J Henneke
- Department of Space, Measurement and Instrumentation, Technical University of Denmark,, Lyngby, Denmark
| | - D A K Pedersen
- Department of Space, Measurement and Instrumentation, Technical University of Denmark,, Lyngby, Denmark
| | - S J VanBommel
- McDonnell Center for the Space Sciences, Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - M W M Jones
- Central Analytical Research Facility, and School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - A L Knight
- McDonnell Center for the Space Sciences, Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - B J Orenstein
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - B C Clark
- Space Science Institute, Boulder, CO 80301, USA
| | - W T Elam
- Applied Physics Lab and Department of Earth and Space Sciences, University of Washington, Seattle, WA 98052, USA
| | - C M Heirwegh
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - T Barber
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - L W Beegle
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - K Benzerara
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, Centre National de la Recherche Scientifique (CNRS), Muséum National d'Histoire Naturelle, Sorbonne Université, Paris 75005, France
| | - S Bernard
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, Centre National de la Recherche Scientifique (CNRS), Muséum National d'Histoire Naturelle, Sorbonne Université, Paris 75005, France
| | - O Beyssac
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, Centre National de la Recherche Scientifique (CNRS), Muséum National d'Histoire Naturelle, Sorbonne Université, Paris 75005, France
| | - T Bosak
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - E L Cardarelli
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - D C Catling
- Department of Earth and Space Sciences, University of Washington, Seattle WA 98195, USA
| | - J R Christian
- McDonnell Center for the Space Sciences, Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - E A Cloutis
- Department of Geography, University of Winnipeg, Winnipeg, Manitoba R3B 2E9, Canada
| | - B A Cohen
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - S Davidoff
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - A G Fairén
- Centro de Astrobiología, Consejo Superior de Investigaciones Cientificas - Instituto Nacional de Tecnica Aeroespacial, Madrid 28850, Spain.,Dept. of Astronomy, Cornell University, Ithaca, NY 14853, USA
| | - K A Farley
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - D T Flannery
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - A Galvin
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - J P Grotzinger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - S Gupta
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - J Hall
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - C D K Herd
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - K Hickman-Lewis
- Department of Earth Sciences, The Natural History Museum, South Kensington, London, SW7 5BD, UK.,Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, via Zamboni 67, I-40126 Bologna, Italy
| | - R P Hodyss
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - B H N Horgan
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - J R Johnson
- Johns Hopkins University Applied Physics Laboratory Laurel, MD 20723, USA
| | - J L Jørgensen
- Department of Space, Measurement and Instrumentation, Technical University of Denmark,, Lyngby, Denmark
| | - L C Kah
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville TN 37996, USA
| | - J N Maki
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - L Mandon
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris-Université Paris Sciences et Lettres, CNRS, Sorbonne Université, Université de Paris Cité, Meudon 92190, France
| | - N Mangold
- Laboratoire Planetologie et Geosciences, Centre National de Recherches Scientifiques, Universite Nantes, Universite Angers, Unite Mixte de Recherche 6112, Nantes 44322, France
| | - F M McCubbin
- NASA Johnson Space Center, Houston, TX 77058, USA
| | - S M McLennan
- Department of Geosciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - K Moore
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - M Nachon
- Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843, USA
| | - P Nemere
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - L D Nothdurft
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - J I Núñez
- Johns Hopkins University Applied Physics Laboratory Laurel, MD 20723, USA
| | - L O'Neil
- Applied Physics Lab and Department of Earth and Space Sciences, University of Washington, Seattle, WA 98052, USA
| | - C M Quantin-Nataf
- Laboratoire de Geologie de Lyon-Terre Planetes Environnement, Univ Lyon, Universite Claude Bernard Lyon 1, Ecole Normale Superieure Lyon, Centre National de Recherches Scientifiques, 69622 Villeurbanne, France
| | - V Sautter
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, Centre National de la Recherche Scientifique (CNRS), Muséum National d'Histoire Naturelle, Sorbonne Université, Paris 75005, France
| | - D L Shuster
- Dept. Earth and Planetary Science, University of California, Berkeley, CA 94720, USA
| | - K L Siebach
- Department of Earth, Environmental, and Planetary Sciences, Rice University, Houston, TX 77005, USA
| | - J I Simon
- NASA Johnson Space Center, Houston, TX 77058, USA
| | - K P Sinclair
- Applied Physics Lab and Department of Earth and Space Sciences, University of Washington, Seattle, WA 98052, USA
| | - K M Stack
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - A Steele
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
| | - J D Tarnas
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - N J Tosca
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - K Uckert
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - A Udry
- Department of Geosciences University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - L A Wade
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - B P Weiss
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - R C Wiens
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - K H Williford
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA.,Blue Marble Space Institute of Science, 600 1st Ave. Seattle, WA 98104, USA
| | - M-P Zorzano
- Centro de Astrobiología, Consejo Superior de Investigaciones Cientificas - Instituto Nacional de Tecnica Aeroespacial, Madrid 28850, Spain
| |
Collapse
|
16
|
Newman CE, Hueso R, Lemmon MT, Munguira A, Vicente-Retortillo Á, Apestigue V, Martínez GM, Toledo D, Sullivan R, Herkenhoff KE, de la Torre Juárez M, Richardson MI, Stott AE, Murdoch N, Sanchez-Lavega A, Wolff MJ, Arruego I, Sebastián E, Navarro S, Gómez-Elvira J, Tamppari L, Viúdez-Moreiras D, Harri AM, Genzer M, Hieta M, Lorenz RD, Conrad P, Gómez F, McConnochie TH, Mimoun D, Tate C, Bertrand T, Bell JF, Maki JN, Rodriguez-Manfredi JA, Wiens RC, Chide B, Maurice S, Zorzano MP, Mora L, Baker MM, Banfield D, Pla-Garcia J, Beyssac O, Brown A, Clark B, Lepinette A, Montmessin F, Fischer E, Patel P, del Río-Gaztelurrutia T, Fouchet T, Francis R, Guzewich SD. The dynamic atmospheric and aeolian environment of Jezero crater, Mars. SCIENCE ADVANCES 2022; 8:eabn3783. [PMID: 35613267 PMCID: PMC9132482 DOI: 10.1126/sciadv.abn3783] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Despite the importance of sand and dust to Mars geomorphology, weather, and exploration, the processes that move sand and that raise dust to maintain Mars' ubiquitous dust haze and to produce dust storms have not been well quantified in situ, with missions lacking either the necessary sensors or a sufficiently active aeolian environment. Perseverance rover's novel environmental sensors and Jezero crater's dusty environment remedy this. In Perseverance's first 216 sols, four convective vortices raised dust locally, while, on average, four passed the rover daily, over 25% of which were significantly dusty ("dust devils"). More rarely, dust lifting by nonvortex wind gusts was produced by daytime convection cells advected over the crater by strong regional daytime upslope winds, which also control aeolian surface features. One such event covered 10 times more area than the largest dust devil, suggesting that dust devils and wind gusts could raise equal amounts of dust under nonstorm conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Germán M. Martínez
