1
|
Agarwal S, Harsukhbhai Chandpa H, Naskar S, Lal Meena C, Kumar Panda A, Meena J. Dominant B cell-T cell epitopes instigated robust immune response in-silico against Scrub Typhus. Vaccine 2024; 42:3899-3915. [PMID: 38719691 DOI: 10.1016/j.vaccine.2024.04.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 06/14/2024]
Abstract
Scrub typhus, a potentially life-threatening infectious disease, is attributed to bacteria Orientia tsutsugamushi (O. tsutsugamushi). The transmission of this illness to humans occurs through the bite of infected chiggers, which are the larval forms of mites belonging to the genus Leptotrombidium. In this research, we developed a subunit vaccine specifically designed to target outer membrane proteins. Immunodominant cytotoxic T-lymphocytes (CTLs), B- lymphocytes (BCLs), and major histocompatibility complex (MHC)- II epitopes were identified using machine learning and bioinformatics approaches. These epitopes were arranged in different combinations with the help of suitable linkers like AAY, KK, GPGPG and adjuvant (cholera toxin B) that resulted in a vaccine construct. Physiochemical properties were assessed, where the predicted solubility (0.571) was higher than threshold value. Tertiary structure was predicted using I-TASSER web server and evaluated using Ramachandran plot (94 % residues in most favourable region) and z-score (-6.04), which had shown the structure to have good stability and residue arrangement. Molecular docking with immune receptors, Toll-like receptor (TLR)-2 and -4 showed good residue interaction with 13 and 5 hydrogen bonds respectively. Molecular dynamics simulations of receptor-ligand complex provided the idea about the strong interaction having 1.524751 × 10-5 eigenvalue. Amino acid sequence of vaccine was converted to nucleotide sequence and underwent codon optimization. The optimized codon sequence was used for in-silico cloning, which provided idea about the possibility of synthesis of vaccine using E. coli as host. Overall, this study provided a promising blueprint for a scrub typhus vaccine, although experimental validation is needed for confirmation. Furthermore, it is crucial to acknowledge that while bioinformatics provides valuable insights, in-vitro and in-vivo studies are imperative for a comprehensive evaluation of vaccine candidate. Thus, the integration of computational predictions with empirical research is essential to validate the efficacy, safety, and real-world applicability of the designed vaccine against Scrub Typhus. Nevertheless, the findings are good to carry forward for in-vitro and in-vivo investigations.
Collapse
Affiliation(s)
- Shalini Agarwal
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Hitesh Harsukhbhai Chandpa
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Shovan Naskar
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Chhuttan Lal Meena
- Drug Design Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Amulya Kumar Panda
- Panacea Biotec Limited, Mohan Cooperative Industrial Estate, Badarpur New Delhi 110044, India
| | - Jairam Meena
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
2
|
Munir R, Zaib S, Zia-ur-Rehman M, Javed H, Roohi A, Zaheer M, Fatima N, Bhat MA, Khan I. Exploration of morpholine-thiophene hybrid thiosemicarbazones for the treatment of ureolytic bacterial infections via targeting urease enzyme: Synthesis, biochemical screening and computational analysis. Front Chem 2024; 12:1403127. [PMID: 38855062 PMCID: PMC11157103 DOI: 10.3389/fchem.2024.1403127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
An important component of the pathogenicity of potentially pathogenic bacteria in humans is the urease enzyme. In order to avoid the detrimental impact of ureolytic bacterial infections, the inhibition of urease enzyme appears to be an appealing approach. Therefore, in the current study, morpholine-thiophene hybrid thiosemicarbazone derivatives (5a-i) were designed, synthesized and characterized through FTIR, 1H NMR, 13C NMR spectroscopy and mass spectrometry. A range of substituents including electron-rich, electron-deficient and inductively electron-withdrawing groups on the thiophene ring was successfully tolerated. The synthesized derivatives were evaluated in vitro for their potential to inhibit urease enzyme using the indophenol method. The majority of compounds were noticeably more potent than the conventional inhibitor, thiourea. The lead inhibitor, 2-(1-(5-chlorothiophen-2-yl)ethylidene)-N-(2-morpholinoethyl)hydrazinecarbothioamide (5g) inhibited the urease in an uncompetitive manner with an IC50 value of 3.80 ± 1.9 µM. The findings of the docking studies demonstrated that compound 5g has a strong affinity for the urease active site. Significant docking scores and efficient binding free energies were displayed by the lead inhibitor. Finally, the ADME properties of lead inhibitor (5g) suggested the druglikeness behavior with zero violation.
