1
|
Maseer MM, Kikhavani T, Tahmasbi B. A multidentate copper complex on magnetic biochar nanoparticles as a practical and recoverable nanocatalyst for the selective synthesis of tetrazole derivatives. NANOSCALE ADVANCES 2024; 6:3948-3960. [PMID: 39050945 PMCID: PMC11265574 DOI: 10.1039/d4na00284a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024]
Abstract
Waste recycling, novel and easy methods of recycling catalysts, use of green solvents, use of selective catalysts and preventing the production of by-products are the most important principles of green chemistry and modern technology. Therefore, in this work, biochar nanoparticles (B-NPs) were synthesized by the pyrolysis of chicken manure as a novel method for waste recycling. Subsequently, the B-NPs were magnetized by Fe(0) nanoparticles to improve the easy recovery of biochar. Then, the surface of biochar magnetic nanoparticles (FeB-MNPs) was modified by (3-chloropropyl)trimethoxysilane (3Cl-PTMS). Finally, a multidentate copper complex of 2,2'-(propane-1,3-diylbis(oxy))dianiline (P.bis(OA)) was immobilized on the surface of modified FeB-MNPs, which was labeled as Cu-P.bis(OA)@FeB-MNPs. Cu-P.bis(OA)@FeB-MNPs was investigated as a commercial, homoselective, practical, and recyclable nanocatalyst in the synthesis of 5-substituted-1H-tetrazole compounds through the [3 + 2] cycloaddition of sodium azide (NaN3) and organo-nitriles in polyethylene glycol 400 (PEG-400) as a green solvent. Cu-P.bis(OA)@FeB-MNPs was characterized using wavelength dispersive X-ray (WDX) spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), energy-dispersive X-ray spectroscopy (EDS), vibrating-sample magnetometer (VSM), atomic absorption spectroscopy (AAS) and N2 adsorption-desorption (Brunauer-Emmett-Teller (BET) method) techniques. Cu-P.bis(OA)@FeB-MNPs was recovered and reused for several runs in the synthesis of tetrazoles.
Collapse
Affiliation(s)
- Marwan Majeed Maseer
- Department of Chemical Engineering, Faculty of Engineering, Ilam University Ilam Iran
| | - Tavan Kikhavani
- Department of Chemical Engineering, Faculty of Engineering, Ilam University Ilam Iran
| | - Bahman Tahmasbi
- Department of Chemistry, Faculty of Science, Ilam University P. O. Box 69315516 Ilam Iran
| |
Collapse
|
2
|
Guo C, Li P. The photocatalytic degradation of tylosin by a trimetallic ZnCrNi/GO-layered double hydroxide in the conformation of a clustered crumb sheet. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1423. [PMID: 37934331 DOI: 10.1007/s10661-023-12048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
Industrial wastewater from drug production is one of the contributors to water pollution. For drug wastewater treatment, photodegradation-based chemical technology has gained more attention because of the drug's microbicidal nature and stability. A zinc-chromium-nickel trimetallic-layered double hydroxide compounding with graphene oxide catalyst (ZnCrNi/GO) was synthesized and exhibited a clustered crumb sheet morphology. The prepared catalyst was characterized by a scanning electron microscope (SEM) equipped with an energy-dispersive X-ray spectrometer (EDS), Fourier transform infrared (FTIR) spectra, and X-ray photoelectron spectroscopy (XPS). The results of material analysis established the crystallographic structures of catalysts and evidenced the successful synthesis. The ZnCrNi/GO nanohybrid revealed a higher activity of approximately 90% degradation of tolysin under high-pressure mercury lamp irradiation. The optimized condition of the catalyst dosage of 500 mg/L and the natural pH of the solution at 7.0 under the tylosin concentration of 10 mg/L with high photocatalytic efficiency was explored. In addition, the main reactive species involved in this photocatalysis degradation were explored as the active cavity h+ and ·O2- to a certain extent by the radical trapping experiments. Reuse experiments have shown that as-prepared catalysts possessed the properties of high efficiency and long-lasting catalytic performance, which could meet pharmaceutical wastewater treatment. A three-metal-layered double hydroxide composed by the metal of Ni, Zn, and Cr was synthesized and attached onto graphene oxide. The catalytic materials obtained in this way have a significant catalysis efficiency to tylosin with the likely degradation mechanism of the active cavity h+ and the oxidative capacity of hydroxyl radials.
Collapse
Affiliation(s)
- Chenchen Guo
- School of Environment and Life Health, Anhui Vocational and Technical College, 2600 Wenzhong Road, Hefei City, Anhui Province, 230011, People's Republic of China
| | - Ping Li
- School of Materials & Chemical Engineering, Anhui Jianzhu University, 292 Ziyun Road, Hefei City, Anhui Province, 230601, People's Republic of China.
| |
Collapse
|
3
|
Mohammadi P, Heravi MM, Mohammadi L, Saljooqi A. Preparation of magnetic biochar functionalized by polyvinyl imidazole and palladium nanoparticles for the catalysis of nitroarenes hydrogenation and Sonogashira reaction. Sci Rep 2023; 13:17375. [PMID: 37833352 PMCID: PMC10576072 DOI: 10.1038/s41598-023-44292-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Catalysts are essential materials in biotechnology, medicine, industry, and chemistry. On the other hand, recycling and using waste materials is important in economic efficiency and green chemistry. Thus, biochar was prepared from the stem and roots of the Spear Thistle to recover waste. After magnetizing the biochar, its surface was modified with polyvinyl imidazole. Finally, this modified biochar was decorated with Pd nanoparticles and used as a selective and recyclable nanocatalyst in the hydrogenation of nitroarenes and the Sonogashira reaction. The structure of this organic-inorganic nanocatalyst has been characterized by FESEM-EDS, XRD, FT-IR, TEM, and VSM techniques. In the hydrogenation reaction with the amount of 30 mg of nanocatalyst, the temperature of 50 °C in the water solvent, the reaction efficiency reached 99% for 30 min. In addition, under optimal conditions for the Sonogashira reaction: 1.0 mmol iodobenzene, 1.2 mmol phenylacetylene, 20 mg MBC-PVIm/Pd, 2 mmol K2CO3 in H2O at 50 C for 15 min, the reaction efficiency reached 95%. The recyclability of magnetic nanocatalysts was investigated and recognized this nanocatalyst can be used several times without notable loss of its activity.