- Lunar and Planetary Institute, USRA, Houston, TX, USA
- University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | - Naomi Murdoch
- ISAE-SUPAERO, Université de Toulouse, Toulouse, France
| | | | | | | | | | | | | | - Leslie Tamppari
- Jet Propulsion Laboratory–California Institute of Technology, Pasadena, CA, USA
| | | | | | - Maria Genzer
- Finnish Meteorological Institute, Helsinki, Finland
| | - Maria Hieta
- Finnish Meteorological Institute, Helsinki, Finland
| | | | - Pan Conrad
- Carnegie Institution for Science, Washington, DC, USA
| | | | | | - David Mimoun
- ISAE-SUPAERO, Université de Toulouse, Toulouse, France
| | | | | | | | - Justin N. Maki
- Jet Propulsion Laboratory–California Institute of Technology, Pasadena, CA, USA
| | | | - Roger C. Wiens
- Los Alamos National Laboratory, Los Alamos, NM, USA
- Purdue University, West Lafayette, IN, USA
| | | | | | | | - Luis Mora
- Centro de Astrobiologia, INTA, Madrid, Spain
| | - Mariah M. Baker
- Smithsonian National Air and Space Museum, Washington, DC, USA
| | - Don Banfield
- Cornell University, Ithaca, NY, USA
- NASA Ames, Mountain View, CA, USA
| | - Jorge Pla-Garcia
- Space Science Institute, Boulder, CO, USA
- Centro de Astrobiologia, INTA, Madrid, Spain
| | | | | | - Ben Clark
- Space Science Institute, Boulder, CO, USA
| | | | | | | | - Priyaben Patel
- Jet Propulsion Laboratory–California Institute of Technology, Pasadena, CA, USA
- UCL, London, UK
| | | | | | - Raymond Francis
- Jet Propulsion Laboratory–California Institute of Technology, Pasadena, CA, USA
| | | |
Collapse
|
17
|
Apestigue V, Gonzalo A, Jiménez JJ, Boland J, Lemmon M, de Mingo JR, García-Menendez E, Rivas J, Azcue J, Bastide L, Andrés-Santiuste N, Martínez-Oter J, González-Guerrero M, Martin-Ortega A, Toledo D, Alvarez-Rios FJ, Serrano F, Martín-Vodopivec B, Manzano J, López Heredero R, Carrasco I, Aparicio S, Carretero Á, MacDonald DR, Moore LB, Alcacera MÁ, Fernández-Viguri JA, Martín I, Yela M, Álvarez M, Manzano P, Martín JA, Del Hoyo JC, Reina M, Urqui R, Rodriguez-Manfredi JA, de la Torre Juárez M, Hernandez C, Cordoba E, Leiter R, Thompson A, Madsen S, Smith MD, Viúdez-Moreiras D, Saiz-Lopez A, Sánchez-Lavega A, Gomez-Martín L, Martínez GM, Gómez-Elvira FJ, Arruego I. Radiation and Dust Sensor for Mars Environmental Dynamic Analyzer Onboard M2020 Rover. SENSORS (BASEL, SWITZERLAND) 2022; 22:2907. [PMID: 35458893 PMCID: PMC9029032 DOI: 10.3390/s22082907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/25/2022]
Abstract
The Radiation and Dust Sensor is one of six sensors of the Mars Environmental Dynamics Analyzer onboard the Perseverance rover from the Mars 2020 NASA mission. Its primary goal is to characterize the airbone dust in the Mars atmosphere, inferring its concentration, shape and optical properties. Thanks to its geometry, the sensor will be capable of studying dust-lifting processes with a high temporal resolution and high spatial coverage. Thanks to its multiwavelength design, it will characterize the solar spectrum from Mars' surface. The present work describes the sensor design from the scientific and technical requirements, the qualification processes to demonstrate its endurance on Mars' surface, the calibration activities to demonstrate its performance, and its validation campaign in a representative Mars analog. As a result of this process, we obtained a very compact sensor, fully digital, with a mass below 1 kg and exceptional power consumption and data budget features.
Collapse
Affiliation(s)
- Victor Apestigue
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | - Alejandro Gonzalo
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | - Juan J Jiménez
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | - Justin Boland
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Mark Lemmon
- Space Science Institute, 4765 Walnut St, Suite B, Boulder, CO 80301, USA
| | - Jose R de Mingo
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | | | - Joaquín Rivas
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | - Joaquín Azcue
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | - Laurent Bastide
- Ingeniería de Sistemas para la Defensa de España (ISDEFE), Beatriz de Bobadilla St, 3, 28040 Madrid, Spain
| | | | | | - Miguel González-Guerrero
- Ingeniería de Sistemas para la Defensa de España (ISDEFE), Beatriz de Bobadilla St, 3, 28040 Madrid, Spain
| | | | - Daniel Toledo
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | | | - Felipe Serrano
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | | | - Javier Manzano
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | | | - Isaías Carrasco
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | - Sergio Aparicio
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | - Ángel Carretero
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | - Daniel R MacDonald
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Lori B Moore
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | | | - Israel Martín
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | - Margarita Yela
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | - Maite Álvarez
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | - Paula Manzano
- Ingeniería de Sistemas para la Defensa de España (ISDEFE), Beatriz de Bobadilla St, 3, 28040 Madrid, Spain
| | - Jose A Martín
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | - Juan C Del Hoyo
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | - Manuel Reina
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | - Roser Urqui
- Ingeniería de Sistemas para la Defensa de España (ISDEFE), Beatriz de Bobadilla St, 3, 28040 Madrid, Spain
| | - Jose A Rodriguez-Manfredi
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
- Centro de Astrobiología (INTA-CSIC), 28850 Torrejon de Ardoz, Spain
| | | | - Christina Hernandez
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Elizabeth Cordoba
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Robin Leiter
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Art Thompson
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Soren Madsen
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | - Daniel Viúdez-Moreiras
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
- Centro de Astrobiología (INTA-CSIC), 28850 Torrejon de Ardoz, Spain
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, Consejo Supeior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Agustín Sánchez-Lavega
- Departamento Física Aplicada I, Escuela Superior de Ingenieros, Universidad del País Vasco, Alameda Urquijo St, 48013 Bilbao, Spain
| | - Laura Gomez-Martín
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | - Germán M Martínez
- Lunar and Planetary Institute, Universities Space Research Association, Houston, TX 77058, USA
| | | | - Ignacio Arruego
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| |
Collapse
|
