1
|
Rao Y, Li SL, Li MJ, Wang BZ, Wang YY, Liang LW, Yu S, Liu ZP, Cui S, Gou KM. Transgenic mice producing the trans 10, cis 12-conjugated linoleic acid present reduced adiposity and increased thermogenesis and fibroblast growth factor 21 (FGF21). J Nutr Biochem 2023; 120:109419. [PMID: 37487823 DOI: 10.1016/j.jnutbio.2023.109419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Trans 10, cis 12-conjugated linoleic acid (t10c12-CLA) from ruminant-derived foodstuffs can induce body fat loss after oral administration. In the current study, a transgenic mouse that produced t10c12-CLA had been generated by inserting the Propionibacterium acnes isomerase (Pai) expression cassette into the Rosa26 locus, and its male offspring were used to elucidate the enduring influence of t10c12-CLA on overall health. Compared to their wild-type (wt) C57BL/6J littermates, both biallelic Pai/Pai and monoallelic Pai/wt mice exhibited reduced plasma triglycerides levels, and Pai/wt mice exclusively showed increased serum fibroblast growth factor 21. Further analysis of Pai/Pai mice found a decrease in white fat and an increase in brown fat, with more heat release and less physical activity. Analysis of Pai/Pai brown adipose tissues revealed that hyperthermia was associated with the over-expression of carnitine palmitoyltransferase 1B, uncoupling proteins 1 and 2. These findings suggest that the systemic and long-term impact of t10c12-CLA on obesity might be mediated through the pathway of fibroblast growth factor 21 when low doses are administered or through enhanced thermogenesis of brown adipose tissues when high doses are employed.
Collapse
Affiliation(s)
- Yu Rao
- Institute of Comparative Medicine, Department of Experimental Zoology, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Department of Experimental Zoology, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Institute of Reproduction and Metabolism, Department of Basic Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shi-Li Li
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mei-Juan Li
- Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Bao-Zhu Wang
- Institute of Comparative Medicine, Department of Experimental Zoology, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yang-Yang Wang
- Institute of Comparative Medicine, Department of Experimental Zoology, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Lu-Wen Liang
- Institute of Comparative Medicine, Department of Experimental Zoology, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shuai Yu
- Institute of Comparative Medicine, Department of Experimental Zoology, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zong-Ping Liu
- Institute of Comparative Medicine, Department of Experimental Zoology, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Sheng Cui
- Institute of Reproduction and Metabolism, Department of Basic Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ke-Mian Gou
- Institute of Comparative Medicine, Department of Experimental Zoology, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Department of Experimental Zoology, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Institute of Reproduction and Metabolism, Department of Basic Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
| |
Collapse
|
2
|
Wang K, Shi TQ, Lin L, Wei P, Ledesma-Amaro R, Ji XJ, Huang H. Advances in synthetic biology tools paving the way for the biomanufacturing of unusual fatty acids using the Yarrowia lipolytica chassis. Biotechnol Adv 2022; 59:107984. [DOI: 10.1016/j.biotechadv.2022.107984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/18/2022]
|
3
|
Voronkov AS, Ivanova TV, Kumachova TK. The features of the fatty acid composition of Pyrus L. total lipids are determined by mountain ecosystem conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:350-363. [PMID: 34959055 DOI: 10.1016/j.plaphy.2021.12.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/19/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The composition of fatty acids (FAs) of total lipids of pericarp, seeds, and leaves of Pyrus caucasica Fed. and Pyrus communis L. growing in mountain ecosystems at different altitudes (300, 700 and 1200 m) was studied. It was found that the greatest differences in the relative content of FAs within a species, depending on the altitudes above sea level, were characteristic of the outer tissues of the pericarp (peel) and leaves, which were in direct contact with the external environment. Pericarp parenchyma to a lesser extent, and seeds practically did not differ in FA composition at different heights. At altitudes with increased UV radiation, conjugated octadecadienoates: rumenic acid (9,11-18:2) and 10,12-18:2 were registered in the pericarp and leaf of Purys L., the functions of which in plants were practically not studied. The wild P. caucasica at all growing altitudes was characterized by more very-long-chain FAs (VLCFAs) than the P. communis cultivar. At 700 m, most likely when exposed to fungal infections, the relative number of VLCFAs increased significantly, and new species of individual odd-chaine FAs appeared in their composition in both representatives. It was especially worth noting the appearance in peel and leaf melissic acid (30:0), which was rarely recorded in the plant. A characteristic feature of only P. communis at an altitude of 700 m was the large number of unsaturated individual VLCFAs. Based on the data obtained, a scheme of possible pathways for VLCFA biosynthesis in P. communis were proposed.
