1
|
Watson PD, Meizyte G, Pearcy PAJ, Brewer EI, Green AE, Robertson C, Paterson MJ, Mackenzie SR. Infrared spectra and fragmentation dynamics of isotopologue-selective mixed-ligand complexes. Phys Chem Chem Phys 2024; 26:16589-16596. [PMID: 38814318 DOI: 10.1039/d4cp00978a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Isolated mixed-ligand complexes provide tractable model systems in which to study competitive and cooperative binding effects as well as controlled energy flow. Here, we report spectroscopic and isotopologue-selective infrared photofragmentation dynamics of mixed gas-phase Au(12/13CO)n(N2O)m+ complexes. The rich infrared action spectra, which are reproduced well using simulations of calculated lowest energy structures, clarify previous ambiguities in the assignment of vibrational bands, especially accidental coincidence of CO and N2O bands. The fragmentation dynamics exhibit the same unexpected behaviour as reported previously in which, once CO loss channels are energetically accessible, these dominate the fragmentation branching ratios, despite the much lower binding energy of N2O. We have investigated the dynamics computationally by considering anharmonic couplings between a relevant subset of normal modes involving both ligand stretch and intermolecular modes. Discrepancies between correlated and uncorrelated model fit to the ab initio potential energy curves are quantified using a Boltzmann sampled root mean squared deviation providing insight into efficiency of vibrational energy transfer between high frequency ligand stretches and the softer intermolecular modes which break during fragmentation.
Collapse
Affiliation(s)
- Peter D Watson
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Gabriele Meizyte
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Philip A J Pearcy
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Edward I Brewer
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Alice E Green
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Christopher Robertson
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, Scotland, EH14 4AS, UK
| | - Martin J Paterson
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, Scotland, EH14 4AS, UK
| | - Stuart R Mackenzie
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| |
Collapse
|
2
|
Lushchikova OV, Reijmer S, Armentrout PB, Bakker JM. IR Spectroscopic Characterization of Methane Adsorption on Copper Clusters Cu n+ ( n = 2-4). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1393-1400. [PMID: 35411768 PMCID: PMC9354255 DOI: 10.1021/jasms.2c00046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The interaction of CH4 with cationic copper clusters has been studied with infrared-multiple photon dissociation (IRMPD) spectroscopy. Cun+ (n = 2-4) formed by laser ablation were reacted with CH4. The formed complexes were irradiated with the IR light of the free-electron laser for intracavity experiments (FELICE), and the fragments were mass-analyzed with a reflectron time-of-flight mass spectrometer. The structures of the Cun+-CH4 complexes are assigned on the basis of comparison between the resulting IRMPD spectra to spectra of different isomers calculated with density functional theory (DFT). For all sizes n, the structure found is one with molecularly adsorbed CH4. Only slight deformations of the CH4 molecule have been identified upon adsorption on the clusters, which results in redshifts of the spectroscopic bands. This deformation can be explained by charge transfer from the cluster to the adsorbed methane molecule.
Collapse
Affiliation(s)
- Olga V. Lushchikova
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Stijn Reijmer
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - P. B. Armentrout
- Department
of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Joost M. Bakker
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| |
Collapse
|
3
|
Roithová J, Bakker JM. Ion spectroscopy in methane activation. MASS SPECTROMETRY REVIEWS 2022; 41:513-528. [PMID: 34008884 PMCID: PMC9292810 DOI: 10.1002/mas.21698] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 05/25/2023]
Abstract
This review is devoted to ion spectroscopy studies of complexes relevant for the understanding of methane activation with metal ions and clusters. Methane activation starts with the formation of a complex with a metal ion. The degree of the interaction between an intact methane molecule and the ion can be monitored by the perturbations of C-H stretch vibrations in the methane molecule. Binding mediated by the electrostatic interaction results in a η3 type coordination of methane. In contrast, binding governed by orbital interactions results in a η2 type coordination of methane. We further review the spectroscopic characterization of activation products of metal-methane reactions, such as the metal-carbene and carbyne products resulting from the interaction of selected 5d metals with methane. The focus of recent research in the field has shifted towards the investigation of interactions between methane and metal clusters. We show examples highlighting that metal clusters can be more reactive in methane activation reactions.