18
|
Mangold N, Gupta S, Gasnault O, Dromart G, Tarnas JD, Sholes SF, Horgan B, Quantin-Nataf C, Brown AJ, Le Mouélic S, Yingst RA, Bell JF, Beyssac O, Bosak T, Calef F, Ehlmann BL, Farley KA, Grotzinger JP, Hickman-Lewis K, Holm-Alwmark S, Kah LC, Martinez-Frias J, McLennan SM, Maurice S, Nuñez JI, Ollila AM, Pilleri P, Rice JW, Rice M, Simon JI, Shuster DL, Stack KM, Sun VZ, Treiman AH, Weiss BP, Wiens RC, Williams AJ, Williams NR, Williford KH. Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars. Science 2021; 374:711-717. [PMID: 34618548 DOI: 10.1126/science.abl4051] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- N Mangold
- Laboratoire Planétologie et Géodynamique, Centre National de Recherches Scientifiques, Université Nantes, Université Angers, Unité Mixte de Recherche 6112, 44322 Nantes, France
| | - S Gupta
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - O Gasnault
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, Université Paul Sabatier, Centre National de Recherches Scientifiques, Observatoire Midi-Pyrénées, 31400 Toulouse, France
| | - G Dromart
- Laboratoire de Géologie de Lyon-Terre Planètes Environnement, Univ Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure Lyon, Centre National de Recherches Scientifiques, 69622 Villeurbanne, France
| | - J D Tarnas
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - S F Sholes
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - B Horgan
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - C Quantin-Nataf
- Laboratoire de Géologie de Lyon-Terre Planètes Environnement, Univ Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure Lyon, Centre National de Recherches Scientifiques, 69622 Villeurbanne, France
| | - A J Brown
- Plancius Research, Severna Park, MD 21146, USA
| | - S Le Mouélic
- Laboratoire Planétologie et Géodynamique, Centre National de Recherches Scientifiques, Université Nantes, Université Angers, Unité Mixte de Recherche 6112, 44322 Nantes, France
| | - R A Yingst
- Planetary Science Institute, Tucson, AZ 85719, USA
| | - J F Bell
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - O Beyssac
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Unité Mixte de Recherche 7590, Centre National de Recherches Scientifiques, Sorbonne Université, Museum National d'Histoires Naturelles, 75005 Paris, France
| | - T Bosak
- Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - F Calef
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - B L Ehlmann
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - K A Farley
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - J P Grotzinger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - K Hickman-Lewis
- Department of Earth Sciences, The Natural History Museum, South Kensington, London SW7 5BD, UK.,Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, I-40126 Bologna, Italy
| | - S Holm-Alwmark
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark.,Department of Geology, Lund University, 22362 Lund, Sweden.,Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark
| | - L C Kah
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - J Martinez-Frias
- Instituto de Geociencias, Consejo Superior de Investigaciones Cientificas, Universidad Complutense Madrid, 28040 Madrid, Spain
| | - S M McLennan
- Department of Geosciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - S Maurice
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, Université Paul Sabatier, Centre National de Recherches Scientifiques, Observatoire Midi-Pyrénées, 31400 Toulouse, France
| | - J I Nuñez
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
| | - A M Ollila
- Space and Planetary Exploration Team, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - P Pilleri
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, Université Paul Sabatier, Centre National de Recherches Scientifiques, Observatoire Midi-Pyrénées, 31400 Toulouse, France
| | - J W Rice
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - M Rice
- Geology Department, College of Science and Engineering, Western Washington University, Bellingham, WA 98225, USA
| | - J I Simon
- Center for Isotope Cosmochemistry and Geochronology, Astromaterials Research and Exploration Science, NASA Johnson Space Center, Houston, TX 77058, USA
| | - D L Shuster
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA
| | - K M Stack
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - V Z Sun
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - A H Treiman
- Lunar and Planetary Institute, Universities Space Research Association, Houston, TX 77058, USA
| | - B P Weiss
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA.,Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - R C Wiens
- Space and Planetary Exploration Team, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - A J Williams
- Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - N R Williams
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - K H Williford
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA.,Blue Marble Space Institute of Science, Seattle, WA 98104, USA
| |
Collapse
|
19
|
Rodriguez-Manfredi JA, de la Torre Juárez M, Alonso A, Apéstigue V, Arruego I, Atienza T, Banfield D, Boland J, Carrera MA, Castañer L, Ceballos J, Chen-Chen H, Cobos A, Conrad PG, Cordoba E, del Río-Gaztelurrutia T, de Vicente-Retortillo A, Domínguez-Pumar M, Espejo S, Fairen AG, Fernández-Palma A, Ferrándiz R, Ferri F, Fischer E, García-Manchado A, García-Villadangos M, Genzer M, Giménez S, Gómez-Elvira J, Gómez F, Guzewich SD, Harri AM, Hernández CD, Hieta M, Hueso R, Jaakonaho I, Jiménez JJ, Jiménez V, Larman A, Leiter R, Lepinette A, Lemmon MT, López G, Madsen SN, Mäkinen T, Marín M, Martín-Soler J, Martínez G, Molina A, Mora-Sotomayor L, Moreno-Álvarez JF, Navarro S, Newman CE, Ortega C, Parrondo MC, Peinado V, Peña A, Pérez-Grande I, Pérez-Hoyos S, Pla-García J, Polkko J, Postigo M, Prieto-Ballesteros O, Rafkin SCR, Ramos M, Richardson MI, Romeral J, Romero C, Runyon KD, Saiz-Lopez A, Sánchez-Lavega A, Sard I, Schofield JT, Sebastian E, Smith MD, Sullivan RJ, Tamppari LK, Thompson AD, Toledo D, Torrero F, Torres J, Urquí R, Velasco T, Viúdez-Moreiras D, Zurita S, The MEDA team. The Mars Environmental Dynamics Analyzer, MEDA. A Suite of Environmental Sensors for the Mars 2020 Mission. SPACE SCIENCE REVIEWS 2021; 217:48. [PMID: 34776548 PMCID: PMC8550605 DOI: 10.1007/s11214-021-00816-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 05/16/2023]
Abstract
NASA's Mars 2020 (M2020) rover mission includes a suite of sensors to monitor current environmental conditions near the surface of Mars and to constrain bulk aerosol properties from changes in atmospheric radiation at the surface. The Mars Environmental Dynamics Analyzer (MEDA) consists of a set of meteorological sensors including wind sensor, a barometer, a relative humidity sensor, a set of 5 thermocouples to measure atmospheric temperature at ∼1.5 m and ∼0.5 m above the surface, a set of thermopiles to characterize the thermal IR brightness temperatures of the surface and the lower atmosphere. MEDA adds a radiation and dust sensor to monitor the optical atmospheric properties that can be used to infer bulk aerosol physical properties such as particle size distribution, non-sphericity, and concentration. The MEDA package and its scientific purpose are described in this document as well as how it responded to the calibration tests and how it helps prepare for the human exploration of Mars. A comparison is also presented to previous environmental monitoring payloads landed on Mars on the Viking, Pathfinder, Phoenix, MSL, and InSight spacecraft.