Collapse
Affiliation(s)
- Rubina Munir
- Department of Chemistry, Kinnaird College for Women, Lahore, Pakistan
| | - Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | | | - Hira Javed
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Ayesha Roohi
- Department of Chemistry, Kinnaird College for Women, Lahore, Pakistan
| | - Muhammad Zaheer
- Applied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore, Pakistan
| | - Nabiha Fatima
- Department of Chemistry, Kinnaird College for Women, Lahore, Pakistan
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Rabaan AA, Alshahrani FS, Garout M, Alissa M, Mashraqi MM, Alshehri AA, Alsaleh AA, Alwarthan S, Sabour AA, Alfaraj AH, AlShehail BM, Alotaibi N, Abduljabbar WA, Aljeldah M, Alestad JH. Repositioning of anti-infective compounds against monkeypox virus core cysteine proteinase: a molecular dynamics study. Mol Divers 2024:10.1007/s11030-023-10802-8. [PMID: 38652365 DOI: 10.1007/s11030-023-10802-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/26/2023] [Indexed: 04/25/2024]
Abstract
Monkeypox virus (MPXV) core cysteine proteinase (CCP) is one of the major drug targets used to examine the inhibitory action of chemical moieties. In this study, an in silico technique was applied to screen 1395 anti-infective compounds to find out the potential molecules against the MPXV-CCP. The top five hits were selected after screening and processed for exhaustive docking based on the docked score of ≤ -9.5 kcal/mol. Later, the top three hits based on the exhaustive-docking score and interaction profile were selected to perform MD simulations. The overall RMSD suggested that two compounds, SC75741 and ammonium glycyrrhizinate, showed a highly stable complex with a standard deviation of 0.18 and 0.23 nm, respectively. Later, the MM/GBSA binding free energies of complexes showed significant binding strength with ΔGTOTAL from -21.59 to -15 kcal/mol. This report reported the potential inhibitory activity of SC75741 and ammonium glycyrrhizinate against MPXV-CCP by competitively inhibiting the binding of the native substrate.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, 31311, Dhahran, Saudi Arabia.
- College of Medicine, Alfaisal University, 11533, Riyadh, Saudi Arabia.
- Department of Public Health and Nutrition, The University of Haripur, Haripur, 22610, Pakistan.
| | - Fatimah S Alshahrani
- Department of Internal Medicine, College of Medicine, King Saud University, 11362, Riyadh, Saudi Arabia
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, King Saud University and King Saud University Medical City, 11451, Riyadh, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Mutaib M Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, 61441, Najra, Saudi Arabia
| | - Ahmad A Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, 61441, Najra, Saudi Arabia
| | - Abdulmonem A Alsaleh
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, 34222, Dammam, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, 34212, Dammam, Saudi Arabia
| | - Amal A Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Amal H Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, 33261, Abqaiq, Saudi Arabia
| | - Bashayer M AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Nouf Alotaibi
- Clinical pharmacy Department, College of Pharmacy, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Wesam A Abduljabbar
- Department of Medical laboratory sciences, Fakeeh College for Medical Science, 21134, Jeddah, Saudi Arabia
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, 39831, Hafr Al Batin, Saudi Arabia
| | - Jeehan H Alestad
- Immunology and Infectious Microbiology Department, University of Glasgow, Glasgow, G1 1XQ, UK.
- Microbiology Department, Collage of Medicine, 46300, Jabriya, Kuwait.
