1
|
Elsayed DA, Abdu ME, Marzouk MA, Mahmoud EM, El-Shwiniy WH, Spring AM, Shehab WS. Bio-computational modeling, POM analysis and molecular dynamic simulation for novel synthetic quinolone and benzo[d][1,3]oxazine candidates as antimicrobial inhibitors. Sci Rep 2024; 14:28709. [PMID: 39567581 PMCID: PMC11579483 DOI: 10.1038/s41598-024-73972-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 11/22/2024] Open
Abstract
The current study offers a metal-free, direct, and successful synthesis technique for a new series of quinolinone and benzo[d][1,3]oxazine, along with an assessment of their biological activities. Heteroannulation of anthranilic acid with carbonyl-containing chemicals (aroyl pyruvate, ethyl acetoacetatete, maleic anhydride, and ethyl cyanoacetate) resulted in the desired quinolones and benzo[d][1,3]oxazines. This technique introduces a number of fundamental breakthroughs in organic synthesis, including metal-free catalysts, smart reaction conditions with column purification, and a wide functional scope. Furthermore, the structure of the newly synthesized chemical series was investigated and validated using spectroscopic techniques. The synthesized series were evaluated for antibacterial (against gram-positive and gram-negative bacterial strains) and antifungal activity. The quinolone and benzo[d][1,3]oxazine candidates had remarkable antibacterial action. Furthermore, molecular docking investigations corroborated the biological studies using the Molecular Operating Environment and Petro Osiris Molinspiration (POM) experiments, which confirmed the activity of compounds 8, 15, and 17. Our studies on the cytotoxic activity of various chemicals have demonstrated that these compounds exhibit minimal toxicity. Specifically, when comparing the cytotoxic effects on human lung fibroblast (WI38) cells to those of Doxorubicin, a well-known chemotherapy agent, compounds 8, 15, and 17 showed weak cytotoxic effects on the normal WI38 cells. This indicates that these compounds may possess some level of selectivity and reduced toxicity towards normal cells, suggesting potential for further exploration as antibacterial agents with a safer profile for normal cells.
Collapse
Affiliation(s)
- Doaa A Elsayed
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Mohamed E Abdu
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
- Kyushu Universty, Kasuga-KoenKasuga, Fukuoka, 816-8580, Japan
| | - Mohammed A Marzouk
- Department of pharmaceutical organic Chemistry, Faculty of Pharmacy, Zagazig Universty, Zagazig, 44519, Egypt
| | - Elsayed M Mahmoud
- Department of pharmaceutical organic Chemistry, Faculty of Pharmacy, Zagazig Universty, Zagazig, 44519, Egypt
| | - Walaa H El-Shwiniy
- Department of Chemistry, College of Science, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Andrew M Spring
- Kyushu Universty, Kasuga-KoenKasuga, Fukuoka, 816-8580, Japan
| | - Wesam S Shehab
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
2
|
Králová P, Soural M. Biological properties of pyrroloquinoline and pyrroloisoquinoline derivatives. Eur J Med Chem 2024; 269:116287. [PMID: 38492334 DOI: 10.1016/j.ejmech.2024.116287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/18/2024]
Abstract
In this review, we summarize pyrroloquinoline and pyrroloisoquinoline derivatives (PQs and PIQs) that act on a broad spectrum of biological targets and are used as bacteriostatic, antiviral, plasmodial, anticancer, antidiabetic and anticoagulant agents. Many of these compounds play important roles in the study of DNA and its interactions, the regulation of the cell cycle and programmed cell death. This review involves twenty-five types of skeletally analogical compounds bearing pyrrole and (iso)quinoline scaffolds with different mutual annelations.
Collapse
Affiliation(s)
- Petra Králová
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu12, 771 46, Olomouc, Czech Republic
| | - Miroslav Soural
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu12, 771 46, Olomouc, Czech Republic.
