1
|
Hardy MP, Mansour M, Rowe T, Wymann S. The Molecular Mechanisms of Complement Receptor 1-It Is Complicated. Biomolecules 2023; 13:1522. [PMID: 37892204 PMCID: PMC10605242 DOI: 10.3390/biom13101522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Human complement receptor 1 (CR1) is a membrane-bound regulator of complement that has been the subject of recent attempts to generate soluble therapeutic compounds comprising different fragments of its extracellular domain. This review will focus on the extracellular domain of CR1 and detail how its highly duplicated domains work both separately and together to mediate binding to its main ligands C3b and C4b, and to inhibit the classical, lectin, and alternative pathways of the complement cascade via the mechanisms of decay acceleration activity (DAA) and co-factor activity (CFA). Understanding the molecular basis of CR1 activity is made more complicated by the presence not only of multiple ligand binding domains within CR1 but also the fact that C3b and C4b can interact with CR1 as both monomers, dimers, and heterodimers. Evidence for the interaction of CR1 with additional ligands such as C1q will also be reviewed. Finally, we will bring the mechanistic understanding of CR1 activity together to provide an explanation for the differential complement pathway inhibition recently observed with CSL040, a soluble CR1-based therapeutic candidate in pre-clinical development.
Collapse
Affiliation(s)
| | | | - Tony Rowe
- CSL, Bio21 Institute, Melbourne, VIC 3052, Australia
| | - Sandra Wymann
- CSL, CSL Biologics Research Centre, 1066 Bern, Switzerland
| |
Collapse
|
2
|
Wymann S, Dai Y, Nair AG, Cao H, Powers GA, Schnell A, Martin-Roussety G, Leong D, Simmonds J, Lieu KG, de Souza MJ, Mischnik M, Taylor S, Ow SY, Spycher M, Butcher RE, Pearse M, Zuercher AW, Baz Morelli A, Panousis C, Wilson MJ, Rowe T, Hardy MP. A novel soluble complement receptor 1 fragment with enhanced therapeutic potential. J Biol Chem 2020; 296:100200. [PMID: 33334893 PMCID: PMC7948397 DOI: 10.1074/jbc.ra120.016127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Human complement receptor 1 (HuCR1) is a pivotal regulator of complement activity, acting on all three complement pathways as a membrane-bound receptor of C3b/C4b, C3/C5 convertase decay accelerator, and cofactor for factor I-mediated cleavage of C3b and C4b. In this study, we sought to identify a minimal soluble fragment of HuCR1, which retains the complement regulatory activity of the wildtype protein. To this end, we generated recombinant, soluble, and truncated versions of HuCR1 and compared their ability to inhibit complement activation in vitro using multiple assays. A soluble form of HuCR1, truncated at amino acid 1392 and designated CSL040, was found to be a more potent inhibitor than all other truncation variants tested. CSL040 retained its affinity to both C3b and C4b as well as its cleavage and decay acceleration activity and was found to be stable under a range of buffer conditions. Pharmacokinetic studies in mice demonstrated that the level of sialylation is a major determinant of CSL040 clearance in vivo. CSL040 also showed an improved pharmacokinetic profile compared with the full extracellular domain of HuCR1. The in vivo effects of CSL040 on acute complement-mediated kidney damage were tested in an attenuated passive antiglomerular basement membrane antibody-induced glomerulonephritis model. In this model, CSL040 at 20 and 60 mg/kg significantly attenuated kidney damage at 24 h, with significant reductions in cellular infiltrates and urine albumin, consistent with protection from kidney damage. CSL040 thus represents a potential therapeutic candidate for the treatment of complement-mediated disorders.
Collapse
Affiliation(s)
- Sandra Wymann
- Research and Development, CSL Behring AG, Bern, Switzerland
| | - Yun Dai
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | - Anup G Nair
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | - Helen Cao
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | | | - Anna Schnell
- Research and Development, CSL Behring AG, Bern, Switzerland
| | | | - David Leong
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | | | - Kim G Lieu
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | | | - Marcel Mischnik
- Research and Development, CSL Behring GmbH, Marburg, Germany
| | | | - Saw Yen Ow
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | - Martin Spycher
- Research and Development, CSL Behring AG, Bern, Switzerland
| | | | | | | | | | | | | | - Tony Rowe
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | | |
Collapse
|
3
|
Sandri TL, Lidani KCF, Andrade FA, Meyer CG, Kremsner PG, de Messias-Reason IJ, Velavan TP. Human complement receptor type 1 (CR1) protein levels and genetic variants in chronic Chagas Disease. Sci Rep 2018; 8:526. [PMID: 29323238 PMCID: PMC5765048 DOI: 10.1038/s41598-017-18937-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/19/2017] [Indexed: 11/13/2022] Open
Abstract
Complement is an essential element in both innate and acquired immunity contributing to the immunopathogenesis of many disorders, including Chagas Disease (CD). Human complement receptor 1 (CR1) plays a role in the clearance of complement opsonized molecules and may facilitate the entry of pathogens into host cells. Distinct CR1 exon 29 variants have been found associated with CR1 expression levels, increased susceptibility and pathophysiology of several diseases. In this study, CR1 plasma levels were assessed by ELISA and CR1 variants in exon 29 by sequencing in a Brazilian cohort of 232 chronic CD patients and 104 healthy controls. CR1 levels were significantly decreased in CD patients compared to controls (p < 0.0001). The CR1 rs1704660G, rs17047661G and rs6691117G variants were significantly associated with CD and in high linkage disequilibrium. The CR1*AGAGTG haplotype was associated with T. cruzi infection (p = 0.035, OR 3.99, CI 1.1-14.15) whereas CR1*AGGGTG was related to the risk of chagasic cardiomyopathy (p = 0.028, OR 12.15, CI 1.13-113). This is the first study that provides insights on the role of CR1 in development and clinical presentation of chronic CD.