Collapse
Affiliation(s)
| | | | | | - V. Apéstigue
- Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | - I. Arruego
- Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | - T. Atienza
- Universidad Politécnica de Cataluña, Barcelona, Spain
| | - D. Banfield
- Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY USA
| | - J. Boland
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA USA
| | | | - L. Castañer
- Universidad Politécnica de Cataluña, Barcelona, Spain
| | - J. Ceballos
- Instituto de Microelectrónica de Sevilla (US-CSIC), Seville, Spain
| | - H. Chen-Chen
- Universidad del País Vasco (UPV/EHU), Bilbao, Spain
| | - A. Cobos
- CRISA-Airbus, Tres Cantos, Spain
| | | | - E. Cordoba
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA USA
| | | | | | | | - S. Espejo
- Instituto de Microelectrónica de Sevilla (US-CSIC), Seville, Spain
| | - A. G. Fairen
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | - R. Ferrándiz
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - F. Ferri
- Università degli Studi di Padova, Padova, Italy
| | - E. Fischer
- University of Michigan, Ann Arbor, MI USA
| | | | | | - M. Genzer
- Finnish Meteorological Institute, Helsinki, Finland
| | - S. Giménez
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - J. Gómez-Elvira
- Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | - F. Gómez
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | - A.-M. Harri
- Finnish Meteorological Institute, Helsinki, Finland
| | - C. D. Hernández
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA USA
| | - M. Hieta
- Finnish Meteorological Institute, Helsinki, Finland
| | - R. Hueso
- Universidad del País Vasco (UPV/EHU), Bilbao, Spain
| | - I. Jaakonaho
- Finnish Meteorological Institute, Helsinki, Finland
| | - J. J. Jiménez
- Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | - V. Jiménez
- Universidad Politécnica de Cataluña, Barcelona, Spain
| | - A. Larman
- Added-Value-Solutions, Elgoibar, Spain
| | - R. Leiter
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA USA
| | - A. Lepinette
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | - G. López
- Universidad Politécnica de Cataluña, Barcelona, Spain
| | - S. N. Madsen
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA USA
| | - T. Mäkinen
- Finnish Meteorological Institute, Helsinki, Finland
| | - M. Marín
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | - G. Martínez
- Lunar and Planetary Institute, Houston, TX USA
| | - A. Molina
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | | | - S. Navarro
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | - C. Ortega
- Added-Value-Solutions, Elgoibar, Spain
| | - M. C. Parrondo
- Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | - V. Peinado
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - A. Peña
- CRISA-Airbus, Tres Cantos, Spain
| | | | | | | | - J. Polkko
- Finnish Meteorological Institute, Helsinki, Finland
| | - M. Postigo
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | | | - M. Ramos
- Universidad de Alcalá, Alcalá de Henares, Spain
| | | | - J. Romeral
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - C. Romero
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | - A. Saiz-Lopez
- Dept. of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, Spain
| | | | - I. Sard
- Added-Value-Solutions, Elgoibar, Spain
| | - J. T. Schofield
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA USA
| | - E. Sebastian
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - M. D. Smith
- NASA Goddard Space Flight Center, Greenbelt, MD USA
| | - R. J. Sullivan
- Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY USA
| | - L. K. Tamppari
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA USA
| | - A. D. Thompson
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA USA
| | - D. Toledo
- Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | | | - J. Torres
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - R. Urquí
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | | | - S. Zurita
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - The MEDA team
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA USA
- CRISA-Airbus, Tres Cantos, Spain
- Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
- Universidad Politécnica de Cataluña, Barcelona, Spain
- Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY USA
- Added-Value-Solutions, Elgoibar, Spain
- Instituto de Microelectrónica de Sevilla (US-CSIC), Seville, Spain
- Universidad del País Vasco (UPV/EHU), Bilbao, Spain
- Carnegie Institution, Washington, DC USA
- Università degli Studi di Padova, Padova, Italy
- University of Michigan, Ann Arbor, MI USA
- Finnish Meteorological Institute, Helsinki, Finland
- Space Science Institute, Boulder, CO USA
- Lunar and Planetary Institute, Houston, TX USA
- Aeolis Corporation, Sierra Madre, CA USA
- Universidad Politécnica de Madrid, Madrid, Spain
- Southwest Research Institute, Boulder, CO USA
- Universidad de Alcalá, Alcalá de Henares, Spain
- John Hopkins APL, Laurel, MD USA
- Dept. of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, Spain
- NASA Goddard Space Flight Center, Greenbelt, MD USA
| |
Collapse
|
20
|
Hayes AG, Corlies P, Tate C, Barrington M, Bell JF, Maki JN, Caplinger M, Ravine M, Kinch KM, Herkenhoff K, Horgan B, Johnson J, Lemmon M, Paar G, Rice MS, Jensen E, Kubacki TM, Cloutis E, Deen R, Ehlmann BL, Lakdawalla E, Sullivan R, Winhold A, Parkinson A, Bailey Z, van Beek J, Caballo-Perucha P, Cisneros E, Dixon D, Donaldson C, Jensen OB, Kuik J, Lapo K, Magee A, Merusi M, Mollerup J, Scudder N, Seeger C, Stanish E, Starr M, Thompson M, Turenne N, Winchell K. Pre-Flight Calibration of the Mars 2020 Rover Mastcam Zoom (Mastcam-Z) Multispectral, Stereoscopic Imager. SPACE SCIENCE REVIEWS 2021; 217:29. [PMID: 33678912 PMCID: PMC7892537 DOI: 10.1007/s11214-021-00795-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/12/2021] [Indexed: 05/28/2023]
Abstract
UNLABELLED The NASA Perseverance rover Mast Camera Zoom (Mastcam-Z) system is a pair of zoomable, focusable, multi-spectral, and color charge-coupled device (CCD) cameras mounted on top of a 1.7 m Remote Sensing Mast, along with associated electronics and two calibration targets. The cameras contain identical optical assemblies that can range in focal length from 26 mm ( 25.5 ∘ × 19.1 ∘ FOV ) to 110 mm ( 6.2 ∘ × 4.2 ∘ FOV ) and will acquire data at pixel scales of 148-540 μm at a range of 2 m and 7.4-27 cm at 1 km. The cameras are mounted on the rover's mast with a stereo baseline of 24.3 ± 0.1 cm and a toe-in angle of 1.17 ± 0.03 ∘ (per camera). Each camera uses a Kodak KAI-2020 CCD with 1600 × 1200 active pixels and an 8 position filter wheel that contains an IR-cutoff filter for color imaging through the detectors' Bayer-pattern filters, a neutral density (ND) solar filter for imaging the sun, and 6 narrow-band geology filters (16 total filters). An associated Digital Electronics Assembly provides command data interfaces to the rover, 11-to-8 bit companding, and JPEG compression capabilities. Herein, we describe pre-flight calibration of the Mastcam-Z instrument and characterize its radiometric and geometric behavior. Between April 26 t h and May 9 t h , 2019, ∼45,000 images were acquired during stand-alone calibration at Malin Space Science Systems (MSSS) in San Diego, CA. Additional data were acquired during Assembly Test and Launch Operations (ATLO) at the Jet Propulsion Laboratory and Kennedy Space Center. Results of the radiometric calibration validate a 5% absolute radiometric accuracy when using camera state parameters investigated during testing. When observing using camera state parameters not interrogated during calibration (e.g., non-canonical zoom positions), we conservatively estimate the absolute uncertainty to be < 10 % . Image quality, measured via the amplitude of the Modulation Transfer Function (MTF) at Nyquist sampling (0.35 line pairs per pixel), shows MTF Nyquist = 0.26 - 0.50 across all zoom, focus, and filter positions, exceeding the > 0.2 design requirement. We discuss lessons learned from calibration and suggest tactical strategies that will optimize the quality of science data acquired during operation at Mars. While most results matched expectations, some surprises were discovered, such as a strong wavelength and temperature dependence on the radiometric coefficients and a scene-dependent dynamic component to the zero-exposure bias frames. Calibration results and derived accuracies were validated using a Geoboard target consisting of well-characterized geologic samples. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11214-021-00795-x.