| |
Collapse
|
3
|
Tiwari P, Mangubhai GS, Kidwai S, Singh R, Chandrashekharappa S. Design, synthesis and characterization of ethyl 3-benzoyl-7-morpholinoindolizine-1-carboxylate as anti-tubercular agents: In silico screening for possible target identification. Chem Biol Drug Des 2024; 103:e14512. [PMID: 38570316 DOI: 10.1111/cbdd.14512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
A thorough search for the development of innovative drugs to treat tuberculosis, especially considering the urgent need to address developing drug resistance, we report here a synthetic series of ethyl 3-benzoyl-7-morpholinoindolizine-1-carboxylate analogues (5a-o) as potent anti-tubercular agents. These morpholino-indolizines were synthesized by reacting 4-morpholino pyridinium salts, with various electron-deficient acetylenes to afford the ethyl 3-benzoyl-7-morpholinoindolizine-1-carboxylate analogues (5a-o). All synthesized intermediate and final compounds are characterized by spectroscopic methods such as 1H NMR, 13C NMR and HRMS and further examined for their anti-tubercular activity against the M. tuberculosis H37Rv strain (ATCC 27294-American type cell culture). All the compounds screened for anti-tubercular activity in the range of 6.25-50 μM against the H37Rv strain of Mycobacterium tuberculosis. Compound 5g showed prominent activity with MIC99 2.55 μg/mL whereas compounds 5d and 5j showed activity with MIC99 18.91 μg/mL and 25.07 μg/mL, respectively. In silico analysis of these compounds revealed drug-likeness. Additionally, the molecular target identification for Malate synthase (PDB 5CBB) is attained by computational approach. The compound 5g with a MIC99 value of 2.55 μg/mL against M. tuberculosis H37Rv emerged as the most promising anti-TB drug and in silico investigations suggest Malate synthase (5CBB) might be the compound's possible target.
Collapse
Affiliation(s)
- Priya Tiwari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Raebareli, Lucknow, India
| | - Gayakvad Sunitaben Mangubhai
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Raebareli, Lucknow, India
| | - Saqib Kidwai
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Sandeep Chandrashekharappa
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Raebareli, Lucknow, India
| |
Collapse
|
4
|
Shende SU, Al-Shar'i NA, Saini SM, Mohanlall V, Gleiser RM, Deb PK, Morsy MA, Venugopala KN, Chandrashekharappa S. Synthesis, characterization and larvicidal studies of ethyl 3-benzoyl-7-(piperidin-1-yl)indolizine-1-carboxylate analogues against Anopheles arabiensis and cheminformatics approaches. J Biomol Struct Dyn 2024:1-13. [PMID: 38315452 DOI: 10.1080/07391102.2024.2311881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
According to WHO, in 2021, there was an estimation of 247 million malaria cases from 84 malaria-endemic countries. Globally an estimated count of 2 billion malaria cases and 11.7 million deaths due to malaria were recorded in the past two decades. Further, the emergence of drug-resistant mosquitos threatens mankind. Therefore, the development of newer larvicidal agents is the need of the hour. This research identifies a new series of variably substituted indolizines for their effectiveness in controlling Anopheles arabiensis larvae through larvicidal activity. The series of Ethyl 3-benzoyl-7-(piperidin-1-yl)indolizine-1-carboxylate analogues (4a-j) were synthesized by reacting 4-(piperidin-1-yl)pyridine, phenacyl bromides with ethyl propiolate via 1, 3-dipolar cycloaddition and the green metrics of the process are reported. All the newly synthesized compounds were characterized by spectroscopic techniques such as 1H NMR,13C NMR, FT-IR, and HRMS. The larvicidal effectiveness of the newly synthesized compounds was assessed against Anopheles arabiensis. Among the compounds studied, namely 4c, 4d, 4e, and 4f, displayed the most notable larval mortality rates within the series, reaching 73%, 81%, 76%, and 71% respectively, in contrast with the negative control acetone. In comparison, the standard Temephos exhibited a mortality rate of 99% at the same concentration. Furthermore, computational approaches including molecular docking and molecular dynamics simulations identified the potential targets of the series compounds as the larval Acetylcholinesterase (AChE) enzyme and the Sterol Carrier Protein-2 (SCP-2) protein. However, it is essential for these computational predictions to undergo experimental validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sondarya Uttam Shende
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Raebareli (NIPER-R), Lucknow, UP, India
| | - Nizar A Al-Shar'i
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Surbhi Mahender Saini
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Raebareli (NIPER-R), Lucknow, UP, India
| | - Viresh Mohanlall
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Raquel M Gleiser
- CREAN-IMBIV (UNC-CONICET), Av. Valparaiso s.n., and FCEFyN, Av. V. Sarsfield 299, Universidad Nacional de Cordoba, Cordoba, Argentina
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology (BIT), Mesra, Ranchi, Jharkhand, India
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Katharigatta N Venugopala
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Sandeep Chandrashekharappa
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Raebareli (NIPER-R), Lucknow, UP, India
| |
Collapse
|
5
|
Bandehali-Naeini F, Tanbakouchian Z, Farajinia-Lehi N, Mayer N, Shiri M, Breugst M. Two distinct protocols for the synthesis of unsymmetrical 3,4-disubstituted maleimides based on transition-metal catalysts. Org Biomol Chem 2024; 22:380-387. [PMID: 38086692 DOI: 10.1039/d3ob01620j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Two tandem catalytic systems are described for the synthesis of novel 3,4-disubstituted maleimides using the same Ugi adducts as starting materials. 4-Aryl-3-pyrrolyl- and 4-aryl-3-indolyl-maleimides were successfully obtained via a Pd(OAc)2/PPh3 based protocol. In contrast, maleimide-fused pyrrolo and indolo[1,2-a]quinolines were obtained in a complementary methodology using CuI/L-proline. These strategies involved a combination of benzylic amine oxidation, trans-amidation, intramolecular Knoevenagel condensation, and N-arylation reactions. Computational investigations provide further insights into this reaction sequence.
