1
|
Montalban B, Hinou H. Glycoblotting-Based Ovo-Sulphoglycomics Reveals Phosphorylated N-Glycans as a Possible Host Factor of AIV Prevalence in Waterfowls. ACS Infect Dis 2024; 10:650-661. [PMID: 38173147 PMCID: PMC10863614 DOI: 10.1021/acsinfecdis.3c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/27/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Sulfated N-glycans play a crucial role in the interaction between influenza A virus (IAV) and its host. These glycans have been found to enhance viral replication, highlighting their significance in IAV propagation. This study investigated the expression of acidic N-glycans, specifically sulfated and phosphorylated glycans, in the egg whites of 72 avian species belonging to the Order Anseriformes (waterfowls). We used the glycoblotting-based sulphoglycomics approach to elucidate the diversity of acidic N-glycans and infer their potential role in protecting embryos from infections. Family-specific variations in sulfated and phosphorylated N-glycan profiles were identified in waterfowl egg whites. Different waterfowl species exhibited distinct expressions of sulfated trans-Gal(+) and trans-Gal(-) N-glycan structures. Additionally, species-specific expression of phosphorylated N-glycans was observed. Furthermore, it was found that waterfowl species with high avian influenza virus (AIV) prevalence displayed a higher abundance of phosphorylated hybrid and high-mannose N-glycans on their egg whites. These findings shed light on the importance of phosphorylated and sulfated N-glycans in understanding the role of acidic glycans in IAV propagation.
Collapse
Affiliation(s)
- Bryan
M. Montalban
- Laboratory
of Advanced Chemical Biology, Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Hiroshi Hinou
- Laboratory
of Advanced Chemical Biology, Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
- Frontier
Research Center for Advanced Material and Life Science, Faculty of
Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
2
|
Kojima Y, Okuzaki Y, Nishijima KI, Moriwaki S, Asai S, Kaneoka H, Iijima S. Regulatory mechanism of chicken lysozyme gene expression in oviducts examined using transgenic technology. J Biosci Bioeng 2020; 131:453-459. [PMID: 33358655 DOI: 10.1016/j.jbiosc.2020.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 10/22/2022]
Abstract
The use of promoters that strongly express target genes in the chicken oviduct is beneficial for the production of proteinaceous materials into egg white by transgenic chickens. To examine the regulatory mechanisms of chicken lysozyme gene expression in vivo, genetically manipulated chickens that express human erythropoietin under the control of a lysozyme promoter-enhancer were established. By using several deletion mutants of the promoter-flanking region, we found that a -1.9 kb DNase I hypersensitive site (DHS) was essential for oviduct-specific expression in genetically manipulated chickens. The concentration of human erythropoietin in egg white was 14-75 μg/ml, suggesting that the chicken lysozyme promoter containing -1.9 kb DHS is sufficient for the production of pharmaceuticals using transgenic chickens.
Collapse
Affiliation(s)
- Yusuke Kojima
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yuya Okuzaki
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Ken-Ichi Nishijima
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Shuichiro Moriwaki
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Seiya Asai
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hidenori Kaneoka
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Shinji Iijima
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
3
|
Oishi I, Yoshii K, Miyahara D, Tagami T. Efficient production of human interferon beta in the white of eggs from ovalbumin gene-targeted hens. Sci Rep 2018; 8:10203. [PMID: 29976933 PMCID: PMC6033876 DOI: 10.1038/s41598-018-28438-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022] Open
Abstract
Transgenic chickens could potentially serve as bioreactors for commercial production of recombinant proteins in egg white. Many transgenic chickens have been generated by randomly integrating viral vectors into their genomes, but transgene expression has proved insufficient and/or limited to the initial cohort. Herein, we demonstrate the feasibility of integrating human interferon beta (hIFN-β) into the chicken ovalbumin locus and producing hIFN-β in egg white. We knocked in hIFN-β into primordial germ cells using a CRISPR/Cas9 protocol and then generated germline chimeric roosters by cell transplantation into recipient embryos. Two generation-zero founder roosters produced hIFN-β knock-in offspring, and all knock-in female offspring produced abundant egg-white hIFN-β (~3.5 mg/ml). Although female offspring of the first generation were sterile, their male counterparts were fertile and produced a second generation of knock-in hens, for which egg-white hIFN-β production was comparable with that of the first generation. The hIFN-β bioactivity represented only ~5% of total egg-white hIFN-β, but unfolding and refolding of hIFN-β in the egg white fully recovered the bioactivity. These results suggest that transgene insertion at the chicken ovalbumin locus can result in abundant and stable expression of an exogenous protein deposited into egg white and should be amenable to industrial applications.