Collapse
Affiliation(s)
- Jana Roithová
- Department of Spectroscopy and CatalysisRadboud University NijmegenNijmegenThe Netherlands
| | - Joost M. Bakker
- Radboud University, Institute for Molecules and MaterialsFELIX LaboratoryNijmegenThe Netherlands
| |
Collapse
|
4
|
Guo M, Yi Q, Cui C, Gan W, Luo Z. Gas-Phase Synthesis of Metal Olefins: Plasma-Assisted Methane Dehydrogenation and C═C Bond Formation. J Phys Chem A 2022; 126:1123-1131. [PMID: 35166550 DOI: 10.1021/acs.jpca.1c10012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methane dehydrogenation and C-C coupling under mild conditions are very important but challenging in chemistry. Utilizing a customized time of flight mass spectrometer combined with a magnetron sputtering (MagS) cluster source, here, we have conducted a study on the reactions of methane with small silver and copper clusters simply by introducing methane in argon as the working gas for sputtering. Interestingly, a series of [M(CnH2n)]+ (M = Cu and Ag; n = 2-12) clusters were observed, indicating high-efficiency methane dehydrogenation in such a plasma-assisted chamber system. Density functional theory calculations find the lowest energy structures of the [M(CnH2n)]+ series pertaining to olefins indicative of both C-H bond activation of methane and C-C bond coupling. We analyzed the interactions involved in the [Cu(CnH2n)]+ and [Ag(CnH2n)]+ (n = 1-6) clusters and demonstrated the reaction coordinates for the "Cu+ + CH4" and "Ag+ + CH4." It is illustrated that the presence of a second methane molecule enables us to reduce the necessary energy of dehydrogenation, which concurs with the experimental observation of an absence of the metal carbine products Cu+CH2 and Ag+CH2, which are short-lived. Also, it is elucidated that the higher-lying excitation states of Cu+ and Ag+ ions enable more favorable dehydrogenation process and C═C bond formation, shedding light on the plasma assistance of the essence.
Collapse
Affiliation(s)
- Mengdi Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,School of Chemical Science, University of Chinese Academy of Sciences, Beijing100049, China
| | - Qiuhao Yi
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,School of Chemical Science, University of Chinese Academy of Sciences, Beijing100049, China
| | - Chaonan Cui
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| | - Wen Gan
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,School of Chemical Science, University of Chinese Academy of Sciences, Beijing100049, China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,School of Chemical Science, University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
5
|
Green AE, Brown RH, Meizyte G, Mackenzie SR. Spectroscopy and Infrared Photofragmentation Dynamics of Mixed Ligand Ion-Molecule Complexes: Au(CO) x(N 2O) y. J Phys Chem A 2021; 125:7266-7277. [PMID: 34433267 DOI: 10.1021/acs.jpca.1c05800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a combined experimental and computational study of the structure and fragmentation dynamics of mixed ligand gas-phase ion-molecule complexes. Specifically, we have studied the infrared spectroscopy and vibrationally induced photofragmentation dynamics of mass-selected Au(CO)x(N2O)y+ complexes. The structures can be understood on the basis of local CO and N2O chromophores in different solvation shells with CO found preferentially in the core. Rich fragmentation dynamics are observed as a function of complex composition and the vibrational mode excited. The dynamics are characterized in terms of branching ratios for different ligand loss channels in light of calculated internal energy distributions. Intramolecular vibrational redistribution appears to be rapid, and dissociation is observed into all energetically accessible channels with little or no evidence for preferential breaking of the weakest intermolecular interactions.
Collapse
Affiliation(s)
- Alice E Green
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, United Kingdom OX1 3QZ
| | - Rachael H Brown
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, United Kingdom OX1 3QZ
| | - Gabriele Meizyte
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, United Kingdom OX1 3QZ
| | - Stuart R Mackenzie
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, United Kingdom OX1 3QZ
| |
Collapse
|
6
|
Kozubal J, Heck T, Metz RB. Structures of M +(CH 4) n (M = Ti, V) Based on Vibrational Spectroscopy and Density Functional Theory. J Phys Chem A 2021; 125:4143-4151. [PMID: 33961741 DOI: 10.1021/acs.jpca.1c02217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photofragment spectroscopy is used to measure the vibrational spectra of M+(CH4)(Ar) and M+(CH4)n (M = Ti, V; n = 1-4) in the C-H stretching region (2550-3100 cm-1). Spectra were measured by monitoring the loss of Ar from M+(CH4)(Ar) and loss of CH4 from the larger clusters. The experimental spectra are then compared to simulations done at the B3LYP/6-311++G(3df,3pd) level of theory to identify the structures of the ions. The spectra all have a peak near 2800 cm-1 due to the symmetric C-H stretch of the hydrogens adjacent to the metal. Some complexes also have a smaller peak due to the corresponding antisymmetric stretch. Most complexes also have a peak near 3000 cm-1 due to the C-H stretch of hydrogens pointing away from the metal. The symmetric proximate C-H stretches of M+(CH4)(Ar) to M+(CH4)4 are red-shifted from the symmetric stretch in bare CH4 by 149, 152, 128, and 107 cm-1 for the titanium complexes and 164, 175, 158, and 146 cm-1, respectively, for the vanadium complexes. In M+(CH4)(Ar) (M = Ti, V), the heavy atoms are collinear. Ti+(CH4)(Ar) has η3 methane hydrogen coordination (∠M-C-H = 180°), while V+(CH4)(Ar) has η2 (∠M-C-H = 124°). The n = 2 complexes have C-M-C linear. Ti+(CH4)2 has C2h symmetry with η3 CH4 while V+(CH4)2 has methane coordination intermediate between η2 and η3 (∠M-C-H = 156°). Both the M+(CH4)3 (M = Ti, V) complexes have C2v symmetry with one methane farther away from the metal in an η2 binding orientation and two methanes close to the metal with a nearly η2 methane for vanadium and coordination between η2 and η3 CH4 for titanium (∠M-C-H = 150°). In Ti+(CH4)4 and V+(CH4)4 all of the methanes have η2 coordination. The titanium complex has a distorted square planar geometry with two different Ti-C bond lengths and the vanadium complex is square planar.