Collapse
Affiliation(s)
- Pourya Mohammadi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, PO. Box 1993891176, Vanak, Tehran, Iran
| | - Majid M Heravi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, PO. Box 1993891176, Vanak, Tehran, Iran.
| | - Leila Mohammadi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, PO. Box 1993891176, Vanak, Tehran, Iran
| | - Asma Saljooqi
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
4
|
Zaar F, Moyses Araujo C, Emanuelsson R, Strømme M, Sjödin M. Tetraphenylporphyrin electrocatalysts for the hydrogen evolution reaction: applicability of molecular volcano plots to experimental operating conditions. Dalton Trans 2023; 52:10348-10362. [PMID: 37462421 DOI: 10.1039/d3dt01250f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Recent years have seen an increasing interest in molecular electrocatalysts for the hydrogen evolution reaction (HER). Efficient hydrogen evolution would play an important role in a sustainable fuel economy, and molecular systems could serve as highly specific and tunable alternatives to traditional noble metal surface catalysts. However, molecular catalysts are currently mostly used in homogeneous setups, where quantitative evaluation of catalytic activity is non-standardized and cumbersome, in particular for multistep, multielectron processes. The molecular design community would therefore be well served by a straightforward model for prediction and comparison of the efficiency of molecular catalysts. Recent developments in this area include attempts at applying the Sabatier principle and the volcano plot concept - popular tools for comparing metal surface catalysts - to molecular catalysis. In this work, we evaluate the predictive power of these tools in the context of experimental operating conditions, by applying them to a series of tetraphenylporphyrins employed as molecular electrocatalysts of the HER. We show that the binding energy of H and the redox chemistry of the porphyrins depend solely on the electron withdrawing ability of the central metal ion, and that the thermodynamics of the catalytic cycle follow a simple linear free energy relation. We also find that the catalytic efficiency of the porphyrins is almost exclusively determined by reaction kinetics and therefore cannot be explained by thermodynamics alone. We conclude that the Sabatier principle, linear free energy relations and molecular volcano plots are insufficient tools for predicting and comparing activity of molecular catalysts, and that experimentally useful information of catalytic performance can still only be obtained through detailed knowledge of the catalytic pathway for each individual system.
Collapse
Affiliation(s)
- Felicia Zaar
- Department of Materials Science and Engineering, Division of Nanotechnology and Functional Materials, Uppsala University, Box 35, SE-751 03 Uppsala, Sweden.
| | - C Moyses Araujo
- Materials Theory Division, Department of Physics and Astronomy, Ångström Laboratory, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
- Department of Engineering and Physics, Karlstad University, 651 88 Karlstad, Sweden
| | - Rikard Emanuelsson
- Department of Chemistry - BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Maria Strømme
- Department of Materials Science and Engineering, Division of Nanotechnology and Functional Materials, Uppsala University, Box 35, SE-751 03 Uppsala, Sweden.
| | - Martin Sjödin
- Department of Materials Science and Engineering, Division of Nanotechnology and Functional Materials, Uppsala University, Box 35, SE-751 03 Uppsala, Sweden.
| |
Collapse
|
5
|
Organomanganese / amido-phosphine (DAPTA) catalyst for rapid cyanosilylation of aldehydes in glycerol and solvent-free conditions at room temperature. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
6
|
Li H, Fei M, Troiano JL, Ma L, Yan X, Tieu P, Yuan Y, Zhang Y, Liu T, Pan X, Brudvig GW, Wang D. Selective Methane Oxidation by Heterogenized Iridium Catalysts. J Am Chem Soc 2023; 145:769-773. [PMID: 36594824 DOI: 10.1021/jacs.2c09434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Oxidative methane (CH4) carbonylation promises a direct route to the synthesis of value-added oxygenates such as acetic acid (CH3COOH). Here, we report a strategy to realize oxidative CH4 carbonylation through immobilized Ir complexes on an oxide support. Our immobilization approach not only enables direct CH4 activation but also allows for easy separation and reutilization of the catalyst. Furthermore, we show that a key step, methyl migration, that forms a C-C bond, is sensitive to the electrophilicity of carbonyl, which can be tuned by a gentle reduction to the Ir centers. While the as-prepared catalyst that mainly featured Ir(IV) preferred CH3COOH production, a reduced catalyst featuring predominantly Ir(III) led to a significant increase of CH3OH production at the expense of the reduced yield of CH3COOH.
Collapse
Affiliation(s)
- Haoyi Li
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Muchun Fei
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jennifer L Troiano
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, the United States
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Xingxu Yan
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States.,Irvine Materials Research Institute, University of California, Irvine, California 92697, United States
| | - Peter Tieu
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Yucheng Yuan
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yuhan Zhang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Tianying Liu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States.,Irvine Materials Research Institute, University of California, Irvine, California 92697, United States.,Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, the United States
| | - Dunwei Wang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
7
|
Wong KT, Brigljević B, Lee JH, Yoon SY, Jang SB, Choong CE, Nah I, Kim H, Roh HS, Kwak SK, Lim H, Jang M. Highly Exposed NH 2 Edge on Fragmented g-C 3 N 4 Framework with Integrated Molybdenum Atoms for Catalytic CO 2 Cycloaddition: DFT and Techno-Economic Assessment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204336. [PMID: 36403243 DOI: 10.1002/smll.202204336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/01/2022] [Indexed: 06/16/2023]
Abstract
This study focuses on the applicability of single-atom Mo-doped graphitic carbon nitride (GCN) nanosheets which are specifically engineered with high surface area (exfoliated GCN), NH2 rich edges, and maximum utilization of isolated atomic Mo for propylene carbonate (PC) production through CO2 cycloaddition of propylene oxide (PO). Various operational parameters are optimized, for example, temperature (130 °C), pressure (20 bar), catalyst (Mo2 GCN), and catalyst mass (0.1 g). Under optimal conditions, 2% Mo-doped GCN (Mo2 GCN) has the highest catalytic performance, especially the turnover frequency (TOF) obtained, 36.4 h-1 is higher than most reported studies. DFT simulations prove the catalytic performance of Mo2 GCN significantly decreases the activation energy barrier for PO ring-opening from 50-60 to 4.903 kcal mol-1 . Coexistence of Lewis acid/base group improves the CO2 cycloaddition performance by the formation of coordination bond between electron-deficient Mo atom with O atom of PO, while NH2 surface group disrupts the stability of CO2 bond by donating electrons into its low-level empty orbital. Steady-state process simulation of the industrial-scale consumes 4.4 ton h-1 of CO2 with PC production of 10.2 ton h-1 . Techno-economic assessment profit from Mo2 GCN is estimated to be 60.39 million USD year-1 at a catalyst loss rate of 0.01 wt% h-1 .