Collapse
Affiliation(s)
- Alexander G. Hayes
- Department of Astronomy, Cornell University, Ithaca, NY 14850 USA
- Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14850 USA
| | - P. Corlies
- Department of Astronomy, Cornell University, Ithaca, NY 14850 USA
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - C. Tate
- Department of Astronomy, Cornell University, Ithaca, NY 14850 USA
| | - M. Barrington
- Department of Astronomy, Cornell University, Ithaca, NY 14850 USA
| | - J. F. Bell
- School of Earth and Space Exploration, Arizona State University, Phoenix, AZ 85287 USA
| | - J. N. Maki
- Jet Propulsion Laboratory, Pasadena, CA 91109 USA
| | - M. Caplinger
- Malin Space Science Systems, San Diego, CA 92121 USA
| | - M. Ravine
- Malin Space Science Systems, San Diego, CA 92121 USA
| | - K. M. Kinch
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - K. Herkenhoff
- USGS Astrogeology Science Center, 2255 N. Gemini Drive, Flagstaff, AZ 86001 USA
| | - B. Horgan
- Earth, Atmospheric, and Planetary Sciences Department, Purdue University, West Lafayette, IN 47907 USA
| | - J. Johnson
- Johns Hopkins Applied Physics Laboratory, Laurel, MD 20723 USA
| | - M. Lemmon
- Space Science Institute, 4765 Walnut St., Suite B, Boulder, CO 80301 USA
| | - G. Paar
- Joanneum Research Forschungsgesellschaft mbH, Steyrergasse 17, 8010 Graz, Austria
| | - M. S. Rice
- Geology Department, Western Washington University, Bellingham, WA 98225 USA
| | - E. Jensen
- Malin Space Science Systems, San Diego, CA 92121 USA
| | - T. M. Kubacki
- Malin Space Science Systems, San Diego, CA 92121 USA
| | - E. Cloutis
- Geography Department, University of Winnepeg, 515 Portage Ave, Winnipeg, MB R3B 2E9 Canada
| | - R. Deen
- Jet Propulsion Laboratory, Pasadena, CA 91109 USA
| | - B. L. Ehlmann
- Jet Propulsion Laboratory, Pasadena, CA 91109 USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91101 USA
| | - E. Lakdawalla
- The Planetary Society, 60 S Los Robles, Pasadena, CA 91101 USA
| | - R. Sullivan
- Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14850 USA
| | - A. Winhold
- School of Earth and Space Exploration, Arizona State University, Phoenix, AZ 85287 USA
| | - A. Parkinson
- Centre for Terrestrial and Planetary Exploration, University of Winnipeg, 515 Portage Ave, Winnipeg, MB R3B 2E9 Canada
| | - Z. Bailey
- Jet Propulsion Laboratory, Pasadena, CA 91109 USA
| | - J. van Beek
- Jet Propulsion Laboratory, Pasadena, CA 91109 USA
| | - P. Caballo-Perucha
- Joanneum Research Forschungsgesellschaft mbH, Steyrergasse 17, 8010 Graz, Austria
| | - E. Cisneros
- School of Earth and Space Exploration, Arizona State University, Phoenix, AZ 85287 USA
| | - D. Dixon
- Malin Space Science Systems, San Diego, CA 92121 USA
| | - C. Donaldson
- Malin Space Science Systems, San Diego, CA 92121 USA
| | - O. B. Jensen
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - J. Kuik
- Centre for Terrestrial and Planetary Exploration, University of Winnipeg, 515 Portage Ave, Winnipeg, MB R3B 2E9 Canada
| | - K. Lapo
- Geology Department, Western Washington University, Bellingham, WA 98225 USA
| | - A. Magee
- Malin Space Science Systems, San Diego, CA 92121 USA
| | - M. Merusi
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - J. Mollerup
- Geology Department, Western Washington University, Bellingham, WA 98225 USA
| | - N. Scudder
- Earth, Atmospheric, and Planetary Sciences Department, Purdue University, West Lafayette, IN 47907 USA
| | - C. Seeger
- Geology Department, Western Washington University, Bellingham, WA 98225 USA
| | - E. Stanish
- Centre for Terrestrial and Planetary Exploration, University of Winnipeg, 515 Portage Ave, Winnipeg, MB R3B 2E9 Canada
| | - M. Starr
- Malin Space Science Systems, San Diego, CA 92121 USA
| | - M. Thompson
- Jet Propulsion Laboratory, Pasadena, CA 91109 USA
| | - N. Turenne
- Centre for Terrestrial and Planetary Exploration, University of Winnipeg, 515 Portage Ave, Winnipeg, MB R3B 2E9 Canada
| | - K. Winchell
- Malin Space Science Systems, San Diego, CA 92121 USA
| |
Collapse
|
21
|
Newman CE, de la Torre Juárez M, Pla-García J, Wilson RJ, Lewis SR, Neary L, Kahre MA, Forget F, Spiga A, Richardson MI, Daerden F, Bertrand T, Viúdez-Moreiras D, Sullivan R, Sánchez-Lavega A, Chide B, Rodriguez-Manfredi JA. Multi-model Meteorological and Aeolian Predictions for Mars 2020 and the Jezero Crater Region. SPACE SCIENCE REVIEWS 2021; 217:20. [PMID: 33583960 PMCID: PMC7868679 DOI: 10.1007/s11214-020-00788-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/26/2020] [Indexed: 05/27/2023]
Abstract
Nine simulations are used to predict the meteorology and aeolian activity of the Mars 2020 landing site region. Predicted seasonal variations of pressure and surface and atmospheric temperature generally agree. Minimum and maximum pressure is predicted at Ls ∼ 145 ∘ and 250 ∘ , respectively. Maximum and minimum surface and atmospheric temperature are predicted at Ls ∼ 180 ∘ and 270 ∘ , respectively; i.e., are warmest at northern fall equinox not summer solstice. Daily pressure cycles vary more between simulations, possibly due to differences in atmospheric dust distributions. Jezero crater sits inside and close to the NW rim of the huge Isidis basin, whose daytime upslope (∼east-southeasterly) and nighttime downslope (∼northwesterly) winds are predicted to dominate except around summer solstice, when the global circulation produces more southerly wind directions. Wind predictions vary hugely, with annual maximum speeds varying from 11 to 19 ms - 1 and daily mean wind speeds peaking in the first half of summer for most simulations but in the second half of the year for two. Most simulations predict net annual sand transport toward the WNW, which is generally consistent with aeolian observations, and peak sand fluxes in the first half of summer, with the weakest fluxes around winter solstice due to opposition between the global circulation and daytime upslope winds. However, one simulation predicts transport toward the NW, while another predicts fluxes peaking later and transport toward the WSW. Vortex activity is predicted to peak in summer and dip around winter solstice, and to be greater than at InSight and much greater than in Gale crater. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11214-020-00788-2.
