Arshadi S, Abdolahzadeh F, Vessally E. Butadiyne-linked porphyrin nanoring as a highly selective O
2 gas sensor: A fast response hybrid sensor.
J Mol Graph Model 2023;
119:108371. [PMID:
36502605 DOI:
10.1016/j.jmgm.2022.108371]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/20/2022]
Abstract
The butadiyne-linked six-metalloporphyrin nanoring (Mg6-P6) and it's complex with a hexapyridyl template, Mg6-P6·T6 have a great potential for employment in future nanoelectronic applications such as a nanosensor for small gas molecules. The goal of this study is to scrutinize and improvement of the CO, N2, and O2 gas sensing capacity of Mg6-P6 and Mg6-P6·T6 using DFT calculations at CAM-B3LYP/6-31G (d,p) level of theory. The geometrical structures, binding energies, band gaps, the density of states (DOS), adsorption energies, HOMO and LUMO energies, Fermi level energies (EFL), NBO, FMO and TD-DFT spectrum were calculated to predict gas adsorption properties of Mg6-P6 and Mg6-P6·T6 systems. Based on the calculated adsorption energies and remarkable decrease in the Eg, it is expected that the Mg6-P6 and Mg6-P6·T6 are sensitive to O2 molecule. Surprisingly, the Mg6-P6-O2 and specially the Mg6-P6.T6-O2 record promising values of recovery times for different attempt frequencies. Therefore, the results open a way for the development of a new and selective O2 nanosensor in the presence of CO and N2 gas molecules.
Collapse