| |
Collapse
|
4
|
Shanmugam L, Venkatasubbu GD, Jayaraman M. Hyaluronan-based nano-formulation with mesoporous silica enhances the anticancer efficacy of phloroglucinol against gastrointestinal cancers. Int J Biol Macromol 2024; 265:130856. [PMID: 38490393 DOI: 10.1016/j.ijbiomac.2024.130856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Gastrointestinal cancers are one among the most frequently reported cancers where colorectal and gastric cancers ranks third leading cause of cancer related death worldwide. Phloroglucinol, a well-known therapeutic agent for cancer, where its usage has been limited due to its poor water solubility and bioavailability. Hence, our study aims to synthesize and characterize Hyaluronan grafted phloroglucinol loaded Mesoporous silica nanoparticles (MSN-PG-HA). Our nano-formulation hasn't shown any teratogenic effect on Zebrafish embryos, no hemolysis and toxic effect with normal fibroblast cells with a maximum concentration of 300 μg/mL. The cumulative drug release profile of MSN-PG-HA showed a maximum drug release of 96.9 % with 5 mM GSH under redox responsive drug release, which is crucial for targeting cancer cells. In addition, the MSN-PG-HA nanoparticles showed significant a cytotoxic effect against HCT-116, AGS and SW-620 with IC50 values of 86.5 μg/mL, 80.65 μg/mL and 109.255 μg/mL respectively. Also, the cellular uptake assay has shown an increased uptake of FITC-labeled-MSN-PG-HA by HA-receptor mediated endocytosis than FITC-labeled-MSN-PG without HA modification in CD44+ gastrointestinal cancer cell lines. The ability of MSN-PG-HA to target CD44+ cells was further exploited for its application in cancer stem cell research utilizing in silico analysis with various stem cell pathway related targets, in which PG showed higher binding affinity with Gli 1 and the simulation studies proving its effectiveness in disrupting the protein structure. Thus, the findings of our study with nano-formulation are safe and non-toxic to recommend for targeted drug delivery against gastrointestinal cancers as well as its affinity towards cancer stem cell pathway related proteins proving to be a significant formulation for cancer stem cell research.
Collapse
Affiliation(s)
- Lakshmi Shanmugam
- Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - G Devanand Venkatasubbu
- Department of Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Megala Jayaraman
- Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai 603203, Tamil Nadu, India.
| |
Collapse
|
5
|
Shafiq N, Shakoor B, Yaqoob N, Parveen S, Brogi S, Mohammad Salamatullah A, Rashid M, Bourhia M. A virtual insight into mushroom secondary metabolites: 3D-QSAR, docking, pharmacophore-based analysis and molecular modeling to analyze their anti-breast cancer potential. J Biomol Struct Dyn 2024:1-22. [PMID: 38299565 DOI: 10.1080/07391102.2024.2304137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024]
Abstract
Breast cancer is a major issue of investigation in drug discovery due to its rising frequency and global dominance. Plants are significant natural sources for the development of novel medications and therapies. Medicinal mushrooms have many biological response modifiers and are used for the treatment of many physical illnesses. In this research, a database of 89 macro-molecules with anti-breast cancer activity, which were previously isolated from the mushrooms in literature, has been selected for the three-dimensional quantitative structure-activity relationships (3D-QSAR) studies. The 3D-QSAR model was necessarily used in Pharmacopoeia virtual evaluation of the database to develop novel MCF-7 inhibitors. With the known potential targets of breast cancer, the docking studies were achieved. Using molecular dynamics simulations, the targets' stability with the best-chosen natural product molecule was found. Furthermore, the absorption, distribution, metabolism, excretion, and toxicity of three compounds, resulting after the docking study, were predicted. The compound C1 (Pseudonocardian A) showed the features of effective compounds because it has bioavailability from different coral species and is toxicity-free for the prevention of many dermatological illnesses. C1 is chemically active and possesses charge transfer inside the monomer, as seen by the band gaps of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) electrons. The reactivity descriptors ionization potential, electron affinity, chemical potential (μ), hardness (η), softness (S), electronegativity (χ), and electrophilicity index (ω) have been estimated using the energies of frontier molecular orbitals (HOMO-LUMO). Additionally, molecular electrostatic potential maps were created to show that the C1 is reactive.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nusrat Shafiq
- Synthetic and Natural Products Drug Discovery Lab, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Bushra Shakoor
- Synthetic and Natural Products Drug Discovery Lab, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Nazia Yaqoob