Collapse
Affiliation(s)
- Farzaneh Bandehali-Naeini
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran.
| | - Zahra Tanbakouchian
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran.
| | - Noushin Farajinia-Lehi
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran.
| | - Nicolas Mayer
- Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany.
| | - Morteza Shiri
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran.
| | - Martin Breugst
- Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany.
| |
Collapse
|
6
|
Shivaprasad K, Kidwai S, Gopavaram S, Saini SM, Reddy K, Chugh S, Singh R, Chandrashekharappa S. Design, Synthesis and In-vitro Antitubercular Evaluation of Novel 7-methoxy Pyrrolo[1,2-a]quinoline Analogues as CYP 121 Inhibitors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
7
|
Sumanth G, Lakshmikanth K, Saini SM, Mundhe P, Shivaprasad K, Chandrashekharappa S. Phenyl pyrrolo [1,2-a] quinolines- finding of a key by-product during quinolinium salt preparation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Sharma V, Das R, Kumar Mehta D, Gupta S, Venugopala KN, Mailavaram R, Nair AB, Shakya AK, Kishore Deb P. Recent insight into the biological activities and SAR of quinolone derivatives as multifunctional scaffold. Bioorg Med Chem 2022; 59:116674. [DOI: 10.1016/j.bmc.2022.116674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/07/2022] [Accepted: 02/13/2022] [Indexed: 01/09/2023]
|
9
|
Tang Q, Yuan M, Duan J, Xu K, Li R, Xie M, Kong S, He X, Shang Y. Metal‐Free Cascade Annulation Approach for Modular Assembly of Alkynyl/Benzoyl Functionalized Quinolines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qiang Tang
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Meng Yuan
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Jiahui Duan
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Keke Xu
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Mengqing Xie
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Shuwen Kong
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province Hunan Normal University Changsha 410081 P. R. China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| |
Collapse
|
10
|
Venugopala KN, Deb PK, Pillay M, Chopra D, Chandrashekharappa S, Morsy MA, Aldhubiab BE, Attimarad M, Nair AB, Sreeharsha N, Kandeel M, Venugopala R, Mohanlall V. 4-Aryl-1,4-Dihydropyridines as Potential Enoyl-Acyl Carrier Protein Reductase Inhibitors: Antitubercular Activity and Molecular Docking Study. Curr Top Med Chem 2021; 21:295-306. [PMID: 33138763 DOI: 10.2174/1568026620666201102121606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/16/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Tuberculosis remains one of the most deadly infectious diseases worldwide due to the emergence of multi-drug resistance (MDR) and extensively drug resistance (XDR) strains of Mycobacterium tuberculosis (MTB). AIMS Currently, available drugs are getting resistant and toxic. Hence, there is an urgent need for the development of potent molecules to treat tuberculosis. MATERIALS AND METHODS Herein, the screening of a total of eight symmetrical 1,4-dihydropyridine (1,4- DHP) derivatives (4a-4h) was carried out for whole-cell anti-TB activity against the susceptible H37Rv and MDR strains of MTB. RESULTS AND DISCUSSION Most of the compounds exhibited moderate to excellent activity against the susceptible H37Rv. Moreover, the most promising compound 4f (against H37Rv) having paratrifluoromethyl phenyl group at 4-position and bis para-methoxy benzyl ester group at 3- and 5- positions of 1,4-dihydropyridine pharmacophore, exhibited no toxicity, but demonstrated weak activity against MTB strains resistant to isoniazid and rifampicin. In light of the inhibitory profile of the title compounds, enoyl-acyl carrier protein reductase (InhA) appeared to be the appropriate molecular target. A docking study of these derivatives against InhA receptor revealed favorable binding interactions. Further, in silico predicted ADME properties of these compounds 4a-4h were found to be in the acceptable ranges, including satisfactory Lipinski's rule of five, thereby indicating their potential as drug-like molecules. CONCLUSION In particular, the 1,4-DHP derivative 4f can be considered an attractive lead molecule for further exploration and development of more potent anti-TB agents as InhA inhibitors.