Collapse
Affiliation(s)
- Kien Tiek Wong
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Boris Brigljević
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technolog, Ulsan, 44919, Republic of Korea
- Carbon Value Co., Ltd, 2801 A-dong, 97, Centum Jungang-ro, Haeundae-gu, Busan, 48058, Republic of Korea
| | - Jeong Hyeon Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technolog, Ulsan, 44919, Republic of Korea
| | - So Yeon Yoon
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Seok Byum Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Choe Earn Choong
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Inwook Nah
- Center for Energy Convergence, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyeongjun Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technolog, Ulsan, 44919, Republic of Korea
| | - Hyun-Seog Roh
- Department of Environmental and Energy Engineering, Yonsei University, Gangwon, 26493, Republic of Korea
| | - Sang Kyu Kwak
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technolog, Ulsan, 44919, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hankwon Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technolog, Ulsan, 44919, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| |
Collapse
|
8
|
Kato T, Nagae H, Yonehara K, Kitano T, Nagashima H, Tanaka S, Oku T, Mashima K. Continuous Plug Flow Process for the Transesterification of Methyl Acrylate and 1,4-Butanediol by a Zn-Immobilized Catalyst for Producing 4-Hydroxybutyl Acrylate. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Taito Kato
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka560-8531, Japan
- Corporate Research Division, Nippon Shokubai Company Limited, Suita, Osaka564-0034, Japan
| | - Haruki Nagae
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka560-8531, Japan
| | - Koji Yonehara
- Innovation & Business Development Division, Nippon Shokubai Company Limited, Suita, Osaka564-0034, Japan
| | - Tomoyuki Kitano
- Corporate Research Division, Nippon Shokubai Company Limited, Suita, Osaka564-0034, Japan
| | - Hiroki Nagashima
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki305-8565, Japan
| | - Shinji Tanaka
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki305-8565, Japan
| | - Tomoharu Oku
- Corporate Research Division, Nippon Shokubai Company Limited, Suita, Osaka564-0034, Japan
| | - Kazushi Mashima
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka560-8531, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka565-0871, Japan
| |
Collapse
|
9
|
Surface Organometallic Chemistry for Single-site Catalysis and Single-atom Catalysis. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Taheri‐Torbati M, Eshghi H. Fe
3
O
4
@CS‐Ni: an efficient and recyclable magnetic nanocatalyst for α‐alkylation of ketones with benzyl alcohols by borrowing hydrogen methodology. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mina Taheri‐Torbati
- Department of Chemistry, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
11
|
Zaar F, Olsson S, Emanuelsson R, Strømme M, Sjödin M. Characterization of a porphyrin-functionalized conducting polymer: A first step towards sustainable electrocatalysis. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Brown CM, Lundberg DJ, Lamb JR, Kevlishvili I, Kleinschmidt D, Alfaraj YS, Kulik HJ, Ottaviani MF, Oldenhuis NJ, Johnson JA. Endohedrally Functionalized Metal-Organic Cage-Cross-Linked Polymer Gels as Modular Heterogeneous Catalysts. J Am Chem Soc 2022; 144:13276-13284. [PMID: 35819842 DOI: 10.1021/jacs.2c04289] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The immobilization of homogeneous catalysts onto supports to improve recyclability while maintaining catalytic efficiency is often a trial-and-error process limited by poor control of the local catalyst environment and few strategies to append catalysts to support materials. Here, we introduce a modular heterogenous catalysis platform that addresses these challenges. Our approach leverages the well-defined interiors of self-assembled Pd12L24 metal-organic cages/polyhedra (MOCs): simple mixing of a catalyst-ligand of choice with a polymeric ligand, spacer ligands, and a Pd salt induces self-assembly of Pd12L24-cross-linked polymer gels featuring endohedrally catalyst-functionalized junctions. Semi-empirical calculations show that catalyst incorporation into the MOC junctions of these materials has minimal affect on the MOC geometry, giving rise to well-defined nanoconfined catalyst domains as confirmed experimentally using several techniques. Given the unique network topology of these freestanding gels, they are mechanically robust regardless of their endohedral catalyst composition, allowing them to be physically manipulated and transferred from one reaction to another to achieve multiple rounds of catalysis. Moreover, by decoupling the catalyst environment (interior of MOC junctions) from the physical properties of the support (the polymer matrix), this strategy enables catalysis in environments where homogeneous catalyst analogues are not viable, as demonstrated for the Au(I)-catalyzed cyclization of 4-pentynoic acid in aqueous media.
Collapse
Affiliation(s)
- Christopher M Brown
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - David J Lundberg
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jessica R Lamb
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ilia Kevlishvili
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Denise Kleinschmidt
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yasmeen S Alfaraj
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | - Nathan J Oldenhuis
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
A phenylazophenylenediamine-based La-complex as a superb nanocatalyst for the synthesis of diverse pyrano[2,3-c]pyrazoles. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Fabrication of Copper(II)-Coated Magnetic Core-Shell Nanoparticles Fe3O4@SiO2: An Effective and Recoverable Catalyst for Reduction/Degradation of Environmental Pollutants. CRYSTALS 2022. [DOI: 10.3390/cryst12060862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this work, we report the synthesis of a magnetically recoverable catalyst through immobilizing copper (II) over the Fe3O4@SiO2 nanoparticles (NPs) surface [Fe3O4@SiO2-L–Cu(II)] (L = pyridine-4-carbaldehyde thiosemicarbazide). Accordingly, synthesized catalysts were determined and characterized by energy dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), field emission scanning electron microscopy (FESEM), and thermogravimetric-differential thermal analysis (TG-DTA) procedures. The [Fe3O4@SiO2-L–Cu(II)] was used for the reduction of Cr(VI), 4-nitrophenol (4-NP) and organic dyes such as Congo Red (CR) and methylene blue (MB) in aqueous media. Catalytic performance studies showed that the [Fe3O4@SiO2–L–Cu(II)] has excellent activity toward reduction reactions under mild conditions. Remarkable attributes of this method are high efficiency, removal of a homogeneous catalyst, easy recovery from the reaction mixture, and uncomplicated route. The amount of activity in this catalytic system was almost constant after several stages of recovery and reuse. The results show that the catalyst was easily separated and retained 83% of its efficiency after five cycles without considerable loss of activity and stability.
Collapse
|
15
|
Maji B, Bhandari A, Bhattacharya D, Choudhury J. Reusable Single Homogeneous Ir(III)–NHC Catalysts for Bidirectional Hydrogenation–Dehydrogenation of N-Heteroarenes in Water. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Babulal Maji
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Anirban Bhandari
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Disha Bhattacharya
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| |
Collapse
|
16
|
Boronat M, Climent MJ, Concepción P, Díaz U, García H, Iborra S, Leyva-Pérez A, Liu L, Martínez A, Martínez C, Moliner M, Pérez-Pariente J, Rey F, Sastre E, Serna P, Valencia S. A Career in Catalysis: Avelino Corma. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mercedes Boronat
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Maria J. Climent
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Patricia Concepción
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Urbano Díaz
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Hermenegildo García
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Sara Iborra
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Lichen Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Agustin Martínez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Cristina Martínez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Manuel Moliner
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Joaquín Pérez-Pariente
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Marie Curie 2, Madrid 28049, Spain
| | - Fernando Rey
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Enrique Sastre
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Marie Curie 2, Madrid 28049, Spain
| | - Pedro Serna
- ExxonMobil Technology and Engineering Company, Catalysis Fundamentals, Annandale, New Jersey 08801, United States
| | - Susana Valencia
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
17
|
Maji B, Choudhury J. Reusable Water‐Soluble Homogeneous Catalyst in Aqueous‐Phase Transfer Hydrogenation of N‐Heteroarenes with Formic Acid: Uracil–Based Bifunctional Ir–NHC Catalyst is the Key. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Babulal Maji
- Organometallics & Smart Materials Laboratory, Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal India
| |
Collapse
|
18
|
Hydrolytic vs. Nonhydrolytic Sol-Gel in Preparation of Mixed Oxide Silica-Alumina Catalysts for Esterification. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082534. [PMID: 35458732 PMCID: PMC9029862 DOI: 10.3390/molecules27082534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
The development of green and sustainable materials for use as heterogeneous catalysts is a growing area of research in chemistry. In this paper, mesoporous SiO2-Al2O3 mixed oxide catalysts with different Si/Al ratios were prepared via hydrolytic (HSG) and nonhydrolytic sol-gel (NHSG) processes. The HSG route was explored in acidic and basic media, while NHSG was investigated in the presence of diisopropylether as an oxygen donor. The obtained materials were characterized using EDX, N2-physisorption, powder XRD, 29Si, 27Al MAS-NMR, and NH3-TPD. This approach offered good control of composition and the Si/Al ratio was found to influence both the texture and the acidity of the mesoporous materials. According to 27Al and 29Si MAS NMR analyses, silicon and aluminum were more regularly distributed in NHSG samples that were also more acidic. Silica–alumina catalysts prepared via NHSG were more active in esterification of acetic acid with n-BuOH.