Collapse
Affiliation(s)
- Alexander S Voronkov
- K. A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 35 Botanicheskaya St, Moscow, 127276, Russia.
| | - Tatiana V Ivanova
- K. A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 35 Botanicheskaya St, Moscow, 127276, Russia
| | - Tamara K Kumachova
- Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya St, Moscow, 127550, Russia
| |
Collapse
|
4
|
Szczepańska P, Hapeta P, Lazar Z. Advances in production of high-value lipids by oleaginous yeasts. Crit Rev Biotechnol 2021; 42:1-22. [PMID: 34000935 DOI: 10.1080/07388551.2021.1922353] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The global market for high-value fatty acids production, mainly omega-3/6, hydroxy fatty-acids, waxes and their derivatives, has seen strong development in the last decade. The reason for this growth was the increasing utilization of these lipids as significant ingredients for cosmetics, food and the oleochemical industries. The large demand for these compounds resulted in a greater scientific interest in research focused on alternative sources of oil production - among which microorganisms attracted the most attention. Microbial oil production offers the possibility to engineer the pathways and store lipids enriched with the desired fatty acids. Moreover, costly chemical steps are avoided and direct commercial use of these fatty acids is available. Among all microorganisms, the oleaginous yeasts have become the most promising hosts for lipid production - their efficient lipogenesis, ability to use various (often highly affordable) carbon sources, feasible large-scale cultivations and wide range of available genetic engineering tools turns them into powerful micro-factories. This review is an in-depth description of the recent developments in the engineering of the lipid biosynthetic pathway with oleaginous yeasts. The different classes of valuable lipid compounds with their derivatives are described and their importance for human health and industry is presented. The emphasis is also placed on the optimization of culture conditions in order to improve the yield and titer of these valuable compounds. Furthermore, the important economic aspects of the current microbial oil production are discussed.
Collapse
Affiliation(s)
- Patrycja Szczepańska
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Piotr Hapeta
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Zbigniew Lazar
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
5
|
Rao Y, Li SL, Li MJ, Cui S, Gou KM. A single amino acid substitution in the FAD-binding domain causes the inactivation of Propionibacterium Acnes isomerase. Biosci Biotechnol Biochem 2019; 84:789-796. [PMID: 31889476 DOI: 10.1080/09168451.2019.1709960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We previously demonstrated the efficient production of trans 10, cis 12-conjugated linoleic acid (t10c12-CLA) in Lactococcus lactis by ectopically expressing a Propionibacterium acnes isomerase (pai) gene and also mentioned that a recombinant strain was unable to accumulate t10c12-CLA product, despite the normal transcription. Here, the molecular analysis indicated that this mutated strain harbors a pai gene with a single-nucleotide mutation converting GC50A to GTA, leading to a corresponding change of Alanine residue into Valine. The expression of the reverse mutation resulted in the recovery for enzyme activity. Site-directed mutagenesis indicated that the codon usage of Val17 was not responsible for the enzyme inactivation in the Ala17Val mutation. Western blot analysis revealed that the recombinant PAI protein was not detectable in the His tag-marked Ala17Val mutant. It is, therefore, reasonable to assume that Ala17 residue is critical for PAI functionality.Abbreviations: pai: propionibacterium acnes isomerase; CLA: conjugated linoleic acid; t10c12-CLA: trans 10, cis 12-CLA; LA: linoleic acid (18:2n-6); FAD: flavin adenine dinucleotide.
