1
|
Shi L, Li H, Wang L. Genetic parameters estimation and genome molecular marker identification for gestation length in pigs. Front Genet 2023; 13:1046423. [PMID: 36685960 PMCID: PMC9849246 DOI: 10.3389/fgene.2022.1046423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/16/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Abstract
Gestation length (GL) plays an important role in piglet maturation of major organs and development of body, while the genetic molecular markers of GL have not been extensively identified. In this study, according to the 5,662 effective records of 3,072 sows, the heritability and repeatability of GL were estimated through the dmuai of DMU Version 6.5.1 with a repeatability model, namely, h 2 = 0.1594 and r e 2 = 0.2437. Among these sows, 906 individuals were genotyped with the GeneSeek Genomic Profiler (GGP) Porcine 50K Chip and imputed to the genome-wide level (9,212,179 SNPs) by the online software PHARP v1 for subsequent quality control and GWAS analyses. Further, the Fst was also performed to measure whether the actual frequency of genotypes in different GL phenotypes deviated from the theoretical proportion of genetic balance. We observed the highest degree of differentiation (average Fst value = 0.0376) in the group of 114 and 118 days, and identified a total of 1,002 SNPs strongly associated with GL. Through screening the genes located within a 500 kb distance on either side of the significant SNPs, we proposed 4,588 candidate genes. By the functional annotation, these candidates were found to be mainly involved in multicellular organism metabolism, early endosome, embryo implantation and development, and body and organ signaling pathway. Because of the simultaneous confirmation by GWAS and Fst analyses, there were 20 genes replied to be the most promising candidates including HUNK, ARHGDIB, ERP27, RERG, NEDD9, TMEM170B, SCAF4, SOD1, TIAM1, ENSSSCG00000048838, ENSSSCG00000047227, EDN1, HIVEP1, ENSSSCG00000043944, LRATD1, ENSSSCG00000048577, ENSSSCG00000042932, ENSSSCG00000041405, ENSSSCG00000045589, and ADTRP. This study provided effective molecular information for the genetic improvement of GL in pigs.
Collapse
|
2
|
New Insights Into the Roles of Retinoic Acid Signaling in Nervous System Development and the Establishment of Neurotransmitter Systems. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 330:1-84. [PMID: 28215529 DOI: 10.1016/bs.ircmb.2016.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022]
Abstract
Secreted chiefly from the underlying mesoderm, the morphogen retinoic acid (RA) is well known to contribute to the specification, patterning, and differentiation of neural progenitors in the developing vertebrate nervous system. Furthermore, RA influences the subtype identity and neurotransmitter phenotype of subsets of maturing neurons, although relatively little is known about how these functions are mediated. This review provides a comprehensive overview of the roles played by RA signaling during the formation of the central and peripheral nervous systems of vertebrates and highlights its effects on the differentiation of several neurotransmitter systems. In addition, the evolutionary history of the RA signaling system is discussed, revealing both conserved properties and alternate modes of RA action. It is proposed that comparative approaches should be employed systematically to expand our knowledge of the context-dependent cellular mechanisms controlled by the multifunctional signaling molecule RA.
Collapse
|
3
|
Latasa MJ, Jiménez-Lara AM, Cosgaya JM. Retinoic acid regulates Schwann cell migration via NEDD9 induction by transcriptional and post-translational mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1510-8. [PMID: 27085739 DOI: 10.1016/j.bbamcr.2016.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/01/2015] [Revised: 03/30/2016] [Accepted: 04/11/2016] [Indexed: 12/14/2022]
Abstract
Schwann cell migration is essential during the regenerative response to nerve injury, however, the factors that regulate this phenomenon are not yet clear. Here we describe that retinoic acid (RA), whose production and signaling activity are greatly enhanced during nerve regeneration, increases Schwann cell migration. This is accompanied by the up-regulation of NEDD9, a member of the CAS family of scaffold proteins previously implicated in migratory and invasive behavior in gliomas, melanomas and the neural crest cells from which Schwann cells derive. This RA-induced NEDD9 accumulation is due to augmented mRNA levels, as well as an increase of NEDD9 protein stability. Although all NEDD9 phospho-isoforms present in Schwann cells are induced by the retinoid, the hormone also changes its phosphorylation status, thus altering the ratio between the different isoforms. Silencing NEDD9 in Schwann cells had no effect on basal migratory ability, but completely abrogated RA-induced enhanced migration. Collectively, our results indicate that RA could be a major regulator of Schwann cell migration after nerve injury, thus offering a new insight into peripheral nerve repair.
Collapse
Affiliation(s)
- Maria-Jesus Latasa
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain; Department of Endocrine and Nervous System Physiopathology, Arturo Duperier, 4, 28029 Madrid, Spain
| | - Ana María Jiménez-Lara
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain; Department of Endocrine and Nervous System Physiopathology, Arturo Duperier, 4, 28029 Madrid, Spain
| | - Jose Miguel Cosgaya
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain; Department of Endocrine and Nervous System Physiopathology, Arturo Duperier, 4, 28029 Madrid, Spain.
