1
|
Bakó I, Jicsinszky L, Pothoczki S. Systematic Study of Different Types of Interactions in α-, β- and γ-Cyclodextrin: Quantum Chemical Investigation. Molecules 2024; 29:2205. [PMID: 38792067 PMCID: PMC11124371 DOI: 10.3390/molecules29102205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
In this work, comprehensive ab initio quantum chemical calculations using the DFT level of theory were performed to characterize the stabilization interactions (H-bonding and hyperconjugation effects) of two stable symmetrical conformations of α-, β-, and γ-cyclodextrins (CDs). For this purpose, we analyzed the electron density using "Atom in molecules" (AIM), "Natural Bond Orbital" (NBO), and energy decomposition method (CECA) in 3D and in Hilbert space. We also calculated the H-bond lengths and OH vibrational frequencies. In every investigated CD, the quantum chemical descriptors characterizing the strength of the interactions between the H-bonds of the primary OH (or hydroxymethyl) and secondary OH groups are examined by comparing the same quantity calculated for ethylene glycol, α-d-glucose (α-d-Glcp) and a water cluster as reference systems. By using these external standards, we can characterize more quantitatively the properties of these bonds (e.g., strength). We have demonstrated that bond critical points (BCP) of intra-unit H-bonds are absent in cyclodextrins, similar to α-d-Glcp and ethylene glycol. In contrast, the CECA analysis showed the existence of an exchange (bond-like) interaction between the interacting O…H atoms. Consequently, the exchange interaction refers to a chemical bond, namely the H-bond between two atoms, unlike BCP, which is not suitable for its detection.
Collapse
Affiliation(s)
- Imre Bakó
- HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - László Jicsinszky
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria, 9, 10125 Turin, Italy;
| | - Szilvia Pothoczki
- HUN-REN Wigner Research Centre for Physics, Konkoly Thege M. út 29-33, H-1121 Budapest, Hungary
| |
Collapse
|
2
|
Vishwakarma K, Ravi S, Mittal S. Ab initio Modeling of Hydrogen Bonding of Remdesivir and Adenosine with Uridine. Chemphyschem 2024; 25:e202300552. [PMID: 37983746 DOI: 10.1002/cphc.202300552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 11/22/2023]
Abstract
Remdesivir (RDV) emerged as an effective drug against the SARS-CoV-2 virus pandemic. One of the crucial steps in the mechanism of action of RDV is its incorporation into the growing RNA strand. RDV, an adenosine analogue, forms Watson-Crick (WC) type hydrogen bonds with uridine in the complementary strand and the strength of this interaction will control efficacy of RDV. While there is a plethora of structural and energetic information available about WC H-bonds in natural base pairs, the interaction of RDV with uridine has not been studied yet at the atomic level. In this article, we aim to bridge this gap, to understand RDV and its hydrogen bonding interactions, by employing density functional theory (DFT) at the M06-2X/cc-pVDZ level. The interaction energy, QTAIM analysis, NBO and SAPT2 are performed for RDV, adenosine, and their complex with uridine to gain insights into the nature of hydrogen bonding. The computations show that RDV has similar geometry, energetic, molecular orbitals, and aromaticity as adenosine, suggesting that RDV is an effective adenosine analogue. The important geometrical parameters, such as bond distances and red-shift in the stretching vibrational modes of adenosine, RDV and uridine identify two WC-type H-bonds. The relative strength of these two H-bonds is computed using QTAIM parameters and the computed hydrogen bond energy. Finally, the SAPT2 study is performed at the minima and at non-equilibrium base pair distances to understand the dominant intermolecular physical force. This study, based on a thorough analysis of a variety of computations, suggests that both adenosine and RDV have similar structure, energetic, and hydrogen bonding behaviour.
