1
|
Wen H, Wang L, Morsy K, Hamdi H, El-Kenawy AE, El-Kott AF. Therapeutic properties and molecular docking study of some phenolic compounds as anti-human lung cancer potential: A biochemical approach. J Biochem Mol Toxicol 2023; 37:e23222. [PMID: 36106371 DOI: 10.1002/jbt.23222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 07/27/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023]
Abstract
Chloroxine (5,7-dichloro-8-hydroxyquinoline) is a molecule utilized in some shampoos for the therapy of seborrheic dermatitis of the scalp and dandruff. In this study, we investigated the inhibition effects of 5,7-dichloro-8-hydroxyquinoline and methyl 3,4,5-trihydroxybenzoate compounds on the 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA Reductase) and urease enzymes. We have obtained results for the HMG-CoA Reductase and urease enzymes at the micromolar level. In our study, inhibition result of 5,7-dichloro-8-hydroxyquinoline and Methyl 3,4,5-trihydroxybenzoate on HMG-CoA reductase showed lower values 2.28 ± 0.78 and 33.25 ± 5.04 µg/ml, respectively. Additionally, inhibition result of 5,7-dichloro-8-hydroxyquinoline and methyl 3,4,5-trihydroxybenzoate on urease showed lower values 6.18 ± 1.38 and 8.51 ± 1.35 µg/ml, respectively. Molecular docking calculations were made for their biological activities were compared. In the present work, the structures of the related compounds (1 and 2) were drawn using Gaussian 09 software and done geometry optimization at DFT/B3LYP/6-31G* basis set with aforementioned program. Cytotoxicity potential of these compounds against human lung cancer demonstrated that these compounds had good cytotoxic effects. Both compounds significantly decreased lung cell viability from low doses. In addition, 100 µM dose of all compounds caused significant reductions in lung cell viability. In general, we can say that of the two tested compounds, 5,7-dichloro-8-hydroxyquinoline and methyl 3,4,5-trihydroxybenzoate have cytotoxic effects in all cell types, and this effect is particularly strong in lung cells. Activities were performed at concentrations of 10, 20, 50, 70, and 100 µl and we achieved good results. Lung cell viability (%) value was better at 100 µl concentration and IC50 of them were 54.28 and 48.05 µM.
Collapse
Affiliation(s)
- Hongqing Wen
- Pulmonary and Critical Care Medicine, Northwest University Affiliated Hospital/Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Lei Wang
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin City, China
| | - Kareem Morsy
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Hamida Hamdi
- Department of Biology, Faculty of Science, Taif University, Taif, Saudi Arabia.,Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ayman E El-Kenawy
- Department of Pathology, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.,Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
2
|
Kısa D, İmamoğlu R, Kaya Z, Taskin-Tok T, Taslimi P. Turanecio hypochionaeus: In Silico Studies, and Determination of Its Polyphenol Contents, Bioactivities, and Anti-Microbial Potential. Chem Biodivers 2022; 19:e202200109. [PMID: 35983912 DOI: 10.1002/cbdv.202200109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 08/18/2022] [Indexed: 11/06/2022]
Abstract
The aim of this study was to identify and quantify the phenolic composition of Turanecio hypochionaeus Bosse and determine the anti-urease, anti-lipase, antidiabetic, anti-melanogenesis, antibacterial, and anti-Alzheimer properties. IC50 results for all enzymes were obtained between 0.234-116.50 µg/mL and and this plant inhibited HMG_CoA R and glucosidase enzymes more with IC50 values of 0.234 and 116.50 µg/mL, respectively. Among the 11 secondary metabolites identified in T. hypochionaeus extract, chlorogenic acid 255.459±1.17 µg g-ˡ), benzoic acid (56.251±1.98 µg g-ˡ), and catechin (29.029±0.27 µg g-ˡ ) were determined as the most abundant phenolic compounds. According to the results of the tested microorganisms, the plant extracts showed antimicrobial and antifungal properties in a dose-dependent manner. In molecular docking study, the interactions of active compounds extracting extracted from Turanecio hypochionaeus plant and showing activity against diverse metabolic enzymes were examined. The most active compound 1, (chlorogenic acid) has -12.80, -12.80, -12.60 and -12.00 kcal/mol binding energy value against HMG_CoA R, and α-amylase, α-glucosidase, and lipase, respectively.
Collapse
Affiliation(s)
- Dursun Kısa
- Bartin University: Bartin Universitesi, Molecular biology and genetics, Bartin University, Faculty of Science, 74100, Bartin, TURKEY
| | - Rizvan İmamoğlu
- Bartin University: Bartin Universitesi, Molecular Biology and Genetics, Bartin University, Faculty of Science, 74100, Bartin, TURKEY
| | - Zafer Kaya
- Bartin University: Bartin Universitesi, Forest Engineering, Bartin University, Faculty of Forestry, Bartin, TURKEY
| | - Tugba Taskin-Tok
- Gaziantep University: Gaziantep Universitesi, Chemistry Department, Gaziantep University, Faculty of Arts and Sciences, 27310, Gaziantep, TURKEY
| | - Parham Taslimi
- Bartin University: Bartin Universitesi, Biotechnology, Bartin University, faculty of science, 74100, 74100, Bartin, TURKEY
| |
Collapse
|
3
|
Kafarski P, Talma M. Recent advances in design of new urease inhibitors: A review. J Adv Res 2018; 13:101-112. [PMID: 30094085 PMCID: PMC6077125 DOI: 10.1016/j.jare.2018.01.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/09/2018] [Accepted: 01/16/2018] [Indexed: 12/22/2022] Open
Abstract
Urease is a nickel-dependent metalloenzyme found in plants, some bacteria, and fungi. Bacterial enzyme is of special importance since it has been demonstrated as a potent virulence factor for some species. Especially it is central to Helicobacter pylori metabolism and virulence being necessary for its colonization of the gastric mucosa, and is a potent immunogen that elicits a vigorous immune response. Therefore, it is not surprising that efforts to design, synthesize and evaluate of new inhibitors of urease are and active field of medicinal chemistry. In this paper recent advances on this field are reviewed.
Collapse
Affiliation(s)
- Paweł Kafarski
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | |
Collapse
|
4
|
Affiliation(s)
- Ladislav Habala
- Faculty of Pharmacy, Department of Chemical Theory of Drugs, Comenius University Bratislava, Slovakia
| | - Ferdinand Devínsky
- Faculty of Pharmacy, Department of Chemical Theory of Drugs, Comenius University Bratislava, Slovakia
| | | |
Collapse
|
5
|
Li Y, Lu X, Jing H, Wang Q, Cai Y. Synthesis, structures and antimicrobial activities of silver(I) complexes derived from 2-propyl-1H-imidazole-4,5-dicarboxylic acid. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.07.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Zhang Y, Liu Q, Jing H, Cai Y, Wang Q, Li Y. Synthesis, characterization, and antimicrobial activity of two Schiff base silver(I) complexes derived from 4-carboxybenzaldehyde. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1285399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yanbo Zhang
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, China
| | - Hairui Jing
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, China
| | - Yajun Cai
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, China
| | - Qiang Wang
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, China
| | - Yuguang Li
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, China
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, China
| |
Collapse
|