Collapse
Affiliation(s)
| | - M. de la Torre Juárez
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91001 USA
| | - J. Pla-García
- Centro de Astrobiología (CSIC-INTA), 28850 Madrid, Spain
- Space Science Institute, Boulder, CO 80301 USA
| | | | | | - L. Neary
- Belgian Institute for Space Aeronomy, Brussels, Belgium
| | | | - F. Forget
- Laboratoire de Météorologie Dynamique/Institut Pierre Simon Laplace (LMD/IPSL), Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), École Polytechnique, École Normale Supérieure (ENS), 75005 Paris, France
| | - A. Spiga
- Laboratoire de Météorologie Dynamique/Institut Pierre Simon Laplace (LMD/IPSL), Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), École Polytechnique, École Normale Supérieure (ENS), 75005 Paris, France
- Institut Universitaire de France, 75005 Paris, France
| | | | - F. Daerden
- Belgian Institute for Space Aeronomy, Brussels, Belgium
| | - T. Bertrand
- Ames Research Center, Mountain View, CA USA
- LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 92195 Meudon, France
| | | | - R. Sullivan
- Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14853 USA
| | | | - B. Chide
- Institut Supérieur de l’Aéronautique et de l’Espace (ISAE), Toulouse, France
| | | |
Collapse
|
22
|
Wiens RC, Maurice S, Robinson SH, Nelson AE, Cais P, Bernardi P, Newell RT, Clegg S, Sharma SK, Storms S, Deming J, Beckman D, Ollila AM, Gasnault O, Anderson RB, André Y, Michael Angel S, Arana G, Auden E, Beck P, Becker J, Benzerara K, Bernard S, Beyssac O, Borges L, Bousquet B, Boyd K, Caffrey M, Carlson J, Castro K, Celis J, Chide B, Clark K, Cloutis E, Cordoba EC, Cousin A, Dale M, Deflores L, Delapp D, Deleuze M, Dirmyer M, Donny C, Dromart G, George Duran M, Egan M, Ervin J, Fabre C, Fau A, Fischer W, Forni O, Fouchet T, Fresquez R, Frydenvang J, Gasway D, Gontijo I, Grotzinger J, Jacob X, Jacquinod S, Johnson JR, Klisiewicz RA, Lake J, Lanza N, Laserna J, Lasue J, Le Mouélic S, Legett C, Leveille R, Lewin E, Lopez-Reyes G, Lorenz R, Lorigny E, Love SP, Lucero B, Madariaga JM, Madsen M, Madsen S, Mangold N, Manrique JA, Martinez JP, Martinez-Frias J, McCabe KP, McConnochie TH, McGlown JM, McLennan SM, Melikechi N, Meslin PY, Michel JM, Mimoun D, Misra A, Montagnac G, Montmessin F, Mousset V, Murdoch N, Newsom H, Ott LA, Ousnamer ZR, Pares L, Parot Y, Pawluczyk R, Glen Peterson C, et alWiens RC, Maurice S, Robinson SH, Nelson AE, Cais P, Bernardi P, Newell RT, Clegg S, Sharma SK, Storms S, Deming J, Beckman D, Ollila AM, Gasnault O, Anderson RB, André Y, Michael Angel S, Arana G, Auden E, Beck P, Becker J, Benzerara K, Bernard S, Beyssac O, Borges L, Bousquet B, Boyd K, Caffrey M, Carlson J, Castro K, Celis J, Chide B, Clark K, Cloutis E, Cordoba EC, Cousin A, Dale M, Deflores L, Delapp D, Deleuze M, Dirmyer M, Donny C, Dromart G, George Duran M, Egan M, Ervin J, Fabre C, Fau A, Fischer W, Forni O, Fouchet T, Fresquez R, Frydenvang J, Gasway D, Gontijo I, Grotzinger J, Jacob X, Jacquinod S, Johnson JR, Klisiewicz RA, Lake J, Lanza N, Laserna J, Lasue J, Le Mouélic S, Legett C, Leveille R, Lewin E, Lopez-Reyes G, Lorenz R, Lorigny E, Love SP, Lucero B, Madariaga JM, Madsen M, Madsen S, Mangold N, Manrique JA, Martinez JP, Martinez-Frias J, McCabe KP, McConnochie TH, McGlown JM, McLennan SM, Melikechi N, Meslin PY, Michel JM, Mimoun D, Misra A, Montagnac G, Montmessin F, Mousset V, Murdoch N, Newsom H, Ott LA, Ousnamer ZR, Pares L, Parot Y, Pawluczyk R, Glen Peterson C, Pilleri P, Pinet P, Pont G, Poulet F, Provost C, Quertier B, Quinn H, Rapin W, Reess JM, Regan AH, Reyes-Newell AL, Romano PJ, Royer C, Rull F, Sandoval B, Sarrao JH, Sautter V, Schoppers MJ, Schröder S, Seitz D, Shepherd T, Sobron P, Dubois B, Sridhar V, Toplis MJ, Torre-Fdez I, Trettel IA, Underwood M, Valdez A, Valdez J, Venhaus D, Willis P. The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests. SPACE SCIENCE REVIEWS 2021; 217:4. [PMID: 33380752 PMCID: PMC7752893 DOI: 10.1007/s11214-020-00777-5] [Show More Authors] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 11/27/2020] [Indexed: 05/16/2023]
Abstract
The SuperCam instrument suite provides the Mars 2020 rover, Perseverance, with a number of versatile remote-sensing techniques that can be used at long distance as well as within the robotic-arm workspace. These include laser-induced breakdown spectroscopy (LIBS), remote time-resolved Raman and luminescence spectroscopies, and visible and infrared (VISIR; separately referred to as VIS and IR) reflectance spectroscopy. A remote micro-imager (RMI) provides high-resolution color context imaging, and a microphone can be used as a stand-alone tool for environmental studies or to determine physical properties of rocks and soils from shock waves of laser-produced plasmas. SuperCam is built in three parts: The mast unit (MU), consisting of the laser, telescope, RMI, IR spectrometer, and associated electronics, is described in a companion paper. The on-board calibration targets are described in another companion paper. Here we describe SuperCam's body unit (BU) and testing of the integrated instrument. The BU, mounted inside the rover body, receives light from the MU via a 5.8 m optical fiber. The light is split into three wavelength bands by a demultiplexer, and is routed via fiber bundles to three optical spectrometers, two of which (UV and violet; 245-340 and 385-465 nm) are crossed Czerny-Turner reflection spectrometers, nearly identical to their counterparts on ChemCam. The third is a high-efficiency transmission spectrometer containing an optical intensifier capable of gating exposures to 100 ns or longer, with variable delay times relative to the laser pulse. This spectrometer covers 535-853 nm ( 105 - 7070 cm - 1 Raman shift relative to the 532 nm green laser beam) with 12 cm - 1 full-width at half-maximum peak resolution in the Raman fingerprint region. The BU electronics boards interface with the rover and control the instrument, returning data to the rover. Thermal systems maintain a warm temperature during cruise to Mars to avoid contamination on the optics, and cool the detectors during operations on Mars. Results obtained with the integrated instrument demonstrate its capabilities for LIBS, for which a library of 332 standards was developed. Examples of Raman and VISIR spectroscopy are shown, demonstrating clear mineral identification with both techniques. Luminescence spectra demonstrate the utility of having both spectral and temporal dimensions. Finally, RMI and microphone tests on the rover demonstrate the capabilities of these subsystems as well.