Collapse
Affiliation(s)
- Kamini Vishwakarma
- School of Advance Science and Languages, VIT Bhopal University, Kothrikalan, Sehore, Madhya, Pradesh, 466114, India
| | - Satyam Ravi
- School of Advance Science and Languages, VIT Bhopal University, Kothrikalan, Sehore, Madhya, Pradesh, 466114, India
| | - Sumit Mittal
- School of Advance Science and Languages, VIT Bhopal University, Kothrikalan, Sehore, Madhya, Pradesh, 466114, India
| |
Collapse
|
3
|
Wojtkowiak K, Jezierska A. Role of Non-Covalent Interactions in Carbonic Anhydrase I-Topiramate Complex Based on QM/MM Approach. Pharmaceuticals (Basel) 2023; 16:ph16040479. [PMID: 37111236 PMCID: PMC10146004 DOI: 10.3390/ph16040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 04/29/2023] Open
Abstract
Carbonic anhydrase (CA) I with a Topiramate (TPM) complex was investigated on the basis of a Quantum Mechanics/Molecular Mechanics (QM/MM) approach. The QM part was treated using Density Functional Theory (DFT) while the MM was simulated using Amberff14SB and GAFF force fields. In addition, the TIP3P model was applied to reproduce the polar environment influence on the studied complex. Next, three snapshots (after 5 ps, 10 ps, and 15 ps of the simulation time) were taken from the obtained trajectory to provide an insight into the non-covalent interactions present between the ligand and binding pocket of the protein. Our special attention was devoted to the binding site rearrangement, which is known in the literature concerning the complex. This part of the computations was performed using ωB97X functional with Grimme D3 dispersion corrections as well as a Becke-Johnson damping function (D3-BJ). Two basis sets were applied: def2-SVP (for larger models) and def2-TZVPD (for smaller models), respectively. In order to detect and describe non-covalent interactions between amino acids of the binding pocket and the ligand, Independent Gradient Model based on Hirshfeld partitioning (IGMH), Interaction Region Indicator (IRI), Quantum Theory of Atoms in Molecules (QTAIM) and Natural Bond Orbitals (NBO) methods were employed. Finally, Symmetry-Adapted Perturbation Theory (SAPT) was applied for energy decomposition between the ligand and protein. It was found that during the simulation time, the ligand position in the binding site was preserved. Nonetheless, amino acids interacting with TPM were exchanging during the simulation, thus showing the binding site reorganization. The energy partitioning revealed that dispersion and electrostatics are decisive factors that are responsible for the complex stability.
Collapse
Affiliation(s)
- Kamil Wojtkowiak
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Aneta Jezierska
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
4
|
Presentation of the simple and accurate models for estimating the individual hydrogen bond energies of Watson–Crick base pairs. Struct Chem 2022. [DOI: 10.1007/s11224-022-02071-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Oparin RD, Krestyaninov MA, Kiselev MG. Role of an intramolecular H-bond in lidocaine conformer distribution and polymorph stability. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Cheshmedzhieva D, Ilieva S, Hadjieva B, Galabov B. Hydrogen bonding probes electron density variations at the basic center in substituted alkyl benzoates: Theory and experiment. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Sonia Ilieva
- Department of Chemistry and Pharmacy University of Sofia Sofia Bulgaria
| | - Boriana Hadjieva
- Department of Chemistry and Pharmacy University of Sofia Sofia Bulgaria
| | - Boris Galabov
- Department of Chemistry and Pharmacy University of Sofia Sofia Bulgaria
| |
Collapse
|
7
|
Gupta AK, Gamoke BC, Raghavachari K. Interaction-Deletion: A Composite Energy Method for the Optimization of Molecular Systems Selectively Removing Specific Nonbonded Interactions. J Phys Chem A 2021; 125:4668-4682. [PMID: 34014684 DOI: 10.1021/acs.jpca.1c02918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The complex interactions between different portions of a large molecule can be challenging to analyze through traditional electronic structure calculations. Moreover, standard methods cannot easily quantify the physical consequences of individual pairwise interactions inside a molecule. By creating a set of molecular fragments, we propose a composite energy method to explore changes in a molecule caused by removing selected nonbonded interactions between different molecular portions. Energies and forces are easily obtained with this composite approach, allowing geometry optimizations that lead to chemically meaningful structures that describe how the omitted interactions contribute to changes in the local geometrical minima. We illustrate the application of our new hybrid scheme by computing the influence of intramolecular hydrogen-bonding interactions in two small molecules: 1,6-(tG+G+TG+G+g-)-hexanediol and a cyclic analogue, cis-1,4-cyclohexanediol. The resulting structural and energetic changes are interpreted to yield key physical insights and quantify concepts such as "preparation energy" or "reorganization energy". We demonstrate that the composite method can be extended to larger molecular systems by showing its application on a Si(100) surface model containing interactions between dissociated ammonia molecules on adjacent surface dimers. The scheme's efficacy is also tested by applying it to systems having multiple intramolecular interactions, viz., 310-polyglycine and H+GPGG. Furthermore, the cooperative nature of intramolecular hydrogen bonds is explored by using interaction-deletion in 2-nitrobenzene-1,3-diol.