Collapse
|
19
|
Oboudatian HS, Safaei-Ghomi J. Fibrous nanosilica spheres KCC-1@NH2 as highly effective and easily retrievable catalyst for the synthesis of chromenes. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04695-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Oboudatian HS, Safaei-Ghomi J. Silica nanospheres KCC-1 as a good catalyst for the preparation of 2-amino-4H-chromenes by ultrasonic irradiation. Sci Rep 2022; 12:2381. [PMID: 35149718 PMCID: PMC8837639 DOI: 10.1038/s41598-022-05993-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/19/2022] [Indexed: 11/17/2022] Open
Abstract
Fibrous nano-silica sphere (KCC-1) has appeared as a good and efficient catalyst for ultrasonic irradiation conditions in chemical reactions. This catalyst has the unique properties such as a fibrous surface morphology, high surface area and high mechanical stability. The results indicated that the KCC-1 nanocatalyst could be used as high-performance catalysts under high temperature and pressure condition in organic reaction under ultrasonic irradiation. Morphology, structure, and composition of the fibrous nano-silica sphere were described by N2 adsorption-desorption analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FT-IR). In this work, we used KCC-1@NH2 nanosilica as a basic catalyst for the preparation of chromenes under ultrasonic irradiation conditions for the first time. The recyclability, nontoxicity and high stability of the catalyst, combined with low reaction times and excellent yields, make the present protocol very useful for the synthesis of the title products under ultrasonic conditions. The produced products were confirmed via 1H NMR, 13C NMR, FT-IR analysis.
Collapse
Affiliation(s)
- Hourieh Sadat Oboudatian
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Islamic Republic of Iran
| | - Javad Safaei-Ghomi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Islamic Republic of Iran.
| |
Collapse
|
21
|
García-Zaragoza A, Cerezo-Navarrete C, Mollar-Cuni A, Oña-Burgos P, Mata JA, Corma A, Martínez-Prieto LM. Tailoring graphene-supported Ru nanoparticles by functionalization with pyrene-tagged N-heterocyclic carbenes. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02063c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Controlling the reactivity and stability of graphene-supported Ru NPs by modifying their surface with pyrene-tagged N-heterocyclic carbene ligands.
Collapse
Affiliation(s)
- Adrián García-Zaragoza
- ITQ, Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Av. de los Naranjos S/N 46022, Valencia, Spain
| | - Christian Cerezo-Navarrete
- ITQ, Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Av. de los Naranjos S/N 46022, Valencia, Spain
| | - Andrés Mollar-Cuni
- Institute of Advanced Materials (INAM), Universitat Jaume I, Avda. Sos Baynat S/N 12006, Castellón, Spain
| | - Pascual Oña-Burgos
- ITQ, Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Av. de los Naranjos S/N 46022, Valencia, Spain
| | - Jose A. Mata
- Institute of Advanced Materials (INAM), Universitat Jaume I, Avda. Sos Baynat S/N 12006, Castellón, Spain
| | - Avelino Corma
- ITQ, Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Av. de los Naranjos S/N 46022, Valencia, Spain
| | - Luis M. Martínez-Prieto
- ITQ, Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Av. de los Naranjos S/N 46022, Valencia, Spain
| |
Collapse
|
22
|
|
23
|
Souleymanou MY, El‐Ouahabi F, Masdeu‐Bultó AM, Godard C. Cooperative NHC‐based Catalytic System Immobilised onto Carbon Materials for the Cycloaddition of CO
2
to Epoxides. ChemCatChem 2021. [DOI: 10.1002/cctc.202001816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Myriam Y. Souleymanou
- Department de Química Física i Inorgànica Universitat Rovira I Virgili C/ Marcel.lí Domingo s/n 43007 Tarragona Spain
| | - Fatima El‐Ouahabi
- Department de Química Física i Inorgànica Universitat Rovira I Virgili C/ Marcel.lí Domingo s/n 43007 Tarragona Spain
| | - Anna M. Masdeu‐Bultó
- Department de Química Física i Inorgànica Universitat Rovira I Virgili C/ Marcel.lí Domingo s/n 43007 Tarragona Spain
| | - Cyril Godard
- Department de Química Física i Inorgànica Universitat Rovira I Virgili C/ Marcel.lí Domingo s/n 43007 Tarragona Spain
| |
Collapse
|
24
|
Cerezo-Navarrete C, Mathieu Y, Puche M, Morales C, Concepción P, Martínez-Prieto LM, Corma A. Controlling the selectivity of bimetallic platinum–ruthenium nanoparticles supported on N-doped graphene by adjusting their metal composition. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02379e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bimetallic platinum–ruthenium nanoparticles supported on N-doped graphene as chemoselective hydrogenation catalysts.
Collapse
Affiliation(s)
| | - Yannick Mathieu
- ITQ, Instituto de Tecnología Química
- Universitat Politècnica de València (UPV)
- Valencia
- Spain
| | - Marta Puche
- ITQ, Instituto de Tecnología Química
- Universitat Politècnica de València (UPV)
- Valencia
- Spain
| | - Cristina Morales
- ITQ, Instituto de Tecnología Química
- Universitat Politècnica de València (UPV)
- Valencia
- Spain
| | - Patricia Concepción
- ITQ, Instituto de Tecnología Química
- Universitat Politècnica de València (UPV)
- Valencia
- Spain
| | | | - Avelino Corma
- ITQ, Instituto de Tecnología Química
- Universitat Politècnica de València (UPV)
- Valencia
- Spain
| |
Collapse
|
25
|
Nahra F, Cazin CSJ. Sustainability in Ru- and Pd-based catalytic systems using N-heterocyclic carbenes as ligands. Chem Soc Rev 2021; 50:3094-3142. [DOI: 10.1039/c8cs00836a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review is a critical presentation of catalysts based on palladium and ruthenium bearing N-heterocyclic carbene ligands that have enabled a more sustainable approach to catalysis and to catalyst uses.
Collapse
Affiliation(s)
- Fady Nahra
- Centre for Sustainable Chemistry
- Department of Chemistry
- Ghent University
- 9000 Gent
- Belgium
| | - Catherine S. J. Cazin
- Centre for Sustainable Chemistry
- Department of Chemistry
- Ghent University
- 9000 Gent
- Belgium
| |
Collapse
|
26
|
Cano I, Martínez-Prieto LM, van Leeuwen PWNM. Heterolytic cleavage of dihydrogen (HCD) in metal nanoparticle catalysis. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02399j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Supports, ligands and additives can promote heterolytic H2 splitting by a cooperative mechanism with metal nanoparticles.
