1
|
A DFT study on the reaction mechanism of enantioselective reduction of ketones with borane catalyzed by a B-methoxy-oxazaborolidine catalyst derived from (–)-β-pinene. J Mol Model 2020; 26:27. [DOI: 10.1007/s00894-019-4276-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/09/2019] [Indexed: 10/25/2022]
|
2
|
Guo Y, Wang X, Ma N, Cao Y, Hussain S, Zhang J, Wei D, Chen X. Mechanisms of the Reactions of B‐Substituted Amine Boranes with THF·BH
3. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yu Guo
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Xinghua Wang
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou Henan 450001 China
| | - Nana Ma
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Yilin Cao
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Sajjad Hussain
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Jie Zhang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Donghui Wei
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou Henan 450001 China
| | - Xuenian Chen
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou Henan 450001 China
| |
Collapse
|
3
|
Łączkowski KZ, Biernasiuk A, Baranowska-Łączkowska A, Zielińska S, Sałat K, Furgała A, Misiura K, Malm A. Synthesis, antimicrobial and anticonvulsant screening of small library of tetrahydro-2H-thiopyran-4-yl based thiazoles and selenazoles. J Enzyme Inhib Med Chem 2016; 31:24-39. [PMID: 27193505 DOI: 10.1080/14756366.2016.1186020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Synthesis and investigation of antimicrobial activity of 22 novel thiazoles and selenazoles derived from dihydro-2H-thiopyran-4(3H)-one are presented. Additionally, anticonvulsant activity of six derivatives is examinated. Among the derivatives, compounds 4a-f, 4i, 4k, 4 l, 4n, 4o-s and 4v have very strong activity against Candida spp. with MIC = 1.95-15.62 μg/ml. In the case of compounds 4a-f, 4i, 4k, 4 l, 4n, 4o, 4r and 4s, the activity is very strong against some strains of Candida spp. isolated from clinical materials, with MIC = 0.98 to 15.62 μg/ml. Additionally, compounds 4n-v are found to be active against Gram-positive bacteria with MIC = 7.81-62.5 μg/ml. The results of anticonvulsant screening reveal that compounds 4a, 4b, 4m and 4n demonstrate a statistically significant anticonvulsant activity in the pentylenetetrazole model, whereas compounds 4a and 4n showed protection in 6-Hz psychomotor seizure model. Noteworthy, none of these compounds impaired animals' motor skills in the rotarod test. We also performed quantum chemical calculation of interaction and binding energies in complex of 4a with cyclodextrin.
Collapse
Affiliation(s)
- Krzysztof Z Łączkowski
- a Department of Chemical Technology and Pharmaceuticals , Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University , Bydgoszcz , Poland
| | - Anna Biernasiuk
- b Department of Pharmaceutical Microbiology , Faculty of Pharmacy, Medical University , Lublin , Poland
| | | | - Sylwia Zielińska
- a Department of Chemical Technology and Pharmaceuticals , Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University , Bydgoszcz , Poland
| | - Kinga Sałat
- d Chair of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University, Medical College , Krakow , Poland
| | - Anna Furgała
- d Chair of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University, Medical College , Krakow , Poland
| | - Konrad Misiura
- a Department of Chemical Technology and Pharmaceuticals , Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University , Bydgoszcz , Poland
| | - Anna Malm
- b Department of Pharmaceutical Microbiology , Faculty of Pharmacy, Medical University , Lublin , Poland
| |
Collapse
|
4
|
Gao L, Zeng Y, Zhang X, Meng L. Comparative studies on group III σ-hole and π-hole interactions. J Comput Chem 2016; 37:1321-7. [PMID: 26949204 DOI: 10.1002/jcc.24347] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/02/2016] [Accepted: 02/07/2016] [Indexed: 12/24/2022]
Abstract
The σ-hole of M2 H6 (M = Al, Ga, In) and π-hole of MH3 (M = Al, Ga, In) were discovered and analyzed, the bimolecular complexes M2 H6 ···NH3 and MH3 ···N2 P2 F4 (M = Al, Ga, In) were constructed to carry out comparative studies on the group III σ-hole interactions and π-hole interactions. The two types of interactions are all partial-covalent interactions; the π-hole interactions are stronger than σ-hole interactions. The electrostatic energy is the largest contribution for forming the σ-hole and π-hole interaction, the polarization energy is also an important factor to form the M···N interaction. The electrostatic energy contributions to the interaction energy of the σ-hole interactions are somewhat greater than those of the π-hole interactions. However, the polarization contributions for the π-hole interactions are somewhat greater than those for the σ-hole interactions.
Collapse
Affiliation(s)
- Lei Gao
- Institute of Computational Quantum Chemistry, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Yanli Zeng
- Institute of Computational Quantum Chemistry, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Xueying Zhang
- Institute of Computational Quantum Chemistry, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Lingpeng Meng
- Institute of Computational Quantum Chemistry, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| |
Collapse
|
5
|
Gao L, Zhang X, Meng L, Zeng Y. Enhancing the hydrogen bond between the bridged hydrogen atom of diborane and ammonia. J Mol Model 2015; 21:233. [PMID: 26271730 DOI: 10.1007/s00894-015-2776-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 07/27/2015] [Indexed: 10/23/2022]
Abstract
The character of the bridged hydrogen atom (Hb) of B2H6 has become a hot issue in recent years. In this work, the complexes B2H6 · · · NH3, B2H2X4 · · · nNH3 (n = 1, 2) and 2HF · · · B2H2X4 · · · 2NH3 (X = Cl, Br, I) were constructed and studied based on the M06-2X calculations to investigate how to enhance the Hb · · · N hydrogen-bonded interaction. When the terminal hydrogen atoms (Ht) of B2H6 were replaced by X (X = Cl, Br, I) atoms, the Hb · · · N hydrogen bond were strengthened. According to the electrostatic potentials in B2H2X4, two HF molecules were added to the interspace of the B-H-B-H four-membered ring of the B2H2X4 · · · 2NH3 complexes, and H · · · X hydrogen bond formed, resulting in further enhancing effect of Hb · · · N hydrogen bond. As a result, the positive cooperative effect of Hb · · · N hydrogen bond and H · · · X hydrogen bond do enhance the interactions of each other. The two measures not only enhance the strength of Hb · · · N hydrogen bond, but also achieve the goal to make the Hb · · · N hydrogen bond perpendicular to B · · · B direction.
Collapse
Affiliation(s)
- Lei Gao
- Institute of Computational Quantum Chemistry, College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | | | | | | |
Collapse
|
6
|
Interplay of thermochemistry and structural chemistry, the journal (volume 24, 2013, issues 5–6) and the discipline. Struct Chem 2014. [DOI: 10.1007/s11224-014-0529-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|