- Green Chemistry Lab, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Shagufta Parveen
- Synthetic and Natural Products Drug Discovery Lab, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Simone Brogi
- Department of Pharmacy, Pisa University, Pisa, Italy
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Maryam Rashid
- Synthetic and Natural Products Drug Discovery Lab, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
- Laboratory of Chemistry-Biochemistry, Environment, Nutrition, and Health, Faculty of Medicine and Pharmacy, University Hassan II, Casablanca, Morocco
| |
Collapse
|
6
|
Zia M, Parveen S, Shafiq N, Rashid M, Farooq A, Dauelbait M, Shahab M, Salamatullah AM, Brogi S, Bourhia M. Exploring Citrus sinensis Phytochemicals as Potential Inhibitors for Breast Cancer Genes BRCA1 and BRCA2 Using Pharmacophore Modeling, Molecular Docking, MD Simulations, and DFT Analysis. ACS OMEGA 2024; 9:2161-2182. [PMID: 38250382 PMCID: PMC10795055 DOI: 10.1021/acsomega.3c05098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Structure-activity relationship (SAR) is considered to be an effective in silico approach when discovering potential antagonists for breast cancer due to gene mutation. Major challenges are faced by conventional SAR in predicting novel antagonists due to the discovery of diverse antagonistic compounds. Methodologyand Results: In predicting breast cancer antagonists, a multistep screening of phytochemicals isolated from the seeds of the Citrus sinensis plant was applied using feasible complementary methodologies. A three-dimensional quantitative structure-activity relationship (3D-QSAR) model was developed through the Flare project, in which conformational analysis, pharmacophore generation, and compound alignment were done. Ten hit compounds were obtained through the development of the 3D-QSAR model. For exploring the mechanism of action of active compounds against cocrystal inhibitors, molecular docking analysis was done through Molegro software (MVD) to identify lead compounds. Three new proteins, namely, 1T15, 3EU7, and 1T29, displayed the best Moldock scores. The quality of the docking study was assessed by a molecular dynamics simulation. Based on binding affinities to the receptor in the docking studies, three lead compounds (stigmasterol P8, epoxybergamottin P28, and nobiletin P29) were obtained, and they passed through absorption, distribution, metabolism, and excretion (ADME) studies via the SwissADME online service, which proved that P28 and P29 were the most active allosteric inhibitors with the lowest toxicity level against breast cancer. Then, density functional theory (DFT) studies were performed to measure the active compound's reactivity, hardness, and softness with the help of Gaussian 09 software. CONCLUSIONS This multistep screening of phytochemicals revealed high-reliability antagonists of breast cancer by 3D-QSAR using flare, docking analysis, and DFT studies. The present study helps in providing a proper guideline for the development of novel inhibitors of BRCA1 and BRCA2.
Collapse
Affiliation(s)
- Mehreen Zia
- Synthetic
and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Shagufta Parveen
- Synthetic
and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Nusrat Shafiq
- Synthetic
and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Maryam Rashid
- Synthetic
and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Ariba Farooq
- Department
of Chemistry, University of Lahore, Lahore 54000, Pakistan
| | - Musaab Dauelbait
- Department
of Scientific Translation, Faculty of Translation, University of Bahri, Khartoum 11111, Sudan
| | - Muhammad Shahab
- State
Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ahmad Mohammad Salamatullah
- Department
of Food Science & Nutrition, College of Food and Agricultural
Sciences, King Saud University, 11 P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Simone Brogi
- Department
of Pharmacy, Pisa University, Pisa 56124, Italy
| | - Mohammed Bourhia
- Department
of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco
- Laboratory
of Chemistry-Biochemistry, Environment, Nutrition, and Health, Faculty
of Medicine and Pharmacy, University Hassan
II, B. P. 5696, Casablanca, Morocco
| |
Collapse
|
7
|