Collapse
Affiliation(s)
- Ankur K Gupta
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Benjamin C Gamoke
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
8
|
Bursch M, Kunze L, Vibhute AM, Hansen A, Sureshan KM, Jones PG, Grimme S, Werz DB. Quantification of Noncovalent Interactions in Azide-Pnictogen, -Chalcogen, and -Halogen Contacts. Chemistry 2021; 27:4627-4639. [PMID: 33078853 PMCID: PMC7986704 DOI: 10.1002/chem.202004525] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Indexed: 01/18/2023]
Abstract
The noncovalent interactions between azides and oxygen‐containing moieties are investigated through a computational study based on experimental findings. The targeted synthesis of organic compounds with close intramolecular azide–oxygen contacts yielded six new representatives, for which X‐ray structures were determined. Two of those compounds were investigated with respect to their potential conformations in the gas phase and a possible significantly shorter azide–oxygen contact. Furthermore, a set of 44 high‐quality, gas‐phase computational model systems with intermolecular azide–pnictogen (N, P, As, Sb), –chalcogen (O, S, Se, Te), and –halogen (F, Cl, Br, I) contacts are compiled and investigated through semiempirical quantum mechanical methods, density functional approximations, and wave function theory. A local energy decomposition (LED) analysis is applied to study the nature of the noncovalent interaction. The special role of electrostatic and London dispersion interactions is discussed in detail. London dispersion is identified as a dominant factor of the azide–donor interaction with mean London dispersion energy‐interaction energy ratios of 1.3. Electrostatic contributions enhance the azide–donor coordination motif. The association energies range from −1.00 to −5.5 kcal mol−1.
Collapse
Affiliation(s)
- Markus Bursch
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstraße 4, 53115, Bonn, Germany
| | - Lukas Kunze
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstraße 4, 53115, Bonn, Germany
| | - Amol M Vibhute
- Technische Universität Braunschweig, Institut für Organische Chemie, Hagenring 30, 38106, Braunschweig, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstraße 4, 53115, Bonn, Germany
| | - Kana M Sureshan
- School of Chemistry, IISER Thiruvananthapuram, Kerala, 695551, India
| | - Peter G Jones
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106, Braunschweig, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstraße 4, 53115, Bonn, Germany
| | - Daniel B Werz
- Technische Universität Braunschweig, Institut für Organische Chemie, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
9
|
Stasyuk OA, Solà M, Swart M, Fonseca Guerra C, Krygowski TM, Szatylowicz H. Effect of Alkali Metal Cations on Length and Strength of Hydrogen Bonds in DNA Base Pairs. Chemphyschem 2020; 21:2112-2126. [PMID: 32643813 DOI: 10.1002/cphc.202000434] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/01/2020] [Indexed: 01/25/2023]
Abstract
For many years, non-covalently bonded complexes of nucleobases have attracted considerable interest. However, there is a lack of information about the nature of hydrogen bonding between nucleobases when the bonding is affected by metal coordination to one of the nucleobases, and how the individual hydrogen bonds and aromaticity of nucleobases respond to the presence of the metal cation. Here we report a DFT computational study of nucleobase pairs interacting with alkali metal cations. The metal cations contribute to the stabilization of the base pairs to varying degrees depending on their position. The energy decomposition analysis revealed that the nature of bonding between nucleobases does not change much upon metal coordination. The effect of the cations on individual hydrogen bonds were described by changes in VDD charges on frontier atoms, H-bond length, bond energy from NBO analysis, and the delocalization index from QTAIM calculations. The aromaticity changes were determined by a HOMA index.
