1
|
Muley A, Kumbhakar S, Raut R, Mathur S, Roy I, Saini T, Misra A, Maji S. Mononuclear copper(II) complexes with polypyridyl ligands: synthesis, characterization, DNA interactions/cleavages and in vitro cytotoxicity towards human cancer cells. Dalton Trans 2024; 53:11697-11712. [PMID: 38912924 DOI: 10.1039/d4dt00984c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
DNA being the necessary element in cell regeneration, controlled cellular apoptosis via DNA binding/cleaving is considered an approach to combat cancer cells. The widely prescribed metallodrug cisplatin has shown interactions with the guanine-N7 center, and a plethora of complexes are continually developed to enhance crosslinking properties as well as covalent and non-covalent interactions. Two pentadentate ligands, L1 (1-(6-(1H-benzo[d]imidazol-2-yl)pyridin-2-yl)-N,N-bis(pyridin-2-ylmethyl)methanamine) and L2 (1-(6-(1-methyl-1H-benzo[d]imidazol-2-yl)pyridin-2-yl)-N,N-bis(pyridin-2-ylmethyl)methanamine), were synthesized together with their respective copper(II) complexes [1](ClO4)2 and [2](ClO4)2, which crystallized in a trigonal bipyramidal fashion. Different analytical and spectroscopic methods confirmed their formation, and their redox behaviour was also examined. The interactions of salmon sperm DNA (ss-DNA) with these two complexes were explored using absorbance spectroscopy, and they both exhibited a binding affinity (Kb) of ∼104 M-1. Fluorescence quenching experiments with ethidium bromide (EB)-bound DNA (EB-DNA) were also performed, and Stern-Volmer constant (KSV) values of 6.93 × 103 and 2.34 × 104 M-1 for [1](ClO4)2 and [2](ClO4)2, respectively, were obtained. Furthermore, DNA conformational changes due to the interactions of both complexes were validated via circular dichroism. We also assessed the DNA cleavage property of these complexes, which resulted in the linearization of circular plasmid DNA. This finding was supported by studying the growth of MDA-MB-231 breast cancer cells upon treatment with both Cu(II) complexes; IC50 values of 5.34 ± 1.02 μM and 0.83 ± 0.18 μM were obtained for [1](ClO4)2 and [2](ClO4)2, respectively. This validates their affinity towards DNA, and these insights can be further utilized for non-platinum based economical metallodrug development based on first row transition metals.
Collapse
Affiliation(s)
- Arabinda Muley
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Sadananda Kumbhakar
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Rajnikant Raut
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Shobhit Mathur
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Indrajit Roy
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Taruna Saini
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Ashish Misra
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Somnath Maji
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| |
Collapse
|
2
|
Mathur S, Karumban KS, Muley A, Tuti N, Shaji UP, Roy I, Verma A, Kumawat MK, Roy A, Maji S. Chromophore appended DPA-based copper(II) complexes with a diimine motif towards DNA binding and fragmentation studies. Dalton Trans 2024; 53:1163-1177. [PMID: 38105760 DOI: 10.1039/d3dt01864d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Mixed ligand copper(II) complexes [Cu(L1)(bpy)](ClO4)21 and [Cu(L2)(bpy)](ClO4)22 (where L1 = 1-(anthracen-9-yl)-N,N-bis(pyridin-2-ylmethyl)methanamine, L2 = 1-(pyren-1-yl)-N,N-bis(pyridin-2-ylmethyl)methanamine and bpy = 2,2'-bipyridine) were synthesised and characterised thoroughly via different analytical and spectroscopic techniques i.e., UV-vis spectroscopy, fluorescence spectroscopy, FT-IR spectroscopy, HRMS and EPR spectroscopy. The molecular structures of the synthesised complexes were obtained using the single-crystal X-ray diffraction technique. Both complexes exhibited penta-coordinated and acquired distorted square pyramidal geometry. The redox behaviour of complexes 1 and 2 was investigated by employing cyclic voltammetry. The DNA binding study was carried out by UV-vis spectrophotometry using double-stranded salmon sperm DNA (ds-ss-DNA). The binding constant (Kb) values of 1 and 2 were 0.11 × 104 M-1 and 1.05 × 104 M-1, respectively, which indicates that 2 has better binding ability than 1. This might be due to the higher conjugative abilities with the extended surface area of the aromatic pyrene ring compared to the anthracene moiety. The fluorescence quenching experiments were also performed with EB bound DNA (EB-DNA) and Stern-Volmer constant (KSV) values were calculated as 1.23 × 105 M-1 and 1.39 × 105 M-1 for 1 and 2, respectively, suggesting that 2 showed stronger interaction with ss-DNA than 1. The molecular docking data support the DNA-binding studies, with the sites and mode of interactions against B-DNA varying with 1 and 2. Evaluation of the DNA binding properties of the complexes to linearized plasmid DNA indicated that 2 had modest DNA binding properties, which is a pre-requisite for a genotoxic agent. The effect of 1 and 2 on cell survival was analysed using HeLa cells by MTT assay and it was observed that the IC50 values of 1 and 2 were 43.7 μM and 18.6 μM, respectively. Our study paves the way for the designing of bio-inspired novel mixed metal complexes, which shows promising results for further exploration of molecular and mechanistic studies towards the development of non-platinum based economical metallodrugs.
