1
|
Stevanović MZ, Bekić SS, Petri ET, Ćelić AS, Jakimov DS, Sakač MN, Kuzminac IZ. Synthesis, in vitro and in silico anticancer evaluation of novel pyridin-2-yl estra-1,3,5(10)-triene derivatives. Future Med Chem 2024; 16:1127-1145. [PMID: 38629440 PMCID: PMC11221553 DOI: 10.4155/fmc-2024-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/26/2024] [Indexed: 06/26/2024] Open
Abstract
Aim: The aim of this study was the synthesis of steroid compounds with heterocyclic rings and good anticancer properties. Materials & methods: The synthesis, in silico and in vitro anticancer testing of novel pyridin-2-yl estra-1,3,5(10)-triene derivatives was performed. Results: All synthesized compounds have shown promising results for, antiproliferative activity, relative binding affinities for the ligand binding domains of estrogen receptors α, β and androgen receptor, aromatase binding potential, and inhibition of AKR1C3 enzyme. Conclusion: 3-Benzyloxy (17E)-pycolinilidene derivative 9 showed the best antitumor potential against MDA-MB-231 cell line, an activity that can be explained by its moderate inhibition of AKR1C3. Molecular docking simulation indicates that it binds to AKR1C3 in a very similar orientation and geometry as steroidal inhibitor EM1404.
Collapse
Affiliation(s)
- Milica Z Stevanović
- Department of Chemistry, Biochemistry & Environmental Protection, University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Sofija S Bekić
- Department of Chemistry, Biochemistry & Environmental Protection, University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Edward T Petri
- Department of Biology & Ecology, University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Andjelka S Ćelić
- Department of Biology & Ecology, University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Dimitar S Jakimov
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put Dr Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Marija N Sakač
- Department of Chemistry, Biochemistry & Environmental Protection, University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Ivana Z Kuzminac
- Department of Chemistry, Biochemistry & Environmental Protection, University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| |
Collapse
|
2
|
Ilovaisky AI, Scherbakov AM, Merkulova VM, Chernoburova EI, Shchetinina MA, Andreeva OE, Salnikova DI, Zavarzin IV, Terent'ev AO. Secosteroid-quinoline hybrids as new anticancer agents. J Steroid Biochem Mol Biol 2023; 228:106245. [PMID: 36608906 DOI: 10.1016/j.jsbmb.2022.106245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
An elegant approach to unknown secosteroid-quinoline hybrids is disclosed. A series of 13,17-secoestra-1,3,5(10)-trien-17-oic acid [N'-(iso)quinolylmethylene]hydrazides was prepared and these novel type of secosteroids was screened for antiproliferative activity against estrogen-responsive human breast cancer cell line MCF-7. Most of the synthesized compounds showed a cytotoxic effect superior to that of reference drug cisplatin; the lead compound exhibits the highest activity with the IC50 value of about 0.8 μM and is 7 times more active than cisplatin. A high selectivity index was observed for the hit 13,17-secoestra-1,3,5(10)-trien-17-oic acid [N'-quinolylmethylene]hydrazides 2a and 2c. Compounds 2a and 2c evaluated in luciferase reporter assays exhibited high antiestrogenic potency which was superior to that of tamoxifen. These hit compounds were characterized by high activity against MCF-7 cells that retained towards multidrug-resistant NCI/ADR-RES cells.
Collapse
Affiliation(s)
- Alexey I Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia.
| | - Alexander M Scherbakov
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115478, Russia
| | - Valentina M Merkulova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Elena I Chernoburova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Marina A Shchetinina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Olga E Andreeva
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115478, Russia
| | - Diana I Salnikova
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115478, Russia
| | - Igor V Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia.