Collapse
Affiliation(s)
- Olga A Stasyuk
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Spain
| | - Marcel Swart
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Spain.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Célia Fonseca Guerra
- Theoretical Chemistry, Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands.,Leiden Institute of Chemistry, Leiden University, PO Box 9502, NL-2300 RA, Leiden, The Netherlands
| | | | - Halina Szatylowicz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| |
Collapse
|
10
|
de Oliveira BG, Zabardasti A, do Rego DG, Pour MM. The formation of H···X hydrogen bond, C···X carbon-halide or Si···X tetrel bonds on the silylene-halogen dimers (X = F or Cl): intermolecular strength, molecular orbital interactions and prediction of covalency. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02644-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
1-Ferrocenylbutane-1,3-dione as a scaffold for ferrocenyl-based ligands: Synthesis, X-ray and computational studies. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Kupka T, Gajda Ł, Stobiński L, Kołodziej Ł, Mnich A, Buczek A, Broda MA. Local aromaticity mapping in the vicinity of planar and nonplanar molecules. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:359-372. [PMID: 31034627 DOI: 10.1002/mrc.4880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
We report on nucleus-independent magnetic shielding (NICS) scans over the centers of six- and five-membered rings in selected metal phthalocyanines (MPc) and fullerene C60 for more accurate characterization of local aromaticity in these compounds. Detailed tests were conducted on model aromatic molecules including benzene, pyrrole, indole, isoindole, and carbazole and subsequently applied to H2 Pc, ZnPc, Al(OH)Pc, and CuPc. Similar behavior of three selected magnetic probes, Bq, 3 He, and 7 Li+ , approaching perpendicularly the ring centers, was observed. For better visualization of shielding zone over the centers of aromatic rings, we introduced a simple mathematical procedure: the first and second derivatives of scan curves with respect to magnetic probe position enabled their additional examination. It allowed an easier localization of curve minimum and discrimination between areas in space varying by the magnetic field magnitude and to illustrate local aromaticity of two different kinds of rings in MPc with better resolution. Our results supported earlier reports on very low aromaticity indexes of pyrrole ring incorporated into MPc and significant aromaticity of the central macrocycle. No direct dependence between harmonic oscillator model of aromaticity and NICS was observed. Instead, a correlation between position of scan curve minimum and its magnitude were observed. In addition, the NICS values and 3 He chemical shifts in the middle of neutral C60 and C606- anion agreed well with the reported experimental NMR values for He@C60 and He@C606- .
Collapse
Affiliation(s)
- Teobald Kupka
- Faculty of Chemistry, University of Opole, Opole, Poland
| | - Łukasz Gajda
- Faculty of Chemistry, University of Opole, Opole, Poland
| | - Leszek Stobiński
- Faculty of Process and Chemical Engineering, Warsaw University of Technology, 1, Waryńskiego Street, 00-645, Warsaw, Poland
- nanoMAT Ltd., Waryńskiego 1 (FL. 4, RM. 401), 00-645, Warsaw, Poland
| | | | - Adrianna Mnich
- Faculty of Chemistry, University of Opole, Opole, Poland
| | - Aneta Buczek
- Faculty of Chemistry, University of Opole, Opole, Poland
| | | |
Collapse
|
13
|
Dash J, Ray S, Devi N, Basutkar N, Ambade AV, Pesala B. Fine-tuning of Terahertz resonances in hydrogen-bonded organic molecular complexes. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Halder A, Data D, Seelam PP, Bhattacharyya D, Mitra A. Estimating Strengths of Individual Hydrogen Bonds in RNA Base Pairs: Toward a Consensus between Different Computational Approaches. ACS OMEGA 2019; 4:7354-7368. [PMID: 31459834 PMCID: PMC6648064 DOI: 10.1021/acsomega.8b03689] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/12/2019] [Indexed: 06/10/2023]
Abstract