Collapse
Affiliation(s)
- Israel Cano
- Applied Physics Department
- University of Cantabria
- 39005 Santander
- Spain
| | - Luis M. Martínez-Prieto
- Instituto de Tecnología Química
- Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC)
- 46022 Valencia
- Spain
| | | |
Collapse
|
27
|
Hexagonal Boron Nitride Supported N-Heterocyclic Carbene-Palladium(II): A New, Efficient and Recyclable Heterogeneous Catalyst for Suzuki–Miyaura Cross-Coupling Reaction. Catal Letters 2020. [DOI: 10.1007/s10562-020-03401-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Sedighinia E, Badri R, Kiasat AR. Application of Yttrium Iron Garnet as a Powerful and Recyclable Nanocatalyst for One-Pot Synthesis of Pyrano[2,3-c]pyrazole Derivatives under Solvent-Free Conditions. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428019110186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
D Nunes C, Rudić S, D Vaz P. Probing the relevance of MoO 2 nanoparticles' synthesis on their catalytic activity by inelastic neutron scattering. Phys Chem Chem Phys 2020; 22:896-904. [PMID: 31844858 DOI: 10.1039/c9cp06278e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanosized MoO2 can be prepared by different protocols, which yield different morphologies of the nanoparticles. Among their many properties, they can serve as catalysts for styrene oxidation (among other olefins), which is an industrially relevant transformation. In this work, we prepared MoO2 nanosized catalysts by two slightly different hydrothermal protocols using ethylenediamine and either Fe2O3 or hydroquinone. When used in catalysis, kinetic data evidenced that depending on the synthesis protocol of MoO2, induction periods occur (for the catalyst prepared with hydroquinone) with obvious different kinetic profiles and, in addition, product selectivity was also affected. To gain some insight on what is behind these results of the catalytic activity, a combined approach of studies has been conducted. DRIFT and inelastic neutron scattering (INS) techniques were used to assess the adsorbed species at the surface of both the fresh (DRIFT and INS) and recovered (INS) catalysts. Results from this study showed that when hydroquinone was used, an organic shell coated the MoO2 nanoparticles, which negatively influenced the catalytic performance.
Collapse
Affiliation(s)
- Carla D Nunes
- Centro de Química e Bioquímica and Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | | | | |
Collapse
|
30
|
Rajendran A, Rajendiran M, Yang ZF, Fan HX, Cui TY, Zhang YG, Li WY. Functionalized Silicas for Metal-Free and Metal-Based Catalytic Applications: A Review in Perspective of Green Chemistry. CHEM REC 2019; 20:513-540. [PMID: 31631504 DOI: 10.1002/tcr.201900056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/23/2019] [Indexed: 12/20/2022]
Abstract
Heterogeneous catalysis plays a key role in promoting green chemistry through many routes. The functionalizable reactive silanols highlight silica as a beguiling support for the preparation of heterogeneous catalysts. Metal active sites anchored on functionalized silica (FS) usually demonstrate the better dispersion and stability due to their firm chemical interaction with FSs. Having certain functional groups in structure, FSs can act as the useful catalysts for few organic reactions even without the need of metal active sites which are termed as the covetous reusable organocatalysts. Magnetic FSs have laid the platform where the effortless recovery of catalysts is realized just using an external magnet, resulting in the simplified reaction procedure. Using FSs of multiple functional groups, we can envisage the shortened reaction pathway and, reduced chemical uses and chemical wastes. Unstable bio-molecules like enzymes have been stabilized when they get chemically anchored on FSs. The resultant solid bio-catalysts exhibited very good reusability in many catalytic reactions. Getting provoked from the green chemistry aspects and benefits of FS-based catalysts, we confer the recent literature and progress focusing on the significance of FSs in heterogeneous catalysis. This review covers the preparative methods, types and catalytic applications of FSs. A special emphasis is given to the metal-free FS catalysts, multiple FS-based catalysts and magnetic FSs. Through this review, we presume that the contribution of FSs to green chemistry can be well understood. The future perspective of FSs and the improvements still required for implementing FS-based catalysts in practical applications have been narrated at the end of this review.
Collapse
Affiliation(s)
- Antony Rajendran
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Marimuthu Rajendiran
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, Maharashtra, India
| | - Zhi-Fen Yang
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Hong-Xia Fan
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Tian-You Cui
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Ya-Gang Zhang
- Department of Chemistry and Chemical Engineering, Xi'an University of Technology, Xi'an, 710054, PR China
| | - Wen-Ying Li
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China.,Department of Chemistry and Chemical Engineering, Xi'an University of Technology, Xi'an, 710054, PR China
| |
Collapse
|
31
|
Cunillera A, Blanco C, Gual A, Marinkovic JM, Garcia‐Suarez EJ, Riisager A, Claver C, Ruiz A, Godard C. Highly Efficient Rh‐catalysts Immobilised by π‐π Stacking for the Asymmetric Hydroformylation of Norbornene under Continuous Flow Conditions. ChemCatChem 2019. [DOI: 10.1002/cctc.201900211] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Anton Cunillera
- Department de Química Física i InorgànicaUniversitat Rovira i Virgili C/Marcel⋅lí Domingo, n1 43007 Tarragona Spain
| | - Carolina Blanco
- Department de Química Física i InorgànicaUniversitat Rovira i Virgili C/Marcel⋅lí Domingo, n1 43007 Tarragona Spain
| | - Aitor Gual
- Centre Tecnologic de Química de Catalunya-Eurecat C/Marcel⋅lí Domingo, n1 43007 Tarragona Spain
| | | | - Eduardo J. Garcia‐Suarez
- Department of ChemistryTechnical University of Denmark 2800 Kgs Lyngby Denmark
- Energy and Environment Division, Tecnalia Parque Tecnóligico de Álava Leonardo Da Vinci, 11 01510 Miñano Spain
- IKERBASQUE, Basque Foundation for Science Maria Diaz de Haro 3 48013 Bilbao Spain
| | - Anders Riisager
- Department of ChemistryTechnical University of Denmark 2800 Kgs Lyngby Denmark
| | - Carmen Claver
- Department de Química Física i InorgànicaUniversitat Rovira i Virgili C/Marcel⋅lí Domingo, n1 43007 Tarragona Spain
- Centre Tecnologic de Química de Catalunya-Eurecat C/Marcel⋅lí Domingo, n1 43007 Tarragona Spain
| | - Aurora Ruiz
- Department de Química Física i InorgànicaUniversitat Rovira i Virgili C/Marcel⋅lí Domingo, n1 43007 Tarragona Spain
| | - Cyril Godard
- Department de Química Física i InorgànicaUniversitat Rovira i Virgili C/Marcel⋅lí Domingo, n1 43007 Tarragona Spain
- Centre Tecnologic de Química de Catalunya-Eurecat C/Marcel⋅lí Domingo, n1 43007 Tarragona Spain
| |
Collapse
|
32
|
Kempasiddhaiah M, Kandathil V, Dateer RB, Sasidhar BS, Patil SA, Patil SA. Magnetite tethered mesoionic carbene‐palladium (II): An efficient and reusable nanomagnetic catalyst for Suzuki‐Miyaura and Mizoroki‐Heck cross‐coupling reactions in aqueous medium. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4846] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Manjunatha Kempasiddhaiah
- Centre for Nano and Material SciencesJain University Jain Global Campus, Kanakapura, Ramanagaram Bangalore 562112 India
| | - Vishal Kandathil
- Centre for Nano and Material SciencesJain University Jain Global Campus, Kanakapura, Ramanagaram Bangalore 562112 India
| | - Ramesh B. Dateer
- Centre for Nano and Material SciencesJain University Jain Global Campus, Kanakapura, Ramanagaram Bangalore 562112 India
| | - Balappa S. Sasidhar
- Organic Chemistry Section, Chemical Sciences & Technology DivisionNational Institute for Interdisciplinary Science and Technology (CSIR) Thiruvananthapuram 695019 Kerala India
| | - Shivaputra A. Patil
- Pharmaceutical Sciences Department, College of PharmacyRosalind Franklin University of Medicine and Science 3333 Green Bay Road North Chicago IL 60064 USA
| | - Siddappa A. Patil
- Centre for Nano and Material SciencesJain University Jain Global Campus, Kanakapura, Ramanagaram Bangalore 562112 India
| |
Collapse
|
33
|
Schöttle C, Guan E, Okrut A, Grosso-Giordano NA, Palermo A, Solovyov A, Gates BC, Katz A. Bulky Calixarene Ligands Stabilize Supported Iridium Pair-Site Catalysts. J Am Chem Soc 2019; 141:4010-4015. [DOI: 10.1021/jacs.8b13013] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christian Schöttle
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California 94720, United States
| | - Erjia Guan
- Department of Chemical Engineering, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| | - Alexander Okrut
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California 94720, United States
| | - Nicolás A. Grosso-Giordano
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California 94720, United States
| | - Andrew Palermo
- Department of Chemical Engineering, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| | - Andrew Solovyov
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California 94720, United States
| | - Bruce C. Gates
- Department of Chemical Engineering, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| | - Alexander Katz
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
34
|
Jaegers NR, Khivantsev K, Kovarik L, Klas DW, Hu JZ, Wang Y, Szanyi J. Catalytic activation of ethylene C–H bonds on uniform d8 Ir(i) and Ni(ii) cations in zeolites: toward molecular level understanding of ethylene polymerization on heterogeneous catalysts. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01442j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The long-debated intermediates of ethylene polymerization are revealed using uniform d8 metal ions in zeolites.