Collapse
Affiliation(s)
- Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan
| | - Melendhran Pillay
- Department of Microbiology, National Health Laboratory Services, KZN Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| | - Deepak Chopra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | | | - Mohamed A Morsy
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Bandar E Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Rashmi Venugopala
- Department of Public Health Medicine, University of KwaZulu-Natal, Howard College Campus, Durban 4001, South Africa
| | - Viresh Mohanlall
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa
| |
Collapse
|
11
|
Uppar V, Chandrashekharappa S, Shivamallu C, P S, Kollur SP, Ortega-Castro J, Frau J, Flores-Holguín N, Basarikatti AI, Chougala M, Mohan M M, Banuprakash G, Jayadev, Venugopala KN, Nandeshwarappa BP, Veerapur R, Al-Kheraif AA, Elgorban AM, Syed A, Mudnakudu-Nagaraju KK, Padmashali B, Glossman-Mitnik D. Investigation of Antifungal Properties of Synthetic Dimethyl-4-Bromo-1-(Substituted Benzoyl) Pyrrolo[1,2-a] Quinoline-2,3-Dicarboxylates Analogues: Molecular Docking Studies and Conceptual DFT-Based Chemical Reactivity Descriptors and Pharmacokinetics Evaluation. Molecules 2021; 26:2722. [PMID: 34066433 PMCID: PMC8124935 DOI: 10.3390/molecules26092722] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Candida albicans, an opportunistic fungal pathogen, frequently colonizes immune-compromised patients and causes mild to severe systemic reactions. Only few antifungal drugs are currently in use for therapeutic treatment. However, evolution of a drug-resistant C. albicans fungal pathogen is of major concern in the treatment of patients, hence the clinical need for novel drug design and development. In this study, in vitro screening of novel putative pyrrolo[1,2-a]quinoline derivatives as the lead drug targets and in silico prediction of the binding potential of these lead molecules against C. albicans pathogenic proteins, such as secreted aspartic protease 3 (SAP3; 2H6T), surface protein β-glucanase (3N9K) and sterol 14-alpha demethylase (5TZ1), were carried out by molecular docking analyses. Further, biological activity-based QSAR and theoretical pharmacokinetic analysis were analyzed. Here, in vitro screening of novel analogue derivatives as drug targets against C. albicans showed inhibitory potential in the concentration of 0.4 µg for BQ-06, 07 and 08, 0.8 µg for BQ-01, 03, and 05, 1.6 µg for BQ-04 and 12.5 µg for BQ-02 in comparison to the standard antifungal drug fluconazole in the concentration of 30 µg. Further, in silico analysis of BQ-01, 03, 05 and 07 analogues docked on chimeric 2H6T, 3N9K and 5TZ1 revealed that these analogues show potential binding affinity, which is different from the therapeutic antifungal drug fluconazole. In addition, these molecules possess good drug-like properties based on the determination of conceptual Density Functional Theory (DFT)-based descriptors, QSAR and pharmacokinetics. Thus, the study offers significant insight into employing pyrrolo[1,2-a]quinoline analogues as novel antifungal agents against C. albicans that warrants further investigation.
Collapse
Affiliation(s)
- Vijayakumar Uppar
- Department of Chemistry, School of Basic Science, Rani Channamma University, Belagavi 591156, Karnataka, India; (V.U.); (A.I.B.)
| | - Sandeep Chandrashekharappa
- Institute for Stem Cell Science and Regenerative Medicine, NCBS, TIFR, GKVK-Campus Bellary road, Bengaluru 560065, Karnataka, India;
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) 226002, India;
| | - Chandan Shivamallu
- Department of Biotechnology & Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India; (C.S.); (M.M.M.)
| | - Sushma P
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) 226002, India;
| | - Shiva Prasad Kollur
- Department of Sciences, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru 570026, Karnataka, India;
| | - Joaquín Ortega-Castro
- Departament de Química, Universitat de les Illes Balears, E-07122 Palma de Malllorca, Spain; (J.O.-C.); (J.F.)
| | - Juan Frau
- Departament de Química, Universitat de les Illes Balears, E-07122 Palma de Malllorca, Spain; (J.O.-C.); (J.F.)
| | - Norma Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Chih 31136, Mexico; (N.F.-H.); (D.G.-M.)
| | - Atiyaparveen I. Basarikatti
- Department of Chemistry, School of Basic Science, Rani Channamma University, Belagavi 591156, Karnataka, India; (V.U.); (A.I.B.)
| | - Mallikarjun Chougala
- Department of Biotechnology, JSS College of Arts, Commerce and Science (Autonomous), Mysore 570025, Karnataka, India;
| | - Mrudula Mohan M
- Department of Biotechnology & Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India; (C.S.); (M.M.M.)
| | - Govindappa Banuprakash
- Department of Chemistry, SJB Institute of Technology, Bengaluru 560060, Kengeri, India; (G.B.); (J.)
| | - Jayadev
- Department of Chemistry, SJB Institute of Technology, Bengaluru 560060, Kengeri, India; (G.B.); (J.)