Collapse
Affiliation(s)
| | - Sylvestre Maurice
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, UPS, CNRS, Toulouse, France
| | | | | | - Philippe Cais
- Laboratoire d’astrophysique de Bordeaux, Univ. Bordeaux, CNRS, Bordeaux, France
| | - Pernelle Bernardi
- Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris, Meudon, France
| | | | - Sam Clegg
- Los Alamos National Laboratory, Los Alamos, NM USA
| | | | | | | | | | | | - Olivier Gasnault
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Ryan B. Anderson
- U.S. Geological Survey Astrogeology Science Center, Flagstaff, AZ USA
| | - Yves André
- Centre National d’Etudes Spatiales, Toulouse, France
| | | | - Gorka Arana
- University of Basque Country, UPV/EHU, Bilbao, Spain
| | | | - Pierre Beck
- Institut de Planétologie et d’Astrophysique de Grenoble, Université Grenoble Alpes, Grenoble, France
| | | | - Karim Benzerara
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS, Museum National d’Histoire Naturelle, Sorbonne Université, Paris, France
| | - Sylvain Bernard
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS, Museum National d’Histoire Naturelle, Sorbonne Université, Paris, France
| | - Olivier Beyssac
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS, Museum National d’Histoire Naturelle, Sorbonne Université, Paris, France
| | - Louis Borges
- Los Alamos National Laboratory, Los Alamos, NM USA
| | - Bruno Bousquet
- Centre Lasers Intenses et Applications, University of Bordeaux, Bordeaux, France
| | - Kerry Boyd
- Los Alamos National Laboratory, Los Alamos, NM USA
| | | | | | - Kepa Castro
- University of Basque Country, UPV/EHU, Bilbao, Spain
| | - Jorden Celis
- Los Alamos National Laboratory, Los Alamos, NM USA
| | - Baptiste Chide
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, UPS, CNRS, Toulouse, France
- Institut Supérieur de l’Aéronautique et de l’Espace (ISAE), Toulouse, France
| | - Kevin Clark
- Jet Propulsion Laboratory/Caltech, Pasadena, CA USA
| | | | | | - Agnes Cousin
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, UPS, CNRS, Toulouse, France
| | | | | | | | | | | | | | - Gilles Dromart
- Univ Lyon, ENSL, Univ Lyon 1, CNRS, LGL-TPE, 69364 Lyon, France
| | | | | | - Joan Ervin
- Jet Propulsion Laboratory/Caltech, Pasadena, CA USA
| | - Cecile Fabre
- GeoRessources, Université de Lorraine, Nancy, France
| | - Amaury Fau
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS, Museum National d’Histoire Naturelle, Sorbonne Université, Paris, France
| | | | - Olivier Forni
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Thierry Fouchet
- Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris, Meudon, France
| | | | | | | | | | | | - Xavier Jacob
- Institut de mécanique des fluides de Toulouse (CNRS, INP, Univ. Toulouse), Toulouse, France
| | - Sophie Jacquinod
- Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris, Meudon, France
| | | | | | - James Lake
- Los Alamos National Laboratory, Los Alamos, NM USA
| | - Nina Lanza
- Los Alamos National Laboratory, Los Alamos, NM USA
| | | | - Jeremie Lasue
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Stéphane Le Mouélic
- Laboratoire de Planétologie et Géodynamique, Université de Nantes, Université d’Angers, CNRS UMR 6112, Nantes, France
| | - Carey Legett
- Los Alamos National Laboratory, Los Alamos, NM USA
| | | | - Eric Lewin
- Institut de Planétologie et d’Astrophysique de Grenoble, Université Grenoble Alpes, Grenoble, France
| | | | - Ralph Lorenz
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Eric Lorigny
- Centre National d’Etudes Spatiales, Toulouse, France
| | | | | | | | | | - Soren Madsen
- Jet Propulsion Laboratory/Caltech, Pasadena, CA USA
| | - Nicolas Mangold
- Laboratoire de Planétologie et Géodynamique, Université de Nantes, Université d’Angers, CNRS UMR 6112, Nantes, France
| | | | | | | | | | | | | | | | | | - Pierre-Yves Meslin
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, UPS, CNRS, Toulouse, France
| | | | - David Mimoun
- Institut Supérieur de l’Aéronautique et de l’Espace (ISAE), Toulouse, France
| | | | | | - Franck Montmessin
- Laboratoire Atmosphères, Milieux, Observations Spatiales, Paris, France
| | | | - Naomi Murdoch
- Institut Supérieur de l’Aéronautique et de l’Espace (ISAE), Toulouse, France
| | | | - Logan A. Ott
- Los Alamos National Laboratory, Los Alamos, NM USA
| | | | - Laurent Pares
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Yann Parot
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, UPS, CNRS, Toulouse, France
| | | | | | - Paolo Pilleri
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Patrick Pinet
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Gabriel Pont
- Centre National d’Etudes Spatiales, Toulouse, France
| | | | | | - Benjamin Quertier
- Laboratoire d’astrophysique de Bordeaux, Univ. Bordeaux, CNRS, Bordeaux, France
| | | | - William Rapin
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS, Museum National d’Histoire Naturelle, Sorbonne Université, Paris, France
| | - Jean-Michel Reess
- Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris, Meudon, France
| | - Amy H. Regan
- Los Alamos National Laboratory, Los Alamos, NM USA
| | | | | | - Clement Royer
- Institut d’Astrophysique Spatiale (IAS), Orsay, France
| | | | | | | | - Violaine Sautter
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS, Museum National d’Histoire Naturelle, Sorbonne Université, Paris, France
| | | | - Susanne Schröder
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institute of Optical Sensor Systems, Berlin, Germany
| | - Daniel Seitz
- Los Alamos National Laboratory, Los Alamos, NM USA
| | | | | | - Bruno Dubois
- Université de Toulouse; UPS-OMP, Toulouse, France
| | | | - Michael J. Toplis
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, UPS, CNRS, Toulouse, France
| | | | | | | | | | - Jacob Valdez
- Los Alamos National Laboratory, Los Alamos, NM USA
| | - Dawn Venhaus
- Los Alamos National Laboratory, Los Alamos, NM USA
| | - Peter Willis
- Jet Propulsion Laboratory/Caltech, Pasadena, CA USA
| |
Collapse
|
23
|
Stack KM, Williams NR, Calef F, Sun VZ, Williford KH, Farley KA, Eide S, Flannery D, Hughes C, Jacob SR, Kah LC, Meyen F, Molina A, Nataf CQ, Rice M, Russell P, Scheller E, Seeger CH, Abbey WJ, Adler JB, Amundsen H, Anderson RB, Angel SM, Arana G, Atkins J, Barrington M, Berger T, Borden R, Boring B, Brown A, Carrier BL, Conrad P, Dypvik H, Fagents SA, Gallegos ZE, Garczynski B, Golder K, Gomez F, Goreva Y, Gupta S, Hamran SE, Hicks T, Hinterman ED, Horgan BN, Hurowitz J, Johnson JR, Lasue J, Kronyak RE, Liu Y, Madariaga JM, Mangold N, McClean J, Miklusicak N, Nunes D, Rojas C, Runyon K, Schmitz N, Scudder N, Shaver E, SooHoo J, Spaulding R, Stanish E, Tamppari LK, Tice MM, Turenne N, Willis PA, Yingst RA. Photogeologic Map of the Perseverance Rover Field Site in Jezero Crater Constructed by the Mars 2020 Science Team. SPACE SCIENCE REVIEWS 2020; 216:127. [PMID: 33568875 DOI: 10.1007/s11214-020-00762-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 11/09/2020] [Indexed: 05/29/2023]
Abstract
The Mars 2020 Perseverance rover landing site is located within Jezero crater, a ∼ 50 km diameter impact crater interpreted to be a Noachian-aged lake basin inside the western edge of the Isidis impact structure. Jezero hosts remnants of a fluvial delta, inlet and outlet valleys, and infill deposits containing diverse carbonate, mafic, and hydrated minerals. Prior to the launch of the Mars 2020 mission, members of the Science Team collaborated to produce a photogeologic map of the Perseverance landing site in Jezero crater. Mapping was performed at a 1:5000 digital map scale using a 25 cm/pixel High Resolution Imaging Science Experiment (HiRISE) orthoimage mosaic base map and a 1 m/pixel HiRISE stereo digital terrain model. Mapped bedrock and surficial units were distinguished by differences in relative brightness, tone, topography, surface texture, and apparent roughness. Mapped bedrock units are generally consistent with those identified in previously published mapping efforts, but this study's map includes the distribution of surficial deposits and sub-units of the Jezero delta at a higher level of detail than previous studies. This study considers four possible unit correlations to explain the relative age relationships of major units within the map area. Unit correlations include previously published interpretations as well as those that consider more complex interfingering relationships and alternative relative age relationships. The photogeologic map presented here is the foundation for scientific hypothesis development and strategic planning for Perseverance's exploration of Jezero crater.