Collapse
Affiliation(s)
- Nicholas R. Jaegers
- Institute for Integrated Catalysis
- Pacific Northwest National Laboratory
- Richland
- USA
- Voiland School of Chemical Engineering and Bioengineering
| | | | - Libor Kovarik
- Institute for Integrated Catalysis
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Daniel W. Klas
- Institute for Integrated Catalysis
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Jian Zhi Hu
- Institute for Integrated Catalysis
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Yong Wang
- Institute for Integrated Catalysis
- Pacific Northwest National Laboratory
- Richland
- USA
- Voiland School of Chemical Engineering and Bioengineering
| | - János Szanyi
- Institute for Integrated Catalysis
- Pacific Northwest National Laboratory
- Richland
- USA
| |
Collapse
|
35
|
Khivantsev K, Jaegers NR, Kovarik L, Hanson JC, Tao F(F, Tang Y, Zhang X, Koleva IZ, Aleksandrov HA, Vayssilov GN, Wang Y, Gao F, Szanyi J. Achieving Atomic Dispersion of Highly Loaded Transition Metals in Small‐Pore Zeolite SSZ‐13: High‐Capacity and High‐Efficiency Low‐Temperature CO and Passive NO
x
Adsorbers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809343] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Konstantin Khivantsev
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Nicholas R. Jaegers
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99352 USA
- Voiland School of Chemical Engineering and Bioengineering Washington State University Pullman WA 99163 USA
| | - Libor Kovarik
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99352 USA
| | | | - Franklin (Feng) Tao
- Department of Chemical and Petroleum Engineering and Center for Environmentally Beneficial Catalysis University of Kansas Lawrence KS 66045 USA
| | - Yu Tang
- Department of Chemical and Petroleum Engineering and Center for Environmentally Beneficial Catalysis University of Kansas Lawrence KS 66045 USA
| | - Xiaoyan Zhang
- Department of Chemical and Petroleum Engineering and Center for Environmentally Beneficial Catalysis University of Kansas Lawrence KS 66045 USA
| | - Iskra Z. Koleva
- Faculty of Chemistry and Pharmacy University of Sofia 1126 Sofia Bulgaria
| | | | | | - Yong Wang
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99352 USA
- Voiland School of Chemical Engineering and Bioengineering Washington State University Pullman WA 99163 USA
| | - Feng Gao
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99352 USA
| | - János Szanyi
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99352 USA
| |
Collapse
|
36
|
Khivantsev K, Jaegers NR, Kovarik L, Hanson JC, Tao FF, Tang Y, Zhang X, Koleva IZ, Aleksandrov HA, Vayssilov GN, Wang Y, Gao F, Szanyi J. Achieving Atomic Dispersion of Highly Loaded Transition Metals in Small-Pore Zeolite SSZ-13: High-Capacity and High-Efficiency Low-Temperature CO and Passive NO x Adsorbers. Angew Chem Int Ed Engl 2018; 57:16672-16677. [PMID: 30328259 DOI: 10.1002/anie.201809343] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Indexed: 11/11/2022]
Abstract
The majority of harmful atmospheric CO and NOx emissions are from vehicle exhausts. Although there has been success addressing NOx emissions at temperatures above 250 °C with selective catalytic reduction technology, emissions during vehicle cold start (when the temperature is below 150 °C), are a major challenge. Herein, we show we can completely eliminate both CO and NOx emissions simultaneously under realistic exhaust flow, using a highly loaded (2 wt %) atomically dispersed palladium in the extra-framework positions of the small-pore chabazite material as a CO and passive NOx adsorber. Until now, atomically dispersed highly loaded (>0.3 wt %) transition-metal/SSZ-13 materials have not been known. We devised a general, simple, and scalable route to prepare such materials for PtII and PdII . Through spectroscopy and materials testing we show that both CO and NOx can be simultaneously completely abated with 100 % efficiency by the formation of mixed carbonyl-nitrosyl palladium complex in chabazite micropore.
Collapse
Affiliation(s)
- Konstantin Khivantsev
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Nicholas R Jaegers
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.,Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99163, USA
| | - Libor Kovarik
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jonathan C Hanson
- Chemistry Department, Brookhaven National Laboratory, Uptown, NY, 11973, USA
| | - Franklin Feng Tao
- Department of Chemical and Petroleum Engineering and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, KS, 66045, USA
| | - Yu Tang
- Department of Chemical and Petroleum Engineering and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, KS, 66045, USA
| | - Xiaoyan Zhang
- Department of Chemical and Petroleum Engineering and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, KS, 66045, USA
| | - Iskra Z Koleva
- Faculty of Chemistry and Pharmacy, University of Sofia, 1126, Sofia, Bulgaria
| | | | - Georgi N Vayssilov
- Faculty of Chemistry and Pharmacy, University of Sofia, 1126, Sofia, Bulgaria
| | - Yong Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.,Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99163, USA
| | - Feng Gao
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - János Szanyi
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| |
Collapse
|
37
|
Li MB, Posevins D, Gustafson KPJ, Tai CW, Shchukarev A, Qiu Y, Bäckvall JE. Diastereoselective Cyclobutenol Synthesis: A Heterogeneous Palladium-Catalyzed Oxidative Carbocyclization-Borylation of Enallenols. Chemistry 2018; 25:210-215. [PMID: 30307089 DOI: 10.1002/chem.201805118] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Indexed: 12/20/2022]
Abstract
A highly selective and efficient oxidative carbocyclization/borylation of enallenols catalyzed by palladium immobilized on amino-functionalized siliceous mesocellular foam (Pd-AmP-MCF) was developed for diastereoselective cyclobutenol synthesis. The heterogeneous palladium catalyst can be recovered and recycled without any observed loss of activity or selectivity. The high diastereoselectivity of the reaction is proposed to originate from a directing effect of the enallenol hydroxyl group. Optically pure cyclobutenol synthesis was achieved by the heterogeneous strategy by using chiral enallenol obtained from kinetic resolution.