Collapse
Affiliation(s)
- Yu Rao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shi-Li Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Mei-Juan Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sheng Cui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ke-Mian Gou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
6
|
Zhang Y, Gu H, Shi H, Wang F, Li X. Green Synthesis of Conjugated Linoleic Acids from Plant Oils Using a Novel Synergistic Catalytic System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5322-5329. [PMID: 28470063 DOI: 10.1021/acs.jafc.7b00846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A novel and efficient method has been developed for converting plant oil into a specific conjugated linoleic acid (CLA) using a synergistic biocatalytic system based on immobilized Propionibacterium acnes isomerase (PAI) and Rhizopus oryzae lipase (ROL). PAI exhibited the greatest catalytic activity when immobilized on D301R anion-exchange resin under optimal conditions (PAI dosage of 12 410 U of PAI/g of D301R, glutaraldehyde concentration of 0.4%, and reaction conditions of pH 7.0, 25 °C, and 60 min). Up to 109 g/L trans-10,cis-12-CLA was obtained after incubation of 200 g/L sunflower oil with PAI (1659 U/g of oil) and ROL (625 mU/g of oil) at pH 7.0 and 35 °C for 36 h; the corresponding conversion ratio of linoleic acid (LA) to CLA was 90.5%. This method exhibited the highest proportion of trans-10,cis-12-CLA yet reported and is a promising method for large-scale production.
Collapse
Affiliation(s)
- Yu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, §College of Chemical Engineering, and ∥Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University , Nanjing, Jiangsu 210037, People's Republic of China
| | - Huaxiang Gu
- Co-Innovation Center for Sustainable Forestry in Southern China, §College of Chemical Engineering, and ∥Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University , Nanjing, Jiangsu 210037, People's Republic of China
| | - Hao Shi
- Co-Innovation Center for Sustainable Forestry in Southern China, §College of Chemical Engineering, and ∥Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University , Nanjing, Jiangsu 210037, People's Republic of China
| | - Fei Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, §College of Chemical Engineering, and ∥Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University , Nanjing, Jiangsu 210037, People's Republic of China
| | - Xun Li
- Co-Innovation Center for Sustainable Forestry in Southern China, §College of Chemical Engineering, and ∥Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University , Nanjing, Jiangsu 210037, People's Republic of China
| |
Collapse
|
7
|
Fontes AL, Pimentel LL, Simões CD, Gomes AMP, Rodríguez-Alcalá LM. Evidences and perspectives in the utilization of CLNA isomers as bioactive compounds in foods. Crit Rev Food Sci Nutr 2017; 57:2611-2622. [DOI: 10.1080/10408398.2015.1063478] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ana L. Fontes
- CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal
| | - Lígia L. Pimentel
- CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal
| | - Catarina D. Simões
- CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal
| | - Ana M. P. Gomes
- CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal
| | - Luís M. Rodríguez-Alcalá
- CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O'Higgins, Santiago de Chile, Chile
| |
Collapse
|
8
|
A metabolic engineering strategy for producing conjugated linoleic acids using the oleaginous yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 2017; 101:4605-4616. [PMID: 28357546 PMCID: PMC5442254 DOI: 10.1007/s00253-017-8240-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022]
Abstract
Conjugated linoleic acids (CLAs) have been found to have beneficial effects on human health when used as dietary supplements. However, their availability is limited because pure, chemistry-based production is expensive, and biology-based fermentation methods can only create small quantities. In an effort to enhance microbial production of CLAs, four genetically modified strains of the oleaginous yeast Yarrowia lipolytica were generated. These mutants presented various genetic modifications, including the elimination of β-oxidation (pox1-6∆), the inability to store lipids as triglycerides (dga1∆ dga2∆ are1∆ lro1∆), and the overexpression of the Y. lipolytica ∆12-desaturase gene (YlFAD2) under the control of the constitutive pTEF promoter. All strains received two copies of the pTEF-oPAI or pPOX-oPAI expression cassettes; PAI encodes linoleic acid isomerase in Propionibacterium acnes. The strains were cultured in neosynthesis or bioconversion medium in flasks or a bioreactor. The strain combining the three modifications mentioned above showed the best results: when it was grown in neosynthesis medium in a flask, CLAs represented 6.5% of total fatty acids and in bioconversion medium in a bioreactor, and CLA content reached 302 mg/L. In a previous study, a CLA degradation rate of 117 mg/L/h was observed in bioconversion medium. Here, by eliminating β-oxidation, we achieved a much lower rate of 1.8 mg/L/h.