Collapse
Affiliation(s)
- Isao Oishi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31, Midorioka, Ikeda, Osaka, 563-8577, Japan.
| | - Kyoko Yoshii
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31, Midorioka, Ikeda, Osaka, 563-8577, Japan
| | - Daichi Miyahara
- Animal Breeding and Reproduction Research Division, National Agriculture and Food Research Organization, Institute of Livestock and Grassland Science, 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan
| | - Takahiro Tagami
- Animal Breeding and Reproduction Research Division, National Agriculture and Food Research Organization, Institute of Livestock and Grassland Science, 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan
| |
Collapse
|
4
|
Farzaneh M, Hassani SN, Mozdziak P, Baharvand H. Avian embryos and related cell lines: A convenient platform for recombinant proteins and vaccine production. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600598] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/25/2017] [Accepted: 03/09/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Maryam Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center; Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center; Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
| | - Paul Mozdziak
- Graduate Physiology Program; Campus Box 7608/321 Scott Hall; Raleigh NC USA
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center; Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
- Department of Developmental Biology; University of Science and Culture; Tehran Iran
| |
Collapse
|
5
|
Kidani S, Kaneoka H, Okuzaki Y, Asai S, Kojima Y, Nishijima KI, Iijima S. Analyses of chicken sialyltransferases related to O-glycosylation. J Biosci Bioeng 2016; 122:379-84. [PMID: 27150510 DOI: 10.1016/j.jbiosc.2016.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 01/20/2023]
Abstract
The chicken β-galactoside α2,3-sialyltransferase 1, 2, and 5 (ST3Gal1, 2, and 5) genes were cloned, and their enzymes were expressed in 293FT cells. ST3Gal1 and 2 exhibited enzymatic activities toward galactose-β1,3-N-acetylgalactosamine and galactose-β1,3-N-acetylglucosamine. ST3Gal5 only exhibited activity toward lactosylceramide. ST3Gal1 and 2 and previously cloned ST3Gal3 and 6 transferred CMP-sialic acid to asialofetuin. Reverse-transcription-quantitative PCR indicated that ST3Gal1 was expressed at higher levels in the trachea, lung, spleen, and magnum, and the strong expression of ST3Gal5 was observed in the spleen, magnum, and small and large intestines. ST3Gal1, 5, and 6 were also expressed in the tubular gland cells of the magnum, which secretes egg-white proteins. ST3Gal1, 5, and 6 were expressed in the egg chorioallantoic membrane, in which influenza viruses are propagated for the production of vaccines.
Collapse
Affiliation(s)
- Shunsuke Kidani
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hidenori Kaneoka
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Yuya Okuzaki
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Seiya Asai
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yusuke Kojima
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Ken-Ichi Nishijima
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Shinji Iijima
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
6
|
Kojima Y, Mizutani A, Okuzaki Y, Nishijima KI, Kaneoka H, Sasamoto T, Miyake K, Iijima S. Analyses of chicken sialyltransferases related to N-glycosylation. J Biosci Bioeng 2014; 119:623-8. [PMID: 25499752 DOI: 10.1016/j.jbiosc.2014.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 01/12/2023]
Abstract
Proteins exogenously expressed and deposited in the egg whites of transgenic chickens did not contain terminal sialic acid in their N-glycan. Since this sugar is important for the biological stability of therapeutic proteins, we examined chicken sialyltransferases (STs). Based on homologies in DNA sequences, we cloned and expressed several chicken STs, which appeared to be involved in N-glycosylation in mammals, in 293FT cells. Enzymatic activity was detected with ST3Gal3, ST3Gal6 and ST6Gal1 using galactose-β1,4-N-acetylglucosamine (Galβ1,4GlcNAc) as an acceptor. Using Golgi fractions from the cell-free extracts of chicken organs, α2,3- and/or α2,6-ST activities were detected in the liver and kidney, but were absent in the oviduct cells in which egg-white proteins were produced. This result suggested that the lack of ST activities in oviduct cells mainly caused the lack of sialic acid in the N-glycan of proteins exogenously expressed and deposited in egg white.
Collapse
Affiliation(s)
- Yusuke Kojima
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Akifumi Mizutani
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yuya Okuzaki
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Ken-Ichi Nishijima
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hidenori Kaneoka
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Takako Sasamoto
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Katsuhide Miyake
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Shinji Iijima
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
7
|
Kojima Y, Wakita J, Inayoshi Y, Suzuki R, Yamada Y, Kaneoka H, Nishijima KI, Iijima S. Galactosylation of human erythropoietin produced by chimeric chickens expressing galactosyltransferase. J Biosci Bioeng 2014; 117:676-9. [DOI: 10.1016/j.jbiosc.2013.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/11/2013] [Accepted: 11/12/2013] [Indexed: 11/16/2022]
|
8
|
Recombinant proteins produced into yolk of genetically manipulated chickens are partly sialylated in N-glycan. Cytotechnology 2013; 65:985-92. [DOI: 10.1007/s10616-013-9613-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/05/2013] [Indexed: 11/25/2022] Open
|