Collapse
Affiliation(s)
- Man-Bo Li
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Daniels Posevins
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Karl P J Gustafson
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Cheuk-Wai Tai
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | | | - Youai Qiu
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Jan-E Bäckvall
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| |
Collapse
|
38
|
Alfonso Albiñana P, El Haskouri J, Dolores Marcos M, Estevan F, Amorós P, Úbeda MÁ, Pérez-Pla F. A new efficient, highly dispersed, Pd nanoparticulate silica supported catalyst synthesized from an organometallic precursor. Study of the homogeneous vs. heterogeneous activity in the Suzuki-Miyaura reaction. J Catal 2018. [DOI: 10.1016/j.jcat.2018.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Huang C, Wen J, Shen Y, He F, Mi L, Gan Z, Ma J, Liu S, Ma H, Zhang Y. Dissolution and homogeneous photocatalysis of polymeric carbon nitride. Chem Sci 2018; 9:7912-7915. [PMID: 30542549 PMCID: PMC6249756 DOI: 10.1039/c8sc03855d] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/02/2018] [Indexed: 12/07/2022] Open
Abstract
After dissolution, a homogeneous carbon nitride photocatalyst showed boosted activity; meanwhile, the hallmarks of heterogeneous catalysts (facile separation and recycling) were retained.
As a metal-free conjugated polymer, carbon nitride (CN) has attracted tremendous attention as a heterogeneous (photo)catalyst. By following the example of enzymes, making all of the catalytic sites accessible via homogeneous reactions is a promising approach toward maximizing CN activity, but hindered due to the poor solubility of CN. Herein, we report the dissolution of CN in environmentally friendly methanesulfonic acid, and homogeneous photocatalysis (two biomimetic/pharmaceutical photocatalytic oxidation reactions) driven by CN for the first time with the activity boosted up to 10-times compared to the heterogeneous counterparts. Moreover, facile recycling and reusability, the hallmarks of heterogeneous catalysts, were kept for the homogeneous CN photocatalyst via reversible precipitation using poor solvents. This study opens a new vista for CN in homogeneous catalysis and offers a successful example of a polymeric catalyst that bridges the gap between homo/heterogeneous catalysis.
Collapse
Affiliation(s)
- Chaofeng Huang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research , School of Chemistry and Chemical Engineering , Medical School , Southeast University , Nanjing 211189 , China .
| | - Jing Wen
- School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Yanfei Shen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research , School of Chemistry and Chemical Engineering , Medical School , Southeast University , Nanjing 211189 , China .
| | - Fei He
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research , School of Chemistry and Chemical Engineering , Medical School , Southeast University , Nanjing 211189 , China .
| | - Li Mi
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research , School of Chemistry and Chemical Engineering , Medical School , Southeast University , Nanjing 211189 , China .
| | - Ziyu Gan
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research , School of Chemistry and Chemical Engineering , Medical School , Southeast University , Nanjing 211189 , China .
| | - Jin Ma
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research , School of Chemistry and Chemical Engineering , Medical School , Southeast University , Nanjing 211189 , China .
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research , School of Chemistry and Chemical Engineering , Medical School , Southeast University , Nanjing 211189 , China .
| | - Haibo Ma
- School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research , School of Chemistry and Chemical Engineering , Medical School , Southeast University , Nanjing 211189 , China .
| |
Collapse
|
40
|
Moliner M, Gabay J, Kliewer C, Serna P, Corma A. Trapping of Metal Atoms and Metal Clusters by Chabazite under Severe Redox Stress. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01717] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Manuel Moliner
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 València, Spain
| | - Jadeene Gabay
- ExxonMobil Research
and Engineering Co., Annandale, New Jersey 08801, United States
| | - Chris Kliewer
- ExxonMobil Research
and Engineering Co., Annandale, New Jersey 08801, United States
| | - Pedro Serna
- ExxonMobil Research
and Engineering Co., Annandale, New Jersey 08801, United States
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 València, Spain
| |
Collapse
|
41
|
Wang W, Cui L, Sun P, Shi L, Yue C, Li F. Reusable N-Heterocyclic Carbene Complex Catalysts and Beyond: A Perspective on Recycling Strategies. Chem Rev 2018; 118:9843-9929. [DOI: 10.1021/acs.chemrev.8b00057] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenlong Wang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Lifeng Cui
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Peng Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lijun Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chengtao Yue
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Fuwei Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
42
|
Copéret C, Allouche F, Chan KW, Conley MP, Delley MF, Fedorov A, Moroz IB, Mougel V, Pucino M, Searles K, Yamamoto K, Zhizhko PA. Bridging the Gap between Industrial and Well‐Defined Supported Catalysts. Angew Chem Int Ed Engl 2018; 57:6398-6440. [DOI: 10.1002/anie.201702387] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Florian Allouche
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Ka Wing Chan
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Matthew P. Conley
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
- Current address: Department of ChemistryUniversity of California, Riverside 501 Big Springs Road Riverside CA 92521 USA
| | - Murielle F. Delley
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Alexey Fedorov
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Ilia B. Moroz
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Victor Mougel
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
- Current address: Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de FranceUniversité Pierre et Marie Curie 11 Place Marcelin Berthelot 75005 Paris France
| | - Margherita Pucino
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Keith Searles
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Keishi Yamamoto
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Pavel A. Zhizhko
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
- A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of Sciences Vavilov street 28 119991 Moscow Russia
| |
Collapse
|
43
|
Copéret C, Allouche F, Chan KW, Conley MP, Delley MF, Fedorov A, Moroz IB, Mougel V, Pucino M, Searles K, Yamamoto K, Zhizhko PA. Eine Brücke zwischen industriellen und wohldefinierten Trägerkatalysatoren. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201702387] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Christophe Copéret
- Departement Chemie und Angewandte Biowissenschaften, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Schweiz
| | - Florian Allouche
- Departement Chemie und Angewandte Biowissenschaften, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Schweiz
| | - Ka Wing Chan
- Departement Chemie und Angewandte Biowissenschaften, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Schweiz
| | - Matthew P. Conley
- Departement Chemie und Angewandte Biowissenschaften, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Schweiz
- Department of ChemistryUniversity of California, Riverside 501 Big Springs Road Riverside CA 92521 USA
| | - Murielle F. Delley
- Departement Chemie und Angewandte Biowissenschaften, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Schweiz
| | - Alexey Fedorov
- Departement Chemie und Angewandte Biowissenschaften, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Schweiz
| | - Ilia B. Moroz
- Departement Chemie und Angewandte Biowissenschaften, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Schweiz
| | - Victor Mougel
- Departement Chemie und Angewandte Biowissenschaften, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Schweiz
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de FranceUniversité Pierre et Marie Curie 11 Place Marcelin Berthelot 75005 Paris Frankreich
| | - Margherita Pucino
- Departement Chemie und Angewandte Biowissenschaften, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Schweiz
| | - Keith Searles
- Departement Chemie und Angewandte Biowissenschaften, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Schweiz
| | - Keishi Yamamoto
- Departement Chemie und Angewandte Biowissenschaften, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Schweiz
| | - Pavel A. Zhizhko
- Departement Chemie und Angewandte Biowissenschaften, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Schweiz
- A. N. Nesmeyanow-Institut für Elementorganische VerbindungenRussische Akademie der Wissenschaften Vavilov str. 28 119991 Moskau Russland
| |
Collapse
|
44
|
Das P, Ray S, Bhanja P, Bhaumik A, Mukhopadhyay C. Serendipitous Observation of Liquid-Phase Size Selectivity inside a Mesoporous Silica Nanoreactor in the Reaction of Chromene with Formic Acid. ChemCatChem 2018. [DOI: 10.1002/cctc.201701975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Paramita Das
- Department of Chemistry; University of Calcutta; 92, APC Road Kolkata- 700009 India
- Department of Chemistry; Asutosh College; 92, S. P. Mukherjee Road Kolkata- 700026 India
| | - Suman Ray
- Department of Chemistry; University of Calcutta; 92, APC Road Kolkata- 700009 India
| | - Piyali Bhanja
- Department of Materials Science; Indian Association for the Cultivation of Science, Jadavpur; Kolkata- 700032 India
| | - Asim Bhaumik
- Department of Materials Science; Indian Association for the Cultivation of Science, Jadavpur; Kolkata- 700032 India
| | - Chhanda Mukhopadhyay
- Department of Chemistry; University of Calcutta; 92, APC Road Kolkata- 700009 India
| |
Collapse
|
45
|
Jakob M, von Weber A, Kartouzian A, Heiz U. Chirality transfer from organic ligands to silver nanostructures via chiral polarisation of the electric field. Phys Chem Chem Phys 2018; 20:20347-20351. [DOI: 10.1039/c8cp02970a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Polarisation of the electric field and a chiral adsorption pattern can induce chirality into silver NPs very efficiently.