Collapse
|
9
|
Wang H, Fan M, Wang G, Zhang C, Shi L, Wei Z, Ma W, Chang J, Huang S, Lin F. Isolation and characterization of a novel pollen-specific promoter in maize (Zea mays L.). Genome 2017; 60:485-495. [PMID: 28177828 DOI: 10.1139/gen-2016-0089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ZmSTK2_USP, located on the long arm of chromosome 4, belongs to the serine/threonine kinase gene in maize. The sequence analysis of 2100 bp upstream from the start codon ATG has shown that it contains cis-element motifs and two types of anther/pollen-specific promoter elements (GTGA and AGAAA), suggesting that it is the pollen-specific promoter. To investigate the function of ZmSTK2_USP promoter, the GUS gene fusion system was employed. In proZmSTK2_USP-GUS genetically modified plants, GUS activity was detected in mature pollen grains and pollen tubes but not found in other floral and vegetative tissues. These results show that proZmSTK2_USP is the pollen-specific promoter and drives pollen-specific activity during the middle stage of pollen development until pollen maturation.
Collapse
Affiliation(s)
- He Wang
- a Agronomy College, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang, Liaoning 110866, China.,b Biotechnology and Bioscience College, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang, Liaoning 110866, China.,c Corn Research Institute, Liaoning Academy of Agricultural Sciences, No. 84 Dongling Road, Shenyang, Liaoning 110866, China
| | - Mingxia Fan
- a Agronomy College, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang, Liaoning 110866, China.,b Biotechnology and Bioscience College, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang, Liaoning 110866, China
| | - Guohong Wang
- c Corn Research Institute, Liaoning Academy of Agricultural Sciences, No. 84 Dongling Road, Shenyang, Liaoning 110866, China
| | - Chunyu Zhang
- b Biotechnology and Bioscience College, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang, Liaoning 110866, China
| | - Lei Shi
- c Corn Research Institute, Liaoning Academy of Agricultural Sciences, No. 84 Dongling Road, Shenyang, Liaoning 110866, China
| | - Zhengyi Wei
- d Laboratory of Plant Bioreactor and Genetics Engineering, Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, No. 1363 Shengtai St., Changchun 130033, China
| | - Wenjuan Ma
- b Biotechnology and Bioscience College, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang, Liaoning 110866, China
| | - Jing Chang
- b Biotechnology and Bioscience College, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang, Liaoning 110866, China
| | - Senxin Huang
- b Biotechnology and Bioscience College, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang, Liaoning 110866, China
| | - Feng Lin
- b Biotechnology and Bioscience College, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang, Liaoning 110866, China
| |
Collapse
|
10
|
Gorissen L, Leroy F, De Vuyst L, De Smet S, Raes K. Bacterial production of conjugated linoleic and linolenic Acid in foods: a technological challenge. Crit Rev Food Sci Nutr 2016; 55:1561-74. [PMID: 24915316 DOI: 10.1080/10408398.2012.706243] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Conjugated linoleic acid (CLA) and conjugated linolenic acid (CLNA) isomers are present in foods derived from ruminants as a result of the respective linoleic acid (LA) and α-linolenic acid (LNA) metabolism by ruminal microorganisms and in animals' tissues. CLA and CLNA have isomer-specific, health-promoting properties, including anticarcinogenic, antiatherogenic, anti-inflammatory, and antidiabetic activity, as well as the ability to reduce body fat. Besides ruminal microorganisms, such as Butyrivibrio fibrisolvens, many food-grade bacteria, such as bifidobacteria, lactic acid bacteria (LAB), and propionibacteria, are able to convert LA and LNA to CLA and CLNA, respectively. Linoleate isomerase activity, responsible for this conversion, is strain-dependent and probably related to the ability of the producer strain to tolerate the toxic effects of LA and LNA. Since natural concentrations of CLA and CLNA in ruminal food products are relatively low to exert their health benefits, food-grade bacteria with linoleate isomerase activity could be used as starter or adjunct cultures to develop functional fermented dairy and meat products with increased levels of CLA and CLNA or included in fermented products as probiotic cultures. However, results obtained so far are below expectations due to technological bottlenecks. More research is needed to assess if bacterial production kinetics can be increased and can match food processing requirements.