| |
Collapse
|
3
|
Kuzminac IZ, Bekić SS, Ćelić AS, Jakimov DS, Sakač MN. Antitumor potential of novel 5α,6β-dibromo steroidal D-homo lactone. Steroids 2022; 188:109118. [PMID: 36183814 DOI: 10.1016/j.steroids.2022.109118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 01/11/2023]
Abstract
New steroidal D-homo androstane derivative, 5α,6β-dibromo-3β-hydroxy-17-oxa-17a-homoandrostan-16-one was synthesized and its structure was confirmed by NMR spectroscopy. In silico ADME properties of this compound were assessed using the SwissADME online prediction tool. Six human cancer cell lines (MDA-MB-231, MCF-7, PC3, HT-29, HeLa, and A549) and one human noncancerous cell line (MRC-5) were used for in vitro cytotoxicity testing. Novel steroidal dibromide was also tested for relative binding affinity for the ligand binding domain of estrogen receptor α and β or the androgen receptor using a published assay in yeast cells. Ligand binding domains of each steroid receptor were expressed in-frame with yellow fluorescent protein in yeast and the fluorescence intensity changes upon addition of test compound was measured. The new compound showed selective cytotoxic activity against HT-29 (colon adenocarcinoma) and A549 (lung adenocarcinoma) cell lines, as well as the potential to induce apoptosis in HT-29 cells, while results obtained from ligand binding assay in yeast suggested a lack of significant estrogenic or androgenic properties.
Collapse
Affiliation(s)
- Ivana Z Kuzminac
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Sofija S Bekić
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Anđelka S Ćelić
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Dimitar S Jakimov
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put Dr Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Marija N Sakač
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| |
Collapse
|
4
|
Hormone receptor binding, selectivity and cytotoxicity of steroid D-homo lactone loaded chitosan nanoparticles for the treatment of breast and prostate cancer cells. Colloids Surf B Biointerfaces 2022; 216:112597. [PMID: 35636320 DOI: 10.1016/j.colsurfb.2022.112597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 11/23/2022]
Abstract
Chemically modified steroids have a long history as anti-neoplastic drugs. Incorporation of a lactone moiety in the steroid nucleus, as in previously obtained 3β-acetoxy-17-oxa-17a-homoandrost-5-en-16-one (A) and 3β-hidroxy-17-oxa-17a-homoandrost-5-en-16-one (B), often results in enhanced anticancer properties. In this work, chitosan-based (Ch) nanoparticles were created and loaded with potent anticancer steroidal compounds, A and B. Changes to hormone receptor binding and cytotoxicity were then measured. In agreement with our previous results for A and B, A- and B-loaded Ch displayed cytotoxic properties against cancer cell lines. Both A-Ch and B-Ch showed activity toward estrogen negative breast cancer (MDA-MB-231) and androgen negative prostate cancer cell lines (PC-3). Greater selectivity toward cancer cells versus healthy lung fibroblast (MRC-5) was observed for B-Ch particles. Cell viability and cytotoxicity measurements after a recovery period indicate more robust recovery of healthy cells versus malignant cells. Compounds A and B or their Ch-encapsulated forms were shown to have negligible affinity for the ligand binding domain of estrogen receptor β or the androgen receptor in a fluorescent yeast screen, suggesting a lack of estrogenicity and androgenicity. Steroid-loaded chitosan nanoparticles display strong cytotoxicity towards MDA-MB-231 and PC-3 with a lack of hormone activity, indicating their safety and efficacy.
Collapse
|
5
|
Kovačević S, Karadžić Banjac M, Anojčić J, Podunavac-Kuzmanović S, Jevrić L, Nikolić A, Savić M, Kuzminac I. Chemometrics of anisotropic lipophilicity of anticancer androstane derivatives determined by reversed-phase ultra high performance liquid chromatography with polar aprotic and protic modifiers. J Chromatogr A 2022; 1673:463197. [DOI: 10.1016/j.chroma.2022.463197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
|
6
|
Ilovaisky AI, Merkulova VM, Chernoburova EI, Shchetinina MA, Salnikova DI, Scherbakov AM, Zavarzin IV, Terent'ev AO. Secosteroidal hydrazides: Promising scaffolds for anti-breast cancer agents. J Steroid Biochem Mol Biol 2021; 214:106000. [PMID: 34547379 DOI: 10.1016/j.jsbmb.2021.106000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 11/15/2022]
Abstract
A convenient and selective approach to 13,17-secoestra-1,3,5(10)-trien-17-oic acid hydrazides and their N'-(het)arylmethylene derivatives was disclosed and these novel types of secosteroids were screened for cytotoxicity against hormone-dependent human breast cancer cell line MCF-7. A number of 13,17-secoestra-1,3,5(10)-trien-17-oic acid [N'-(het)arylmethylene]hydrazides show significant cytotoxic effect comparable or superior to that for reference drug cisplatin. Compound 3l exhibits the highest activity with the IC50 value of about 2 μM and is 2.8 times more active than cisplatin. Hit 13,17-secoestra-1,3,5(10)-trien-17-oic acid [N'-(het)arylmethylene]hydrazides 3d, 3l and 3q are characterized by high cytotoxicity and good selectivity towards MCF-7 breast cancer cells. The synthesized secosteroids may be considered as new promising antitumor agents.