Collapse
Affiliation(s)
- Matthias Jakob
- Chair of Physical Chemistry
- Technical University of Munich
- 85748 Garching
- Germany
| | - Alexander von Weber
- Chair of Physical Chemistry
- Technical University of Munich
- 85748 Garching
- Germany
| | - Aras Kartouzian
- Chair of Physical Chemistry
- Technical University of Munich
- 85748 Garching
- Germany
| | - Ulrich Heiz
- Chair of Physical Chemistry
- Technical University of Munich
- 85748 Garching
- Germany
| |
Collapse
|
46
|
Dadras A, Naimi‐Jamal MR, Moghaddam FM, Ayati SE. Suzuki–Miyaura coupling reaction in water in the presence of robust palladium immobilized on modified magnetic Fe
3
O
4
nanoparticles as a recoverable catalyst. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3993] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Arefeh Dadras
- Department of Chemistry, Research Laboratory of Green Organic Synthesis and PolymersIran University of Science and Technology PO Box 16846‐11314 Tehran Iran
| | - M. Reza Naimi‐Jamal
- Department of Chemistry, Research Laboratory of Green Organic Synthesis and PolymersIran University of Science and Technology PO Box 16846‐11314 Tehran Iran
| | - Firouz Matloubi Moghaddam
- Department of Chemistry, Laboratory of Organic Synthesis and Natural ProductsSharif University of Technology PO Box 11155‐9516 Tehran Iran
| | - Seyed Ebrahim Ayati
- Department of Chemistry, Laboratory of Organic Synthesis and Natural ProductsSharif University of Technology PO Box 11155‐9516 Tehran Iran
| |
Collapse
|
47
|
Magnetic Nanoparticle-Supported N-Heterocyclic Carbene-Palladium(II): A Convenient, Efficient and Recyclable Catalyst for Suzuki–Miyaura Cross-Coupling Reactions. Catal Letters 2017. [DOI: 10.1007/s10562-017-1987-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
Panwar V, Ray SS, Jain SL. Highly efficient (CoO x -N@C, PANI) nanopowder derived from pyrolysis of polyaniline grafted cobalt acetate for oxidative methyl esterification of benzyl alcohols. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.molcata.2016.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Jia Z, Wang K, Tan B, Gu Y. Ruthenium Complexes Immobilized on Functionalized Knitted Hypercrosslinked Polymers as Efficient and Recyclable Catalysts for Organic Transformations. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201600816] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhifang Jia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 People's Republic of China
- Department of Chemistry and Chemical Engineering; Shanxi Datong University; Datong 037009 People's Republic of China
| | - Kewei Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 People's Republic of China
- Department of Chemistry and Chemical Engineering; Shanxi Datong University; Datong 037009 People's Republic of China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 People's Republic of China
| | - Yanlong Gu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 People's Republic of China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics; Lanzhou 730000 People's Republic of China
| |
Collapse
|
50
|
Moliner M, Gabay JE, Kliewer CE, Carr RT, Guzman J, Casty GL, Serna P, Corma A. Reversible Transformation of Pt Nanoparticles into Single Atoms inside High-Silica Chabazite Zeolite. J Am Chem Soc 2016; 138:15743-15750. [PMID: 27934002 DOI: 10.1021/jacs.6b10169] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We report the encapsulation of platinum species in highly siliceous chabazite (CHA) crystallized in the presence of N,N,N-trimethyl-1-adamantammonium and a thiol-stabilized Pt complex. When compared to Pt/SiO2 or Pt-containing Al-rich zeolites, the materials in this work show enhanced stability toward metal sintering in a variety of industrial conditions, including H2, O2, and H2O. Remarkably, temperatures in the range 650-750 °C can be reached without significant sintering of the noble metal. Detailed structural determinations by X-ray absorption spectroscopy and aberration-corrected high-angle annular dark-field scanning transmission electron microscopy demonstrate subtle control of the supported metal structures from ∼1 nm nanoparticles to site-isolated single Pt atoms via reversible interconversion of one species into another in reducing and oxidizing atmospheres. The combined used of microscopy and spectroscopy is critical to understand these surface-mediated transformations. When tested in hydrogenation reactions, Pt/CHA converts ethylene (∼80%) but not propylene under identical conditions, in contrast to Pt/SiO2, which converts both at similar rates. These differences are attributed to the negligible diffusivity of propylene through the small-pore zeolite and provide final evidence of the metal encapsulation.
Collapse
Affiliation(s)
- Manuel Moliner
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas , Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Jadeene E Gabay
- Astrix Technology Group , 125 Half Mile Road, Suite 200, Red Bank, New Jersey 07701, United States
| | - Chris E Kliewer
- ExxonMobil Research and Engineering Co. , Annandale, New Jersey 08801, United States
| | - Robert T Carr
- ExxonMobil Research and Engineering Co. , Annandale, New Jersey 08801, United States
| | - Javier Guzman
- ExxonMobil Chemical Company , 4500 Bayway Drive, Baytown, Texas 77520, United States
| | - Gary L Casty
- ExxonMobil Research and Engineering Co. , Annandale, New Jersey 08801, United States
| | - Pedro Serna
- ExxonMobil Research and Engineering Co. , Annandale, New Jersey 08801, United States
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas , Avenida de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|