Collapse
Affiliation(s)
- Justine Kozubal
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Tristan Heck
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Ricardo B Metz
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
7
|
Förstel M, Pollow KM, Saroukh K, Najib EA, Mitric R, Dopfer O. The Optical Spectrum of Au 2. Angew Chem Int Ed Engl 2020; 59:21403-21408. [PMID: 32888257 PMCID: PMC7756737 DOI: 10.1002/anie.202011337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 11/08/2022]
Abstract
The electronic structure of the Au2 + cation is essential for understanding its catalytic activity. We present the optical spectrum of mass-selected Au2 + measured via photodissociation spectroscopy. Two vibrationally resolved band systems are observed in the 290-450 nm range (at ca. 440 and ca. 325 nm), which both exhibit rather irregular structure indicative of strong vibronic and spin-orbit coupling. The experimental spectra are compared to high-level quantum-chemical calculations at the CASSCF-MRCI level including spin-orbit coupling. The results demonstrate that the understanding of the electronic structure of this simple, seemingly H2 + -like diatomic molecular ion strictly requires multireference and relativistic treatment including spin-orbit effects. The calculations reveal that multiple electronic states contribute to each respective band system. It is shown that popular DFT methods completely fail to describe the complex vibronic pattern of this fundamental diatomic cation.
Collapse
Affiliation(s)
- Marko Förstel
- Technische Universität BerlinHardenbergstr. 3610623BerlinGermany
| | - Kai Mario Pollow
- Technische Universität BerlinHardenbergstr. 3610623BerlinGermany
| | - Karim Saroukh
- Technische Universität BerlinHardenbergstr. 3610623BerlinGermany
| | - Este Ainun Najib
- Technische Universität BerlinHardenbergstr. 3610623BerlinGermany
| | - Roland Mitric
- Julius-Maximilians-Universität WürzburgInstitut für Physikalische und Theoretische ChemieEmil-Fischer-Str. 4297074WürzburgGermany
| | - Otto Dopfer
- Technische Universität BerlinHardenbergstr. 3610623BerlinGermany
| |
Collapse
|
8
|
Förstel M, Pollow KM, Saroukh K, Najib EA, Mitric R, Dopfer O. The Optical Spectrum of Au
2
+. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marko Förstel
- Technische Universität Berlin Hardenbergstr. 36 10623 Berlin Germany
| | - Kai Mario Pollow
- Technische Universität Berlin Hardenbergstr. 36 10623 Berlin Germany
| | - Karim Saroukh
- Technische Universität Berlin Hardenbergstr. 36 10623 Berlin Germany
| | - Este Ainun Najib
- Technische Universität Berlin Hardenbergstr. 36 10623 Berlin Germany
| | - Roland Mitric
- Julius-Maximilians-Universität Würzburg Institut für Physikalische und Theoretische Chemie Emil-Fischer-Str. 42 97074 Würzburg Germany
| | - Otto Dopfer
- Technische Universität Berlin Hardenbergstr. 36 10623 Berlin Germany
| |
Collapse
|
9
|
Kozubal J, Heck T, Metz RB. Vibrational Spectroscopy of Intermediates and C–H Activation Products of Sequential Zr+ Reactions with CH4. J Phys Chem A 2020; 124:8235-8245. [DOI: 10.1021/acs.jpca.0c07027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Justine Kozubal
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Tristan Heck
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ricardo B. Metz
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
10
|
Green AE, Schaller S, Meizyte G, Rhodes BJ, Kealy SP, Gentleman AS, Schöllkopf W, Fielicke A, Mackenzie SR. Infrared Study of OCS Binding and Size-Selective Reactivity with Gold Clusters, Aun+ (n = 1–10). J Phys Chem A 2020; 124:5389-5401. [DOI: 10.1021/acs.jpca.0c03813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alice E. Green
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3QZ Oxford, United Kingdom
| | - Sascha Schaller
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Gabriele Meizyte
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3QZ Oxford, United Kingdom
| | - Benjamin J. Rhodes
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3QZ Oxford, United Kingdom
| | - Sean P. Kealy
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3QZ Oxford, United Kingdom
| | - Alexander S. Gentleman
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3QZ Oxford, United Kingdom
| | - Wieland Schöllkopf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - André Fielicke
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Stuart R. Mackenzie
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3QZ Oxford, United Kingdom
| |
Collapse
|
11
|