Collapse
Affiliation(s)
- Lara Gorissen
- a Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Production, Ghent University , B-9090 Melle, Belgium
| | | | | | | | | |
Collapse
|
11
|
Ledesma-Amaro R, Nicaud JM. Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Prog Lipid Res 2016; 61:40-50. [DOI: 10.1016/j.plipres.2015.12.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/02/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
|
12
|
Production of conjugated linoleic acid by heterologous expression of linoleic acid isomerase in oleaginous fungus Mortierella alpina. Biotechnol Lett 2015; 37:1983-92. [PMID: 26109146 DOI: 10.1007/s10529-015-1871-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/22/2015] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To increase the commercial value of oleaginous fungus Mortierella alpina by incorporation of trans-10,cis-12 conjugated linoleic acid (CLA) into the polyunsaturated fatty acids (PUFAs) of M. alpina via Propionibacterium acnes isomerase (PAI) conversion. RESULTS The PAI gene and the codon optimization version were heterologously expressed in M. alpina via Agrobacterium tumefaciens-mediated transformation (ATMT). Coding usage modification significantly improved the translation of PAI transcripts and trans-10,cis-12 CLA was produced up to 1.2 mg l(-1), which corresponds to approx. 0.05% of the total fatty acid (TFA). Since PAI prefers free linoleic acid as a substrate rather than any other forms, 5 μM long-chain acyl CoA synthetase inhibitor was added and the trans-10,cis-12 CLA content increased approx. 24-fold to 29 mg l(-1), reaching up to 1.2% (w/w) of the TFA in M. alpina. CONCLUSION Heterologous expression of PAI in M. alpina by ATMT methods is a practicable way in biosynthesis of CLA and this system may be a feasible platform for industrial production of CLA.
Collapse
|
13
|
Li SL, Ma SY, Xu BR, Fan ZY, Li MJ, Cao WG, Gou KM. Effects oftrans-10,cis-12-conjugated linoleic acid on mice are influenced by the dietary fat content and the degree of murine obesity. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shi-Li Li
- State Key Laboratory of Agrobiotechnology; College of Biological Sciences; China Agricultural University; Beijing P. R. China
| | - Shu-Yu Ma
- Feed Research Institute; Chinese Academy of Agricultural Sciences; Beijing, P. R. China
| | - Bin-Rui Xu
- College of Veterinary Medicine; China Agricultural University; Beijing P. R. China
| | - Zhi-Ying Fan
- Feed Research Institute; Chinese Academy of Agricultural Sciences; Beijing, P. R. China
| | - Mei-Juan Li
- State Key Laboratory of Agrobiotechnology; College of Biological Sciences; China Agricultural University; Beijing P. R. China
| | - Wen-Guang Cao
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing P. R. China
| | - Ke-Mian Gou
- State Key Laboratory of Agrobiotechnology; College of Biological Sciences; China Agricultural University; Beijing P. R. China
| |
Collapse
|
14
|
He X, Shang J, Li F, Liu H. Yeast cell surface display of linoleic acid isomerase from Propionibacterium acnes and its application for the production of trans-10, cis-12 conjugated linoleic acid. Biotechnol Appl Biochem 2014; 62:1-8. [PMID: 24863409 DOI: 10.1002/bab.1249] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 05/21/2014] [Indexed: 11/11/2022]
Abstract
Conjugated linoleic acid (CLA), a family of geometric and positional isomers of linoleic acid, has many health-promoting properties. Different isomers of CLA may have very different physiological effects. In the current work, we explore the possibility to produce single isomer of CLA by using biocatalysis based on displayed biocatalysts on the yeast cell surfaces. A reporter system used to assess gene expression and protein distribution was established by combining the egfp gene to the N-terminus of Propionibacterium acnes pai gene encoding the linoleic isomerase onto vector pYD1. After induction of the yeast strains containing pYD1::egfp::pai with galactose, strong green fluorescence was observed on the surface of cells, demonstrating that the fusion protein was successfully displayed. Using the engineered strains as whole-cell biocatalyst, trans-10, cis-12 CLA was detected in the reaction mixture. To improve the biocatalytic potential of this system, the first 20 amino codons of pai were modified, and the catalytic reaction conditions were optimized. Optimization of the codon usage resulted in 35% increase of CLA production, and the maximum yield of CLA was observed within 20 H in the optimal conditions: pH 7.0, 4 mg/mL linoleic acid, 37 °C. The system established in the present work can guide the development of biocatalytic strategies to produce trans-10, cis-12 CLA single isomer.