Collapse
Affiliation(s)
- Shobhit Mathur
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Kalai Selvan Karumban
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Arabinda Muley
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Nikhil Tuti
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | | | - Indrajit Roy
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Anushka Verma
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Manoj Kumar Kumawat
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Anindya Roy
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Somnath Maji
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| |
Collapse
|
3
|
Wang S, You Z, Qian HY. Copper(II) and cadmium(II) complexes of mono-condensed N,O- or N,N,O-Donor ligands: synthesis, crystal structures, and antibacterial activity. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2025087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shiyi Wang
- Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P.R. China
| | - Zhonglu You
- Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P.R. China
| | - Heng-Yu Qian
- Key Laboratory of Surface & Interface Science of Henan, School of Material & Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
| |
Collapse
|
4
|
Kumar S, Choudhary M. Synthesis and characterization of novel copper(ii) complexes as potential drug candidates against SARS-CoV-2 main protease. NEW J CHEM 2022. [DOI: 10.1039/d2nj00283c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two novel copper(ii) Schiff base complexes, [Cu(L1)2] (1) and [Cu(L2)(CH3OH)(Cl)] (2) of [(Z)-(5-chloro-2-((3,5-dichloro-2-hydroxybenzylidene)amino)phenyl)(phenyl)methanone (L1H) and (Z)-(2((5-bromo-2-hydroxybenzylidene)amino-5-chlorophenyl)(phenyl)methanone)(L2H)], have been designed, synthesized and characterized.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, National Institute of Technology Patna, Patna-800005 (Bihar), India
| | - Mukesh Choudhary
- Department of Chemistry, National Institute of Technology Patna, Patna-800005 (Bihar), India
| |
Collapse
|
5
|
Sharfalddin AA, Emwas AH, Jaremko M, Hussien MA. Practical and Computational Studies of Bivalence Metal Complexes of Sulfaclozine and Biological Studies. Front Chem 2021; 9:644691. [PMID: 34211959 PMCID: PMC8239243 DOI: 10.3389/fchem.2021.644691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
In the search for novel, metal-based drug complexes that may be of value as anticancer agents, five new transition metal complexes of sulfaclozine (SCZ) with Cu(II), Co(II), Ni(II), Zn(II), and Fe(II) were successfully synthesized. The chemical structure of each complex was characterized using elemental analysis (CHN), IR spectroscopy, UV–Vis spectroscopy, thermogravimetric analysis (TGA), and electronic paramagnetic resonance (EPR) spectroscopy. IR spectra indicated that the donor atoms were one sulfonyl oxygen atom and one pyrazine nitrogen atom, which associated with the metal ions to form a stable hexagonal coordination ring. The metal–ligand stability constant (Kf) revealed that Cu(II) and Ni(II) have good coordination stability among the metal compounds. Theoretical studies using DFT/B3LYP were performed to further validate the proposed structures. The obtained results indicated that Cu(II) has a trigonal bipyramidal geometry, whereas Fe(II), Co(II), and Ni(II) have an octahedral structure, while Zn(II) has a tetrahedral arrangement. The bio-activities of the characterized complexes were evaluated using DNA binding titration and molecular docking. The binding constant values for the metal complexes were promising, with a maximum value for the copper metal ion complex, which was 9 × 105 M-1. Molecular docking simulations were also carried out to evaluate the interaction strength and properties of the synthesized metal complexes with both DNA and selected cancer-relevant proteins. These results were supported by in vitro cytotoxicity assays showing that the Cu(II) and Ni(II) complexes display promising antitumor activity against colon and breast cancer cell lines.