Collapse
Affiliation(s)
- Alexey I Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Valentina M Merkulova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Elena I Chernoburova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Marina A Shchetinina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Diana I Salnikova
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 24 Kashirskoye sh., Moscow, 115522, Russia
| | - Alexander M Scherbakov
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 24 Kashirskoye sh., Moscow, 115522, Russia
| | - Igor V Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia.
| |
Collapse
|
7
|
Kuzminac IZ, Jakimov DS, Bekić SS, Ćelić AS, Marinović MA, Savić MP, Raičević VN, Kojić VV, Sakač MN. Synthesis and anticancer potential of novel 5,6-oxygenated and/or halogenated steroidal d-homo lactones. Bioorg Med Chem 2021; 30:115935. [PMID: 33340938 DOI: 10.1016/j.bmc.2020.115935] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/19/2020] [Accepted: 12/03/2020] [Indexed: 11/18/2022]
Abstract
A series of 5,6-modified steroidal d-homo lactones, comprising of halogenated and/or oxygenated derivatives, was synthesized and evaluated for potential anticancer properties. Preparation of many of these compounds involved investigating alternative synthetic pathways. In silico ADME testing was performed for both novel and some previously synthesized compounds. Calculated physicochemical properties were in accordance with the Lipinski, Veber, Egan, Ghose and Muegge criteria, suggesting the potential of these molecules as orally active agents. Cytotoxicity of the synthesized steroid derivatives was tested on six tumor and one normal human cell line. None of the investigated derivatives was toxic to non-cancerous MRC-5 control cells. Most of the compounds showed significant cytotoxicity against the treated cancer cell lines. Most notably, the 3β,5α,6β-trihydroxy derivative exhibited strong cytotoxicity against multiple cell lines (MCF-7, MDA-MB-231 and HT-29), with the highest effect observed for lung adenocarcinoma (A549) cells, for which this steroid was more cytotoxic than all of the three commercial chemotherapeutic agents used as reference compounds. Molecular docking suggests the 3β,5α,6β-trihydroxy derivative could bind the EGFR tyrosine kinase domain with high affinity, providing a potential mechanism for its cytotoxicity via inhibition of EGFR signaling. The most active compounds were further studied for their potential to induce apoptosis by the double-staining fluorescence method; where the 5α,6β-dibromide, 5α,6β-dichloride and 3β,5α,6β-triol induced apoptotic changes in all three treated cell lines: MDA-MB-231, HT-29 and A549. To predict interactions with nuclear steroidal receptors, affinity for the ligand binding domains of ERα, ERβ and AR was measured using a yeast-based fluorescence assay. The 5β,6β-epoxide, dibromide and 5α-hydroxy-3,6-dioxo derivatives showed affinity for ERα, while the 5α-fluoro-6β-hydroxy and 3β-acetoxy-5α,6β-dihydroxy derivatives were identified as ERβ ligands. None of the tested compounds showed affinity for AR. Structure-activity relationships of selected compounds were also examined.