Collapse
Affiliation(s)
- Thaisa Lucas Sandri
- Laboratory of Molecular Immunopathology, Federal University of Paraná, Curitiba, Brazil
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | | | | | - Christian G Meyer
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
- Vietnamese - German Center for Medical Research, Hanoi, Vietnam
| | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | | | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.
- Faculty of Medicine, Duy Tan University, Da Nang, Vietnam.
- Vietnamese - German Center for Medical Research, Hanoi, Vietnam.
| |
Collapse
|
4
|
Fonseca MI, Chu S, Pierce AL, Brubaker WD, Hauhart RE, Mastroeni D, Clarke EV, Rogers J, Atkinson JP, Tenner AJ. Analysis of the Putative Role of CR1 in Alzheimer's Disease: Genetic Association, Expression and Function. PLoS One 2016; 11:e0149792. [PMID: 26914463 PMCID: PMC4767815 DOI: 10.1371/journal.pone.0149792] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/04/2016] [Indexed: 12/15/2022] Open
Abstract
Chronic activation of the complement system and induced inflammation are associated with neuropathology in Alzheimer’s disease (AD). Recent large genome wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) in the C3b/C4b receptor (CR1 or CD35) that are associated with late onset AD. Here, anti-CR1 antibodies (Abs) directed against different epitopes of the receptor, were used to localize CR1 in brain, and relative binding affinities of the CR1 ligands, C1q and C3b, were assessed by ELISA. Most Abs tested stained red blood cells in blood vessels but showed no staining in brain parenchyma. However, two monoclonal anti-CR1 Abs labeled astrocytes in all of the cases tested, and this reactivity was preabsorbed by purified recombinant human CR1. Human brain-derived astrocyte cultures were also reactive with both mAbs. The amount of astrocyte staining varied among the samples, but no consistent difference was conferred by diagnosis or the GWAS-identified SNPs rs4844609 or rs6656401. Plasma levels of soluble CR1 did not correlate with diagnosis but a slight increase was observed with rs4844609 and rs6656401 SNP. There was also a modest but statistically significant increase in relative binding activity of C1q to CR1 with the rs4844609 SNP compared to CR1 without the SNP, and of C3b to CR1 in the CR1 genotypes containing the rs6656401 SNP (also associated with the larger isoform of CR1) regardless of clinical diagnosis. These results suggest that it is unlikely that astrocyte CR1 expression levels or C1q or C3b binding activity are the cause of the GWAS identified association of CR1 variants with AD. Further careful functional studies are needed to determine if the variant-dictated number of CR1 expressed on red blood cells contributes to the role of this receptor in the progression of AD, or if another mechanism is involved.
Collapse
Affiliation(s)
- Maria I. Fonseca
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, 92697, United States of America
| | - Shuhui Chu
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, 92697, United States of America
| | - Aimee L. Pierce
- Department of Neurology, University of California Irvine, Irvine, California, 92697, United States of America
- UCI Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, California, 92697, United States of America
| | | | - Richard E. Hauhart
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, 63110, United States of America
| | - Diego Mastroeni
- Banner Sun Health Research Institute, Sun City, Arizona, 85351, United States of America
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, European Graduate School of Neuroscience (EURON), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Elizabeth V. Clarke
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, 92697, United States of America
| | - Joseph Rogers
- SRI International, Menlo Park, California, 94025, United States of America
| | - John P. Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, 63110, United States of America
| | - Andrea J. Tenner
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, 92697, United States of America
- UCI Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, California, 92697, United States of America
- Department of Neurobiology and Behavior and Department of Pathology and Laboratory Science, University of California Irvine, Irvine, California, 92697, United States of America
- * E-mail:
| |
Collapse
|