Collapse
Affiliation(s)
- Xihong He
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | | | | | | |
Collapse
|
15
|
Liu WX, Liu HL, Qu LQ. Embryo-specific expression of soybean oleosin altered oil body morphogenesis and increased lipid content in transgenic rice seeds. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:2289-97. [PMID: 23748707 DOI: 10.1007/s00122-013-2135-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/21/2013] [Indexed: 05/04/2023]
Abstract
Oleosin is the most abundant protein in the oil bodies of plant seeds, playing an important role in regulating oil body formation and lipid accumulation. To investigate whether lipid accumulation in transgenic rice seeds depends on the expression level of oleosin, we introduced two soybean oleosin genes encoding 24 kDa proteins into rice under the control of an embryo-specific rice promoter REG-2. Overexpression of soybean oleosin in transgenic rice leads to an increase of seed lipid content up to 36.93 and 46.06 % higher than that of the non-transgenic control, respectively, while the overall fatty acid profiles of triacylglycerols remained unchanged. The overexpression of soybean oleosin in transgenic rice seeds resulted in more numerous and smaller oil bodies compared with wild type, suggesting that an inverse relationship exists between oil body size and the total oleosin level. The increase in lipid content is accompanied by a reduction in the accumulation of total seed protein. Our results suggest that it is possible to increase rice seed oil content for food use and for use as a low-cost feedstock for biodiesel by overexpressing oleosin in rice seeds.
Collapse
Affiliation(s)
- Wen Xian Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
16
|
Zhang B, Chen H, Li M, Gu Z, Song Y, Ratledge C, Chen YQ, Zhang H, Chen W. Genetic engineering of Yarrowia lipolytica for enhanced production of trans-10, cis-12 conjugated linoleic acid. Microb Cell Fact 2013; 12:70. [PMID: 23866108 PMCID: PMC3750285 DOI: 10.1186/1475-2859-12-70] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/22/2013] [Indexed: 11/12/2022] Open
Abstract
Background Conjugated linoleic acid (CLA) has been extensively studied for decades because of its health benefits including cancer prevention, anti-atherogenic and anti-obesity effects, and modulation of the immune system. We previously described the production of trans-10, cis-12 CLA in Yarrowia lipolytica by expressing the gene coding for linoleic acid isomerase from Propionibacterium acnes (pai). However the stable strain produced CLA at about 0.08% of dry cell weight (DCW), a level of production which was not high enough for practical applications. The goal of the present study was to enhance production of CLA by genetic engineering of Y. lipolytica strains. Results We have now co-expressed the delta 12-desaturase gene (FADS12, d12) from Mortierella alpina together with the codon-optimized linoleic acid isomerase (opai) gene in Y. lipolytica, expressed under the control of promoter hp16d modified by fusing 12 copies of UAS1B to the original promoter hp4d. A multi-copy integration plasmid was used to further enhance the expression of both genes. Using glucose as the sole carbon source, the genetically-modified Y. lipolytica produced trans-10, cis-12-CLA at a level of up to 10% of total fatty acids and 0.4% of DCW. Furthermore, when the recombinant yeast was grown with soybean oil, trans-10, cis-12-CLA now accumulated at a level of up to 44% of total fatty acids, which represented 30% of DCW after 38.5 h of cultivation. In addition, trans-10, cis-12-CLA was also detected in the growth medium up to 0.9 g/l. Conclusions We have successfully produced trans-10, cis-12-CLA with a titre of 4 g/l of culture (3.1 g/l in cells and 0.9 g/l in culture medium). Our results demonstrate the potential use of Y. lipolytica as a promising microbial cell factory for trans-10, cis-12-CLA production.