Collapse
Affiliation(s)
- Ivana Z Kuzminac
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Dimitar S Jakimov
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put Dr Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Sofija S Bekić
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Anđelka S Ćelić
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Maja A Marinović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Marina P Savić
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Vidak N Raičević
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Vesna V Kojić
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put Dr Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Marija N Sakač
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| |
Collapse
|
8
|
Ilovaisky AI, Merkulova VM, Vil' VA, Chernoburova EI, Shchetinina MA, Loguzov SD, Dmitrenok AS, Zavarzin IV, Terent'ev AO. Regioselective Baeyer-Villiger Oxidation of Steroidal Ketones to Lactones Using BF3/H2O2. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alexey I. Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospect 119991 Moscow Russian Federation
- All-Russian Research Institute for Phytopathology; 143050 Moscow Russian Federation
| | - Valentina M. Merkulova
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospect 119991 Moscow Russian Federation
| | - Vera A. Vil'
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospect 119991 Moscow Russian Federation
- All-Russian Research Institute for Phytopathology; 143050 Moscow Russian Federation
| | - Elena I. Chernoburova
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospect 119991 Moscow Russian Federation
| | - Marina A. Shchetinina
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospect 119991 Moscow Russian Federation
| | - Sergey D. Loguzov
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospect 119991 Moscow Russian Federation
| | - Andrey S. Dmitrenok
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospect 119991 Moscow Russian Federation
| | - Igor V. Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospect 119991 Moscow Russian Federation
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospect 119991 Moscow Russian Federation
- All-Russian Research Institute for Phytopathology; 143050 Moscow Russian Federation
- D.I. Mendeleev University of Chemical Technology of Russia; 125047 Moscow Russian Federation
| |
Collapse
|
9
|
Ponikvar-Svet M, Zeiger DN, Liebman JF. Interplay of thermochemistry and Structural Chemistry, the journal (volume 28, 2017, issues 3–4) and the discipline. Struct Chem 2018. [DOI: 10.1007/s11224-018-1137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
The effect of the androstane lung cancer inhibitor content on the cell-selective toxicity of hydroxyapatite-chitosan-PLGA nanocomposites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:371-377. [DOI: 10.1016/j.msec.2018.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/04/2018] [Accepted: 04/12/2018] [Indexed: 01/23/2023]
|
11
|
Fuentes-Aguilar A, Romero-Hernández LL, Arenas-González A, Merino-Montiel P, Montiel-Smith S, Meza-Reyes S, Vega-Báez JL, Plata GB, Padrón JM, López Ó, Fernández-Bolaños JG. New selenosteroids as antiproliferative agents. Org Biomol Chem 2018; 15:5041-5054. [PMID: 28574071 DOI: 10.1039/c7ob00458c] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Starting from natural steroids (diosgenin, hecogenin, smilagenin, estrone), we have prepared a wide panel of selenoderivatives, including benzoselenazolones, selenosemicarbazones, isoselenocyanates, selenoureas, selenocyanates and diselenides, with the aim of developing new families of potential chemotherapeutic agents. The modification of the organoselenium moieties, and their position on the steroid provided valuable information concerning the antiproliferative activities. Among all the families accessed herein, the best profile was achieved for selenoureas on the A ring of estrone, which exhibited GI50 values in the range 2.0-4.1 μM for all the tested tumor cell lines, with increased potency compared with commonly used chemotherapeutic agents, like 5-fluorouracil and cisplatin. Cell cycle analysis revealed that selenoureas induced accumulation of cells in the G1 phase of the cell cycle in the breast cancer cell lines HBL-100 and T-47D; therefore, a different mechanism than cisplatin, that induces cell cycle accumulation in the S phase as a result of DNA damage, must be involved. In the rest of the tumor cells, a slight increase of the S compartment was observed. Moreover, selenosteoids turned out to be excellent glutathione peroxidase (GPx) mimics for the catalytic removal of deleterious H2O2 (t1/2 8.0-22.5 min) and alkyl peroxides (t1/2 23.0-38.9 min) when used in substoichiometric amounts (1% molar ratio), thus providing a valuable tool for reducing the intrinsic oxidative stress in tumor progression.
Collapse
Affiliation(s)
- Alma Fuentes-Aguilar
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, PUE, Mexico.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|