Sarkar A, Santra D, Sundar Panja A, Maiti S. Immunoinformatics and MD-simulation data suggest that Omicron spike epitopes are more interacting to IgG via better MHC recognition than Delta variant. Int Immunopharmacol 2023; 123:110636. [PMID: 37499394 DOI: 10.1016/j.intimp.2023.110636] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/28/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Recently, in Nov 2021, in South Africa, the SARS CoV-2 variant Omicron was found to be highly infectious and transmissible but with the least fatality. It occupies the nasopharynx-oropharynx and easily spreads. The epidemiological data/reports suggest that several vaccines failed to neutralize Omicron. It has a large number of spike mutations and the RNA/protein vaccines were developed from its predecessors that may justify its escape in most neutralization reactions. Its lower immuno-suppression/cytokine-storming/inflammatory-response effects need exploration. OBJECTIVES In the current study, we attempted to delineate the comparative interaction of different variants' spikes with multiple recognition sites on IgG and HLA-typing of MHC class and I and II. METHODS All SARS-CoV-2 spike-proteins/human-IgG/MHC-I & II were obtained from the NCBI/ PDB/GISAID database. Initial 3D-structures of the unavailable proteins were constructed by Homology-Modeling (Swissmodel-Expasy) and optimized (PROCHECK). Molecular-docking of spike-IgG/spike- I & MHC-II was performed (HADDOCK2.4/HawkDock) with active-residue screening (CPORT). Antigenicity of epitopes was determined (Vaxigen v2.0-server) and the epitope-model prepared (PEP-FOLD3-server). The binding-affinity/biological-interfaces/visualize were performed (PRODIGY-PyMOL2). We also examined the genesis of feasible transition pathways of functional docked complexes (iMODs) of MHC with different epitopes and antibodies of IgG with different variants. Further, Molecular-Dynamic-Simulation was performed by GROMACS 2023.1 software package. The MD-simulation was run with 100 ns (300 k-heating/1-atm pressure). RESULTS Surface-area with interactomes, H-bonding and polar/non-polar bonding were the highest in Omicron spike-IgG interaction. Unlike other variants, both the L and H chains of at least three different recognition sites of IgG interact with the N-terminal and C-terminal RBD of the S1-portion and partially bind to S2. In other cases, binding was observed in either NTD or CTD with a lesser number of bonding-interactomes, especially in Delta spike-Ab interaction. In the case of MHC class-I & II, the highest binding affinity/surface was noticed by Omicron and least by the Delta variant. The MD simulation data of lower RMSD values of the Delta and Omicron variants indicate improved structural stability and less departure from the initial conformation. Better binding to the IgG and MHC molecules explains Omicron's little ability in immune invasion.
Collapse
Affiliation(s)
- Aniket Sarkar
- Post-Graduate Department of Biotechnology, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Dipannita Santra
- Post-Graduate Department of Biotechnology, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Anindya Sundar Panja
- Department of Biotechnology, Molecular Informatics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Smarajit Maiti
- Post-Graduate Department of Biotechnology, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore 721102, West Bengal, India; Agricure Biotech Research Society, Midnapore, 721101, India.
| |
Collapse
|
8
|
Shafiq N, Mehroze A, Sarwar W, Arshad U, Parveen S, Rashid M, Farooq A, Rafiq N, Wondmie GF, Bin Jardan YA, Brogi S, Bourhia M. Exploration of phenolic acid derivatives as inhibitors of SARS-CoV-2 main protease and receptor binding domain: potential candidates for anti-SARS-CoV-2 therapy. Front Chem 2023; 11:1251529. [PMID: 37822772 PMCID: PMC10562575 DOI: 10.3389/fchem.2023.1251529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023] Open
Abstract
Severe acute respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) is the etiological virus of Coronavirus Disease 2019 (COVID-19) which has been a public health concern due to its high morbidity and high mortality. Hence, the search for drugs that incapacitate the virus via inhibition of vital proteins in its life cycle is ongoing due to the paucity of drugs in clinical use against the virus. Consequently, this study was aimed at evaluating the potentials of natural phenolics against the Main protease (Mpro) and the receptor binding domain (RBD) using molecular modeling techniques including molecular docking, molecular dynamics (MD) simulation, and density functional theory (DFT) calculations. To this end, thirty-five naturally occurring phenolics were identified and subjected to molecular docking simulation against the proteins. The results showed the compounds including rosmarinic acid, cynarine, and chlorogenic acid among many others possessed high binding affinities for both proteins as evident from their docking scores, with some possessing lower docking scores compared to the standard compound (Remdesivir). Further subjection of the hit compounds to drug-likeness, pharmacokinetics, and toxicity profiling revealed chlorogenic acid, rosmarinic acid, and chicoric acid as the compounds with desirable profiles and toxicity properties, while the study of their electronic properties via density functional theory calculations revealed rosmarinic acid as the most reactive and least stable among the sets of lead compounds that were identified in the study. Molecular dynamics simulation of the complexes formed after docking revealed the stability of the complexes. Ultimately, further experimental procedures are needed to validate the findings of this study.