Collapse
|
17
|
Zhang B, Rong C, Chen H, Song Y, Zhang H, Chen W. De novo synthesis of trans-10, cis-12 conjugated linoleic acid in oleaginous yeast Yarrowia lipolytica. Microb Cell Fact 2012; 11:51. [PMID: 22545818 PMCID: PMC3390286 DOI: 10.1186/1475-2859-11-51] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 04/30/2012] [Indexed: 02/08/2023] Open
Abstract
Background Conjugated linoleic acid (CLA) has many well-documented beneficial physiological effects. Due to the insufficient natural supply of CLA and low specificity of chemically produced CLA, an effective and isomer-specific production process is required for medicinal and nutritional purposes. Results The linoleic acid isomerase gene from Propionibacterium acnes was expressed in Yarrowia lipolytica Polh. Codon usage optimization of the PAI and multi-copy integration significantly improved the expression level of PAI in Y. lipolytica. The percentage of trans-10, cis-12 CLA was six times higher in yeast carrying the codon-optimized gene than in yeast carrying the native gene. In combination with multi-copy integration, the production yield was raised to approximately 30-fold. The amount of trans-10, cis-12 CLA reached 5.9% of total fatty acid yield in transformed Y. lipolytica. Conclusions This is the first report of production of trans-10, cis-12 CLA by the oleaginous yeast Y. lipolytica, using glucose as the sole carbon source through expression of linoleic acid isomerase from Propionibacterium acnes.
Collapse
Affiliation(s)
- Baixi Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | | | | | | | | | | |
Collapse
|
18
|
Balestrazzi A, Botti S, Zelasco S, Biondi S, Franchin C, Calligari P, Racchi M, Turchi A, Lingua G, Berta G, Carbonera D. Expression of the PsMTA1 gene in white poplar engineered with the MAT system is associated with heavy metal tolerance and protection against 8-hydroxy-2'-deoxyguanosine mediated-DNA damage. PLANT CELL REPORTS 2009; 28:1179-92. [PMID: 19506883 DOI: 10.1007/s00299-009-0719-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 05/13/2009] [Accepted: 05/13/2009] [Indexed: 05/27/2023]
Abstract
Marker-free transgenic white poplar (Populus alba L., cv 'Villafranca') plants, expressing the PsMT (A1) gene from Pisum sativum for a metallothionein-like protein, were produced by Agrobacterium tumefaciens-mediated transformation. The 35SCaMV-PsMT (A1)-NosT cassette was inserted into the ipt-type vector pMAT22. The occurrence of the abnormal ipt-shooty phenotype allowed the visual selection of transformants, while the yeast site-specific recombination R/RS system was responsible for the excision of the undesired vector sequences with the consequent recovery of normal marker-free transgenic plants. Molecular analyses confirmed the presence of the 35SCaMV-PsMT (A1)-NosT cassette and transgene expression. Five selected lines were further characterized, revealing the ability to withstand heavy metal toxicity. They survived 0.1 mM CuCl(2), a concentration which strongly affected the nontransgenic plants. Moreover, root development was only slightly affected by the ectopic expression of the transgene. Reactive oxygen species were accumulated to a lower extent in leaf tissues of multi-auto-transformation (MAT)-PsMT(A1) plants exposed to copper and zinc, compared to control plants. Tolerance to photo-oxidative stress induced by paraquat was another distinctive feature of the MAT-PsMT(A1) lines. Finally, low levels of DNA damage were detected by quantifying the amounts of 8-hydroxy-2'-deoxyguanosine in leaf tissues of the transgenic plants exposed to copper.