| |
Collapse
|
4
|
Knutson DC, Mitzey AM, Talton LE, Clagett-Dame M. Mice null for NEDD9 (HEF1α) display extensive hippocampal dendritic spine loss and cognitive impairment. Brain Res 2015; 1632:141-55. [PMID: 26683084 DOI: 10.1016/j.brainres.2015.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/02/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 01/28/2023]
Abstract
NEDD9 (neural precursor cell expressed, developmentally down-regulated 9) is a member of the CAS (Crk-associated substrate) family of scaffolding proteins that regulate cell adhesion and migration. A Nedd9 knock-out/lacZ knock-in mouse (Nedd9(-/)(-)) was developed in order to study Nedd9 expression and function in the nervous system. Herein we show that NEDD9 is expressed in the adult brain and is prominently expressed in the hippocampus. Behavioral testing uncovered functional deficits in Nedd9(-)(/)(-) mice. In the Morris water maze test, Nedd9(-)(/)(-) mice showed deficits in both the ability to learn the task as well as in their ability to recall the platform location. There was no change in the gross morphology of the hippocampus, and stereological analysis of BrdU-labeled newly formed hippocampal cells suggested that this defect is not secondary to altered neurogenesis. However, analysis of the hippocampus revealed extensive loss of dendritic spine density in both the dentate gyrus (DG) and CA1 regions. Spine loss occurred equally across all branch orders and regions of the dendrite. Analysis of spine density in Nedd9(-)(/)(-) mice at 1.5, 6 and 10 months revealed an age-dependent spine loss. This work shows that NEDD9 is required for the maintenance of dendritic spines in the hippocampus, and suggests it could play a role in learning and memory.
Collapse
Affiliation(s)
- D C Knutson
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - A M Mitzey
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - L E Talton
- Behavioral Testing Core Facility, University of California, Los Angeles, CA 90095, USA
| | - M Clagett-Dame
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA; Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA.
| |
Collapse
|
5
|
Sato S, Yajima H, Furuta Y, Ikeda K, Kawakami K. Activation of Six1 Expression in Vertebrate Sensory Neurons. PLoS One 2015; 10:e0136666. [PMID: 26313368 PMCID: PMC4551851 DOI: 10.1371/journal.pone.0136666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/22/2015] [Accepted: 08/05/2015] [Indexed: 12/31/2022] Open
Abstract
SIX1 homeodomain protein is one of the essential key regulators of sensory organ development. Six1-deficient mice lack the olfactory epithelium, vomeronasal organs, cochlea, vestibule and vestibuloacoustic ganglion, and also show poor neural differentiation in the distal part of the cranial ganglia. Simultaneous loss of both Six1 and Six4 leads to additional abnormalities such as small trigeminal ganglion and abnormal dorsal root ganglia (DRG). The aim of this study was to understand the molecular mechanism that controls Six1 expression in sensory organs, particularly in the trigeminal ganglion and DRG. To this end, we focused on the sensory ganglia-specific Six1 enhancer (Six1-8) conserved between chick and mouse. In vivo reporter assays using both animals identified an important core region comprising binding consensus sequences for several transcription factors including nuclear hormone receptors, TCF/LEF, SMAD, POU homeodomain and basic-helix-loop-helix proteins. The results provided information on upstream factors and signals potentially relevant to Six1 regulation in sensory neurons. We also report the establishment of a new transgenic mouse line (mSix1-8-NLSCre) that expresses Cre recombinase under the control of mouse Six1-8. Cre-mediated recombination was detected specifically in ISL1/2-positive sensory neurons of Six1-positive cranial sensory ganglia and DRG. The unique features of the mSix1-8-NLSCre line are the absence of Cre-mediated recombination in SOX10-positive glial cells and central nervous system and ability to induce recombination in a subset of neurons derived from the olfactory placode/epithelium. This mouse model can be potentially used to advance research on sensory development.
Collapse
Affiliation(s)
- Shigeru Sato
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
- * E-mail:
| | - Hiroshi Yajima
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yasuhide Furuta
- Animal Resource Development Unit and Genetic Engineering Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST), Kobe, Hyogo, Japan
| | - Keiko Ikeda
- Division of Biology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Kiyoshi Kawakami
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
6
|
Shagisultanova E, Gaponova AV, Gabbasov R, Nicolas E, Golemis EA. Preclinical and clinical studies of the NEDD9 scaffold protein in cancer and other diseases. Gene 2015; 567:1-11. [PMID: 25967390 DOI: 10.1016/j.gene.2015.04.086] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 12/17/2022]
Abstract
Cancer progression requires a significant reprogramming of cellular signaling to support the essential tumor-specific processes that include hyperproliferation, invasion (for solid tumors) and survival of metastatic colonies. NEDD9 (also known as CasL and HEF1) encodes a multi-domain scaffolding protein that assembles signaling complexes regulating multiple cellular processes relevant to cancer. These include responsiveness to signals emanating from the T and B cell receptors, integrins, chemokine receptors, and receptor tyrosine kinases, as well as cytoplasmic oncogenes such as BCR-ABL and FAK- and SRC-family kinases. Downstream, NEDD9 regulation of partners including CRKL, WAVE, PI3K/AKT, ERK, E-cadherin, Aurora-A (AURKA), HDAC6, and others allow NEDD9 to influence functions as pleiotropic as migration, invasion, survival, ciliary resorption, and mitosis. In this review, we summarize a growing body of preclinical and clinical data that indicate that while NEDD9 is itself non-oncogenic, changes in expression of NEDD9 (most commonly elevation of expression) are common features of tumors, and directly impact tumor aggressiveness, metastasis, and response to at least some targeted agents inhibiting NEDD9-interacting proteins. These data strongly support the relevance of further development of NEDD9 as a biomarker for therapeutic resistance. Finally, we briefly discuss emerging evidence supporting involvement of NEDD9 in additional pathological conditions, including stroke and polycystic kidney disease.
Collapse
Affiliation(s)
- Elena Shagisultanova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Anna V Gaponova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Rashid Gabbasov
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Department of Genetics, Kazan Federal University (Volga Region), Kazan, Tatarstan, Russia
| | - Emmanuelle Nicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|