Noncoding RNA molecules are composed of a large variety of noncanonical base pairs that shape up their functionally competent folded structures. Each base pair is composed of at least two interbase hydrogen bonds (H-bonds). It is expected that the characteristic geometry and stability of different noncanonical base pairs are determined collectively by the properties of these interbase H-bonds. We have studied the ground-state electronic properties [using density functional theory (DFT) and DFT-D3-based methods] of all the 118 normal base pairs and 36 modified base pairs, belonging to 12 different geometric families (cis and trans of WW, WH, HH, WS, HS, and SS) that occur in a nonredundant set of high-resolution RNA crystal structures. Having addressed some of the limitations of the earlier approaches, we provide here a comprehensive compilation of the average energies of different types of interbase H-bonds (E HB). We have also characterized each interbase H-bond using 13 different parameters that describe its geometry, charge distribution at its bond critical point (BCP), and n → σ*-type charge transfer from filled π orbitals of the H-bond acceptor to the empty antibonding orbital of the H-bond donor. On the basis of the extent of their linear correlation with the H-bonding energy, we have shortlisted five parameters to model linear equations for predicting E HB values. They are (i) electron density at the BCP: ρ, (ii) its Laplacian: ∇2ρ, (iii) stabilization energy due to n → σ*-type charge transfer: E(2), (iv) donor-hydrogen distance, and (v) hydrogen-acceptor distance. We have performed single variable and multivariable linear regression analysis over the normal base pairs and have modeled sets of linear relationships between these five parameters and E HB. Performance testing of our model over the set of modified base pairs shows promising results, at least for the moderately strong H-bonds.
Collapse
Affiliation(s)
- Antarip Halder
- Center
for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology
(IIIT-H), Gachibowli, Hyderabad 500032, India
| | - Dhruv Data
- Center
for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology
(IIIT-H), Gachibowli, Hyderabad 500032, India
| | - Preethi P. Seelam
- Center
for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology
(IIIT-H), Gachibowli, Hyderabad 500032, India
| | - Dhananjay Bhattacharyya
- Computational
Science Division, Saha Institute of Nuclear
Physics(SINP), 1/AF,
Bidhannagar, Kolkata 700064, India
| | - Abhijit Mitra
- Center
for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology
(IIIT-H), Gachibowli, Hyderabad 500032, India
| |
Collapse
|
15
|
Bezzina B, Djemil R, Bensouilah N. Quantitative and qualitative analyses of intermolecular interactions in neutral/deprotonated aspirin@β-CD inclusion complexes: QTAIM and NBO analyses. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2429-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
16
|
Ebrahimi S, Dabbagh HA, Eskandari K. Arrangement and nature of intermolecular hydrogen bonding in complex biomolecular systems: modeling the vitamin C---L-alanine interaction. Struct Chem 2017. [DOI: 10.1007/s11224-017-1046-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Interplay of thermochemistry and Structural Chemistry, the journal (volume 27, 2016, issues 1-2) and the discipline. Struct Chem 2017. [DOI: 10.1007/s11224-017-0944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Theoretical study on the molecular structure, intermolecular interaction and spectral features of 2-aminopyridine/ 2,3-dichloro-5,6-dicyano-1,4-benzoquinone complex. J CHEM SCI 2017. [DOI: 10.1007/s12039-017-1277-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Zou JW, Huang M, Hu GX, Jiang YJ. Toward a uniform description of hydrogen bonds and halogen bonds: correlations of interaction energies with various geometric, electronic and topological parameters. RSC Adv 2017. [DOI: 10.1039/c6ra27590g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Correlations between interaction energies and various structural parameters were established to reveal the differences between hydrogen bonds and halogen bonds.
Collapse
Affiliation(s)
- Jian-Wei Zou
- School of Biological and Chemical Engineering
- Ningbo Institute of Technology
- Zhejiang University
- Ningbo 315100
- China
| | - Meilan Huang
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast BT9 5AG
- UK
| | - Gui-Xiang Hu
- School of Biological and Chemical Engineering
- Ningbo Institute of Technology
- Zhejiang University
- Ningbo 315100
- China
| | - Yong-Jun Jiang
- School of Biological and Chemical Engineering
- Ningbo Institute of Technology
- Zhejiang University
- Ningbo 315100
- China
| |
Collapse
|
20
|
Umadevi P, Senthilkumar L. Interaction between arginine conformers and Hofmeister halide anions. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|