Collapse
Affiliation(s)
- Alma Balestrazzi
- Dipartimento di Genetica e Microbiologia, Università di Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Scaramelli L, Balestrazzi A, Bonadei M, Piano E, Carbonera D, Confalonieri M. Production of transgenic barrel medic (Medicago truncatula Gaernt.) using the ipt-type MAT vector system and impairment of Recombinase-mediated excision events. PLANT CELL REPORTS 2009; 28:197-211. [PMID: 19011862 DOI: 10.1007/s00299-008-0634-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/24/2008] [Accepted: 10/22/2008] [Indexed: 05/27/2023]
Abstract
Expression of the uidA reporter gene was tested in transformation experiments of barrel medic (Medicago truncatula Gaertn.) with the ipt-type control vectors pIPT5, pIPT10 and pIPT20 and distinct in vitro culture conditions. The highest GUS expression levels were obtained with the pIPT10 construct carrying the ipt gene under the control of the native ipt promoter and using kanamycin as selective agent. The ipt-shooty transformants, characterized by the absence of both rooting ability and apical dominance associated with vitrification, were easily identified by visual selection. Using only the ipt gene as selectable marker, we obtained a stable transformation frequency of 9.8% with pIPT10 construct. The ipt-type MAT vector pEXM2 was then used to monitor the excision events mediated by the yeast Recombinase and the consequent production of ipt marker-free transgenic plants. Transgenic ipt-shooty lines were recovered at a frequency of 7.9% in the absence of kanamycin-based selection. The ipt-shooty phenotype was maintained in all the transgenic lines and no reversion to the normal phenotype occurred. PCR analysis revealed the presence of the 'hit and run' cassette in the genome of all the regenerated ipt-shooty lines while RT-PCR experiments confirmed the expression of the R gene, encoding the yeast Recombinase. A detailed molecular investigation, carried out to verify the integrity of the RS sites, revealed that these regions were intact in most cases. Our results with barrel medic suggest that the MAT system must be carefully evaluated and discussed on a case by case basis.
Collapse
Affiliation(s)
- L Scaramelli
- Centro di Ricerca per le Produzioni Foraggere e Lattiero Casearie, CRA, Lodi, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Liavonchanka A, Feussner I. Biochemistry of PUFA double bond isomerases producing conjugated linoleic acid. Chembiochem 2008; 9:1867-72. [PMID: 18655062 DOI: 10.1002/cbic.200800141] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The biotransformation of linoleic acid (LA) into conjugated linoleic acid (CLA) by microorganisms is a potentially useful industrial process. In most cases, however, the identities of proteins involved and the details of enzymatic activity regulation are far from clear. Here we summarize available data on the reaction mechanisms of CLA-producing enzymes characterized until now, from Butyrivibrio fibrisolvens, Lactobacillus acidophilus, Ptilota filicina, and Propionibacterium acnes. A general feature of enzymatic LA isomerization is the protein-assisted abstraction of an aliphatic hydrogen atom from position C-11, while the role of flavin as cofactor for the double bond activation in CLA-producing enzymes is also discussed with regard to the recently published three-dimensional structure of an isomerase from P. acnes. Combined data from structural studies, isotopic labeling experiments, and sequence comparison suggest that at least two different prototypical active site geometries occur among polyunsaturated fatty acid (PUFA) double bond isomerases.
Collapse
Affiliation(s)
- Alena Liavonchanka
- Georg August University, Albrecht von Haller Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | | |
Collapse
|
21
|
Davies KM. Genetic modification of plant metabolism for human health benefits. Mutat Res 2007; 622:122-37. [PMID: 17382356 DOI: 10.1016/j.mrfmmm.2007.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 02/08/2007] [Accepted: 02/09/2007] [Indexed: 05/14/2023]
Abstract
There has been considerable research progress over the past decade on elucidating biosynthetic pathways for important human health components of crops. This has enabled the use of genetic modification (GM) techniques to develop crop varieties with increased amounts of essential vitamins and minerals, and improved profiles of 'nutraceutical' compounds. Much of the research into vitamins and minerals has focused on generating new varieties of staple crops to improve the diet of populations in developing nations. Of particular note is the development of new rice lines with increased amounts of provitamin A and iron. Research on modifying production of nutraceuticals has generally been aimed at generating new crops for markets in the developed nations, commonly to deliver distinctive cultivars with high consumer appeal. Most progress on nutraceuticals has been made with just a few types of metabolites to date, in particular in the production of novel long-chain polyunsaturated fatty acids in oil-seed crops and to increase amounts of flavonoids and carotenoids in tomato and potato. However, given the rapid progress on elucidating plant metabolite biosynthetic pathways, wide-ranging success with metabolic engineering for levels of human health-related compounds in plants would be expected in the near future. A key aspect for future success will be better medical information to guide metabolic engineering endeavors. Although the desired levels of many vitamins are known, detailed information is lacking for most of the nutraceuticals that have attracted much interest over the past few years.
Collapse
Affiliation(s)
- Kevin M Davies
- New Zealand Institute for Crop & Food Research Limited, Private Bag 11-600, Palmerston North, New Zealand.
| |
Collapse
|