Peshkova AD, Saliakhutdinova SM, Sounbuli K, Selivanova YA, Andrianova IA, Khabirova AI, Litvinov RI, Weisel JW. The differential formation and composition of leukocyte-platelet aggregates induced by various cellular stimulants.
Thromb Res 2024;
241:109092. [PMID:
39024901 PMCID:
PMC11411814 DOI:
10.1016/j.thromres.2024.109092]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND
Leukocyte-platelet aggregates comprise a pathogenic link between hemostasis and immunity, but the prerequisites and mechanisms of their formation remain not understood.
AIMS
To quantify the formation, composition, and morphology of leukocyte-platelet aggregates in vitro under the influence of various cellular activators.
METHODS
Phorbol-12-myristate-13-acetate (PMA), lipopolysaccharide (LPS), thrombin receptor-activating peptide (TRAP-6), and adenosine diphosphate (ADP) were used as cellular activators. Flow cytometry was utilized to identify and quantify aggregates in whole human blood and platelet-rich plasma. Cell types and cellular aggregates were identified using fluorescently labeled antibodies against the appropriate cellular markers, and cell activation was assessed by the expression of appropriate surface markers. For confocal fluorescent microscopy, cell membranes and nuclei were labeled. Neutrophil-platelet aggregates were studied using scanning electron microscopy.
RESULTS
In the presence of PMA, ADP or TRAP-6, about 17-38 % of neutrophils and 61-77 % of monocytes formed aggregates with platelets in whole blood, whereas LPS did not induce platelet aggregation with either neutrophils or monocytes due the inability to activate platelets. Similar results were obtained when isolated neutrophils were added to platelet-rich plasma. All the cell types involved in the heterotypic aggregation expressed molecular markers of activation. Fluorescent and electron microscopy of the aggregates showed that the predominant platelet/leukocyte ratios were 1:1 and 2:1.
CONCLUSIONS
Formation of leukocyte-platelet aggregates depends on the nature of the cellular activator and the spectrum of its cell-activating ability. An indispensable condition for formation of leukocyte-platelet aggregates is activation of all cell types including platelets, which is the restrictive step.
Collapse