Collapse
Affiliation(s)
- Nusrat Shafiq
- Synthetic and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Aiman Mehroze
- Synthetic and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Warda Sarwar
- Synthetic and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Uzma Arshad
- Synthetic and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Shagufta Parveen
- Synthetic and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Maryam Rashid
- Synthetic and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Ariba Farooq
- Department of Chemistry, University of Lahore, Lahore, Pakistan
| | - Naila Rafiq
- Department of Biochemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | | | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Simone Brogi
- Department of Pharmacy, Pisa University, Pisa, Italy
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| |
Collapse
|
9
|
Yasmin F, Nazli ZIH, Shafiq N, Aslam M, Bin Jardan YA, Nafidi HA, Bourhia M. Plant-Based Bioactive Phthalates Derived from Hibiscus rosa-sinensis: As In Vitro and In Silico Enzyme Inhibition. ACS OMEGA 2023; 8:32677-32689. [PMID: 37720793 PMCID: PMC10500580 DOI: 10.1021/acsomega.3c03342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/09/2023] [Indexed: 09/19/2023]
Abstract
Hibiscus rosa-sinensis is an attractive, ever-blossoming, and effortlessly available plant around the globe. The fabulous flowers of H. rosa-sinensis enjoy a significant status in folk medicine throughout the world and comprise a range of phyto constituents due to which this splendid flower owns numerous biological and pharmaceutical activities like antioxidant, antifungal, antimicrobial, anti-inflammatory, antipyretic, antidiabetic, and antifertility activity. Considering this, column chromatographic isolation of the phytoconstituents of ethyl acetate fraction of the flowers of H. rosa-sinensis was performed. A series of five phthalates including Di-n-octyl phthalate (HR1), ditridecyl phthalate (HR2), 1-allyl 2-ethyl phthalate (HR3), diethyl phthalate (HR4), and bis (6-methylheptyl) phthalate (HR5) were isolated. The structures of the isolated phthalates were elucidated by gas chromatography-mass spectrometry, 1H NMR, and 13C NMR. In silico and in vitro antidiabetic and antioxidant potential and DFT studies of isolated phthalates were carried out. In our study, isolated ligands were explored as potent antidiabetic as well as antioxidant agents as they exhibited good binding affinity (in in vitro and in silico experiments) against all selected protein targets. Compounds HR1-HR5 showed that the binding affinity value ranged from -5.9 to -5.2 kcal/mol, -5.5 to -4.3 kcal/mol, and -5.0 to -4.1 kcal/mol for target proteins 1HNY, 2I3Y, and 5O40, respectively. Among all isolated phthalates, HR5 can be a lead compound as it showed the best binding affinity with human pancreatic α-amylase (ΔG = -5.9 kcal/mol) and displayed a minimum inhibition concentration (IC50) of 11.69 μM among all phthalates. Compound HR1 was the best docked and scored compound for inhibiting glutathione peroxidase; however, HR2 possessed the lowest binding score of -5.0 kcal/mol, thus indicating the highest potential among isolated phthalates for inhibiting the superoxide dismutase. Furthermore, the top-ranked docked ligand-protein complex for each protein was assessed for stability of protein and complex mobility by molecular dynamics simulation using the IMOD server.
Collapse
Affiliation(s)
- Farah Yasmin
- Synthetic
and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University Faisalabad 38000, Pakistan
| | - Zill-i-Huma Nazli
- Department
of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Nusrat Shafiq
- Synthetic
and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University Faisalabad 38000, Pakistan
| | - Maryam Aslam
- Green
Chemistry Laboratory, Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Yousef A. Bin Jardan
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, P.O. Box, Riyadh 11451, Saudi Arabia
| | - Hiba-Allah Nafidi
- Department
of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City G1 V 0A6, Quebec, Canada
| | - Mohammed Bourhia
- Department
of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco
| |
Collapse
|
10
|
Rashid M, Maqbool A, Shafiq N, Bin Jardan YA, Parveen S, Bourhia M, Nafidi HA, Khan RA. The combination of multi-approach studies to explore the potential therapeutic mechanisms of imidazole derivatives as an MCF-7 inhibitor in therapeutic strategies. Front Chem 2023; 11:1197665. [PMID: 37441272 PMCID: PMC10335751 DOI: 10.3389/fchem.2023.1197665] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer covers a large area of research because of its prevalence and high frequency all over the world. This study is based on drug discovery against breast cancer from a series of imidazole derivatives. A 3D-QSAR and activity atlas model was developed by exploring the dataset computationally, using the machine learning process of Flare. The dataset of compounds was divided into active and inactive compounds according to their biological and structural similarity with the reference drug. The obtained PLS regression model provided an acceptable r 2 = 0.81 and q2 = 0.51. Protein-ligand interactions of active molecules were shown by molecular docking against six potential targets, namely, TTK, HER2, GR, NUDT5, MTHFS, and NQO2. Then, toxicity risk parameters were evaluated for hit compounds. Finally, after all these screening processes, compound C10 was recognized as the best-hit compound. This study identified a new inhibitor C10 against cancer and provided evidence-based knowledge to discover more analogs.