Collapse
Affiliation(s)
- Kathryn M Stack
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | - Nathan R Williams
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | - Fred Calef
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | - Vivian Z Sun
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | - Kenneth H Williford
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | | | | | - David Flannery
- Queensland University of Technology, Brisbane, Queensland, Australia
| | - Cory Hughes
- Western Washington University, Bellingham, WA, USA
| | | | - Linda C Kah
- University of Tennessee-Knoxville, Knoxville, TN, USA
| | | | - Antonio Molina
- Centro de Astrobiología, CAB (INTA, CSIC), Madrid, Spain
| | | | - Melissa Rice
- Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Eva Scheller
- California Institute of Technology, Pasadena, CA, USA
| | | | - William J Abbey
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | | | - Hans Amundsen
- Earth and Planetary Exploration Services, Berlin, Germany
| | | | | | - Gorka Arana
- University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - James Atkins
- University of Tennessee-Knoxville, Knoxville, TN, USA
| | | | - Tor Berger
- Forsvarets forskingsinstitutt, Kjeller, Norway
| | - Rose Borden
- University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Beau Boring
- University of Tennessee-Knoxville, Knoxville, TN, USA
| | | | - Brandi L Carrier
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | - Pamela Conrad
- Carnegie Institution for Science, Washington, D.C., USA
| | | | | | | | | | - Keenan Golder
- University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Felipe Gomez
- Centro de Astrobiología, CAB (INTA, CSIC), Madrid, Spain
| | - Yulia Goreva
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | | | | | - Taryn Hicks
- University of Tennessee-Knoxville, Knoxville, TN, USA
| | | | | | - Joel Hurowitz
- State University of New York-Stony Brook, Stony Brook, NY, USA
| | | | - Jeremie Lasue
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, Paul Sabatier, Toulouse, France
| | - Rachel E Kronyak
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | - Yang Liu
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | | | - Nicolas Mangold
- Laboratoire Planétologie et Géodynamique, UMR 6112, CNRS, Université de Nantes, Nantes, France
| | | | | | - Daniel Nunes
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | | | - Kirby Runyon
- Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA
| | - Nicole Schmitz
- Deutsches Zentrum Fuer Luft- und Raumfahrt E.V., Cologne, Germany
| | | | - Emily Shaver
- University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Jason SooHoo
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Evan Stanish
- University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Leslie K Tamppari
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | | | | | - Peter A Willis
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | | |
Collapse
|
24
|
Maki JN, Gruel D, McKinney C, Ravine MA, Morales M, Lee D, Willson R, Copley-Woods D, Valvo M, Goodsall T, McGuire J, Sellar RG, Schaffner JA, Caplinger MA, Shamah JM, Johnson AE, Ansari H, Singh K, Litwin T, Deen R, Culver A, Ruoff N, Petrizzo D, Kessler D, Basset C, Estlin T, Alibay F, Nelessen A, Algermissen S. The Mars 2020 Engineering Cameras and Microphone on the Perseverance Rover: A Next-Generation Imaging System for Mars Exploration. SPACE SCIENCE REVIEWS 2020; 216:137. [PMID: 33268910 PMCID: PMC7686239 DOI: 10.1007/s11214-020-00765-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/09/2020] [Indexed: 05/16/2023]
Abstract
The Mars 2020 Perseverance rover is equipped with a next-generation engineering camera imaging system that represents an upgrade over previous Mars rover missions. These upgrades will improve the operational capabilities of the rover with an emphasis on drive planning, robotic arm operation, instrument operations, sample caching activities, and documentation of key events during entry, descent, and landing (EDL). There are a total of 16 cameras in the Perseverance engineering imaging system, including 9 cameras for surface operations and 7 cameras for EDL documentation. There are 3 types of cameras designed for surface operations: Navigation cameras (Navcams, quantity 2), Hazard Avoidance Cameras (Hazcams, quantity 6), and Cachecam (quantity 1). The Navcams will acquire color stereo images of the surface with a 96 ∘ × 73 ∘ field of view at 0.33 mrad/pixel. The Hazcams will acquire color stereo images of the surface with a 136 ∘ × 102 ∘ at 0.46 mrad/pixel. The Cachecam, a new camera type, will acquire images of Martian material inside the sample tubes during caching operations at a spatial scale of 12.5 microns/pixel. There are 5 types of EDL documentation cameras: The Parachute Uplook Cameras (PUCs, quantity 3), the Descent stage Downlook Camera (DDC, quantity 1), the Rover Uplook Camera (RUC, quantity 1), the Rover Descent Camera (RDC, quantity 1), and the Lander Vision System (LVS) Camera (LCAM, quantity 1). The PUCs are mounted on the parachute support structure and will acquire video of the parachute deployment event as part of a system to characterize parachute performance. The DDC is attached to the descent stage and pointed downward, it will characterize vehicle dynamics by capturing video of the rover as it descends from the skycrane. The rover-mounted RUC, attached to the rover and looking upward, will capture similar video of the skycrane from the vantage point of the rover and will also acquire video of the descent stage flyaway event. The RDC, attached to the rover and looking downward, will document plume dynamics by imaging the Martian surface before, during, and after rover touchdown. The LCAM, mounted to the bottom of the rover chassis and pointed downward, will acquire 90 ∘ × 90 ∘ FOV images during the parachute descent phase of EDL as input to an onboard map localization by the Lander Vision System (LVS). The rover also carries a microphone, mounted externally on the rover chassis, to capture acoustic signatures during and after EDL. The Perseverance rover launched from Earth on July 30th, 2020, and touchdown on Mars is scheduled for February 18th, 2021.
Collapse
Affiliation(s)
- J. N. Maki
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - D. Gruel
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - C. McKinney
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | | | - M. Morales
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - D. Lee
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - R. Willson
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - D. Copley-Woods
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - M. Valvo
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - T. Goodsall
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - J. McGuire
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - R. G. Sellar
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | | | | | | | - A. E. Johnson
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - H. Ansari
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - K. Singh
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - T. Litwin
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - R. Deen
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - A. Culver
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - N. Ruoff
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - D. Petrizzo
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - D. Kessler
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - C. Basset
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - T. Estlin
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - F. Alibay
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - A. Nelessen
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - S. Algermissen
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| |
Collapse
|