Wang MM, Zhao YX, Ding XL, Li W, He SG. Methane activation by heteronuclear diatomic AuRh + cation: comparison with homonuclear Au 2+ and Rh 2. Phys Chem Chem Phys 2020; 22:6231-6238. [PMID: 32129335 DOI: 10.1039/c9cp05699h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The ability to activate methane differs appreciably for different transition metals, and it is attractive to find the most suitable metal for the direct conversion of methane to value-added chemicals. Herein, we performed a comparative study on the reactions of CH4 with Au2+, AuRh+ and Rh2+ cations by mass-spectrometry based experiments and DFT-based theoretical analysis. Different reactivity has been found for these cations: Au2+ has the lowest reactivity, and it can activate methane but only produce H-Au2-CH3+ without H2 release; Rh2+ has the highest reactivity, and it can produce both carbene-type Rh2-CH2+ and carbyne-type H-Rh2-CH+ with H2 release; AuRh+ also has high reactivity to produce only AuRh-CH2+ with H2, avoiding the excessive dehydrogenation of CH4. Our theoretical results demonstrate that Rh is responsible for the high reactivity, while Au leads to selectivity, which may be caused by the unique intrinsic bonding properties of the metals.
Collapse
Affiliation(s)
- Meng-Meng Wang
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing 102206, P. R. China.
| | | | | | | | | |
Collapse
|
12
|
Cao W, Zhang Y, Yang DS. La-mediated dehydrogenation and C C bond cleavage of 1,4-pentadiene and 1-pentyne: Spectroscopy and formation of La(C5H6) and La(C3H4) radicals. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2018.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Cao W, Zhang Y, Nyambo S, Yang DS. Spectroscopy and formation of lanthanum-hydrocarbon radicals formed by C—H and C—C bond activation of 1-pentene and 2-pentene. J Chem Phys 2018; 149:034303. [DOI: 10.1063/1.5022771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wenjin Cao
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | - Yuchen Zhang
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | - Silver Nyambo
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | - Dong-Sheng Yang
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| |
Collapse
|
14
|
Cao W, Hewage D, Yang DS. Spectroscopy and formation of lanthanum-hydrocarbon radicals formed by association and carbon-carbon bond cleavage of isoprene. J Chem Phys 2018; 148:194302. [PMID: 30307187 DOI: 10.1063/1.5026899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
La atom reaction with isoprene is carried out in a laser-vaporization molecular beam source. The reaction yields an adduct as the major product and C-C cleaved and dehydrogenated species as the minor ones. La(C5H8), La(C2H2), and La(C3H4) are characterized with mass-analyzed threshold ionization (MATI) spectroscopy and quantum chemical computations. The MATI spectra of all three species exhibit a strong origin band and several weak vibronic bands corresponding to La-ligand stretch and ligand-based bend excitations. La(C5H8) is a five-membered metallacycle, whereas La(C2H2) and La(C3H4) are three-membered rings. All three metallacycles prefer a doublet ground state with a La 6s1-based valence electron configuration and a singlet ion. The five-membered metallacycle is formed through La addition and isoprene isomerization, whereas the two three-membered rings are produced by La addition and insertion, hydrogen migration, and carbon-carbon bond cleavage.
Collapse
Affiliation(s)
- Wenjin Cao
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | - Dilrukshi Hewage
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | - Dong-Sheng Yang
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| |
Collapse
|
15
|
Dodson LG, Thompson MC, Weber JM. Titanium Insertion into CO Bonds in Anionic Ti-CO 2 Complexes. J Phys Chem A 2018; 122:2983-2991. [PMID: 29510624 DOI: 10.1021/acs.jpca.8b01843] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We explore the structures of [Ti(CO2) y]- cluster anions using infrared photodissociation spectroscopy and quantum chemistry calculations. The existence of spectral signatures of metal carbonyl CO stretching modes shows that insertion of titanium atoms into C-O bonds represents an important reaction during the formation of these clusters. In addition to carbonyl groups, the infrared spectra show that the titanium center is coordinated to oxalato, carbonato, and oxo ligands, which form along with the metal carbonyls. The presence of a metal oxalato ligand promotes C-O bond insertion in these systems. These results highlight the affinity of titanium for C-O bond insertion processes.
Collapse
|