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Belakatte P. Nandeshwarappa
- Department of Studies in Chemistry, Shivagangothri, Davangere University, Davangere 577007, Karnataka, India;
| | - Ravindra Veerapur
- Department of Metallurgy and Materials Engineering, Malawi Institute of Technology, Malawi University of Science and Technology, P.O. Box-5916 Limbe, Malawi;
| | - Abdulaziz A. Al-Kheraif
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia;
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.E.); (A.S.)
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.E.); (A.S.)
| | - Kiran K. Mudnakudu-Nagaraju
- Department of Biotechnology & Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India; (C.S.); (M.M.M.)
| | - Basavaraj Padmashali
- Department of Chemistry, School of Basic Science, Rani Channamma University, Belagavi 591156, Karnataka, India; (V.U.); (A.I.B.)
| | - Daniel Glossman-Mitnik
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Chih 31136, Mexico; (N.F.-H.); (D.G.-M.)
| |
Collapse
|
12
|
P N, Prasad Dasappa J, B H, Chopra D, Venugopala KN, Deb PK, Gleiser RM, Mohanlall V, Maharaj R, S S, Poojary V. Synthesis, characterization and larvicidal activity of novel benzylidene derivatives of fenobam and its thio analogues with crystal insight. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Liu YY, Wei Y, Huang ZH, Liu Y. Mild and efficient copper-catalyzed oxidative cyclization of oximes with 2-aminobenzyl alcohols at room temperature: synthesis of polysubstituted quinolines. Org Biomol Chem 2021; 19:659-666. [PMID: 33399162 DOI: 10.1039/d0ob02348e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A simple and efficient ligand-free Cu-catalyzed protocol for the synthesis of polysubstituted quinolines via oxidative cyclization of oxime acetates with 2-aminobenzyl alcohols at room temperature has been developed. The presented approach provides a new synthetic pathway leading to polysubstituted quinolines with good functional group tolerance under mild conditions. Moreover, this transformation can be applied for the preparation of quinolines on a gram scale. Oxime acetates serve as the internal oxidants in the reactions, thus making this method very attractive.
Collapse
Affiliation(s)
- Yan-Yun Liu
- Institute of Organic Synthesis, College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China.
| | - Yang Wei
- Institute of Organic Synthesis, College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China.
| | - Zhi-Hui Huang
- Institute of Organic Synthesis, College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China.
| | - Yilin Liu
- Institute of Organic Synthesis, College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China.
| |
Collapse
|
14
|
Cytotoxicity and Antimycobacterial Properties of Pyrrolo[1,2- a]quinoline Derivatives: Molecular Target Identification and Molecular Docking Studies. Antibiotics (Basel) 2020; 9:antibiotics9050233. [PMID: 32392709 PMCID: PMC7277568 DOI: 10.3390/antibiotics9050233] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 11/17/2022] Open
Abstract
A series of ethyl 1-(substituted benzoyl)-5-methylpyrrolo[1,2-a]quinoline-3-carboxylates 4a–f and dimethyl 1-(substituted benzoyl)-5-methylpyrrolo[1,2-a]quinoline-2,3-dicarboxylates 4g–k have been synthesized and evaluated for their anti-tubercular (TB) activities against H37Rv (American Type Culture Collection (ATCC) strain 25177) and multidrug-resistant (MDR) strains of Mycobacterium tuberculosis by resazurin microplate assay (REMA). Molecular target identification for these compounds was also carried out by a computational approach. All test compounds exhibited anti-tuberculosis (TB) activity in the range of 8–128 µg/mL against H37Rv. The test compound dimethyl-1-(4-fluorobenzoyl)-5-methylpyrrolo[1,2-a]quinoline-2,3-dicarboxylate 4j emerged as the most promising anti-TB agent against H37Rv and multidrug-resistant strains of Mycobacterium tuberculosis at 8 and 16 µg/mL, respectively. In silico evaluation of pharmacokinetic properties indicated overall drug-likeness for most of the compounds. Docking studies were also carried out to investigate the binding affinities as well as interactions of these compounds with the target proteins.
Collapse
|