Collapse
Affiliation(s)
- Abeer A Sharfalddin
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdul-Hamid Emwas
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mariusz Jaremko
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Thuwal, Saudi Arabia
| | - Mostafa A Hussien
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Chemistry, Faculty of Science, Port Said University, Port Said, Egypt
| |
Collapse
|
6
|
Qian HY. Copper(II) and cadmium(II) complexes of mono-condensed N,O- or N,N,O-Donor ligands: synthesis, crystal structures, and antibacterial activity. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1917611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Heng-Yu Qian
- Key Laboratory of Surface & Interface Science of Henan, School of Material & Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
| |
Collapse
|
7
|
Wang FM, Li LJ, Zang GW, Deng TT, You ZL. Syntheses, Crystal Structures, and Antimicrobial Activities of Copper(II) Complexes Derived from N,N'-Bis(5-Fluorosalicylidene)-1,3-Propanediamine. RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s1070328421030076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Synthesis and crystal structure of some first row transition metals containing a common Schiff base. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Zhang CL, Cai DH, Chen S, Liu W, Xiong YH, Le XY. Synthesis, DNA interaction and SOD-like activities of copper(II) complexes: investigation of their DNA-interaction mechanism. TRANSIT METAL CHEM 2019. [DOI: 10.1007/s11243-019-00320-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Zhou Y, Liu L, Yang M, Lu R, Jin Y, Chen W. Synthesis, crystal structure and biological property of a novel phenolato-bridged trinuclear copper(II) complex derived from bis-Schiff base ligand. INORG NANO-MET CHEM 2019. [DOI: 10.1080/24701556.2018.1503682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yuqin Zhou
- National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan, P.R. China
- School of Chemistry, Huazhong Normal University, Wuhan, P.R. China
| | - Litian Liu
- College of Chemical Engineering, Wuhan Textile University, Wuhan, P.R. China
| | - Mandi Yang
- National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan, P.R. China
| | - Rundong Lu
- National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan, P.R. China
| | - Yuebei Jin
- National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan, P.R. China
| | - Wu Chen
- National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan, P.R. China
| |
Collapse
|
11
|
Azary A, Bezaatpour A, Zahri S, Amiri M. Synthesis, characterization, crystal structure, electrochemical, solvatochromic and biological investigation of novel N4 and N3 type Cu(ii) Schiff base complexes. NEW J CHEM 2017. [DOI: 10.1039/c7nj02187a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present study, three novel Cu(ii) Schiff base complexes were synthesized and characterized using infrared spectroscopy, elemental analysis, conductivity measurements and X-ray crystallography.
Collapse
Affiliation(s)
- Akbar Azary
- Department of Chemistry
- Faculty of Basic Science
- Ardabil
- Iran
| | | | | | - Mandana Amiri
- Department of Chemistry
- Faculty of Basic Science
- Ardabil
- Iran
| |
Collapse
|