Collapse
Affiliation(s)
- Maryam Rashid
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Ayesha Maqbool
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Nusrat Shafiq
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shagufta Parveen
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
- Department of Applied Chemistry, Beijing Institute of Technology, Beijing, China
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC, Canada
| | - Rashid Ahmed Khan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| |
Collapse
|
11
|
Tsuchiya H. COVID-19 Oral Sequelae: Persistent Gustatory and Saliva Secretory Dysfunctions after Recovery from COVID-19. Med Princ Pract 2023; 32:166-177. [PMID: 37271130 PMCID: PMC10601698 DOI: 10.1159/000531373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/21/2023] [Indexed: 06/06/2023] Open
Abstract
Diverse manifestations have been recognized to last for a long time in patients infected with SARS-CoV-2. However, understanding of oral sequelae after recovery from COVID-19 is relatively poor compared to that of oral symptoms in the acute phase of COVID-19 and other COVID-19 sequelae. The aim of the present study was to characterize persistent gustatory and saliva secretory dysfunctions and to speculate on their pathogenic mechanisms. Articles were retrieved by searching scientific databases with a cutoff date of September 30, 2022. The literature search indicated that ageusia/dysgeusia and xerostomia/dry mouth are reported by 1-45% of COVID-19 survivors at follow-ups of 21-365 days and by 2-40% of COVID-19 survivors at follow-ups of 28-230 days, respectively. The prevalence of gustatory sequelae partly depends on difference in ethnicity, gender, age, and disease severity of subjects. Co-occurring gustatory and saliva secretory sequelae are pathogenically related to either or both of the following: expression of SARS-CoV-2 cellular entry-relevant receptors in taste buds and salivary glands, and SARS-CoV-2 infection-induced deficiency in zinc that is essential for normality of taste perception and saliva secretion. Given the long-term oral sequelae, hospital discharge is not the end of the disease; therefore, careful attention should be continuously paid to oral conditions of post-COVID-19 patients.
Collapse
Affiliation(s)
- Hironori Tsuchiya
- Department of Dental Basic Education, Asahi University School of Dentistry, Mizuho, Japan
| |
Collapse
|
12
|
Yamacli S, Avci M. Computation of the Binding Energies between Human ACE2 and Spike RBDs of the Original Strain, Delta and Omicron Variants of the SARS-CoV-2: A DFT Simulation Approach. ADVANCED THEORY AND SIMULATIONS 2022; 5:2200337. [PMID: 36248211 PMCID: PMC9538088 DOI: 10.1002/adts.202200337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/31/2022] [Indexed: 11/09/2022]
Abstract
The receptor binding domain (RBD) of SARS-CoV-2 binds to human ACE2 leading to infection. In this study, the complexes that are formed by the attachment of the SARS-CoV-2 spike RBDs of the original strain, delta and omicron variants to the human ACE2 are investigated via density functional theory (DFT) simulations to obtain binding energies. The DFT computations are performed without fragmenting the interfaces to involve longer-range interactions for improved accuracy, which is one of the primary features of the approach used in this study. Basis set superposition error corrections and van der Waals dispersions are also included in the DFT simulations. The binding energies of the SARS-CoV-2 spike RBDs of the original strain, delta and omicron variants to the human ACE2 are computed as -4.76, -6.68, and -11.77 eV, respectively. These binding energy values indicate that the binding of the omicron variant to the ACE2 is much more favorable than the binding of the original strain and the delta variant, which constitute a molecular reason for the takeover of the omicron variant. The binding energies and the decomposition of these energies found in this study are expected to aid in the development of neutralizing agents.
Collapse
Affiliation(s)
- Serhan Yamacli
- Department of Electrical‐Electronics EngineeringNuh Naci Yazgan UniversityKayseri38090Turkey
| | - Mutlu Avci
- Department of Biomedical EngineeringCukurova UniversityAdana01330Turkey
| |
Collapse
|