1
|
Kim JH, Shim J, Ko N, Kim HJ, Lee Y, Choi K. Analysis of production efficiency of cloned transgenic Yucatan miniature pigs according to recipient breeds with embryo transfer conditions. Theriogenology 2024; 218:193-199. [PMID: 38330863 DOI: 10.1016/j.theriogenology.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/05/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
The purpose of this study was to compare the efficiency of the production of cloned transgenic Yucatan miniature pigs (YMPs) using two recipient breeds, i.e., YMPs and domestic pigs (DPs), under various embryo transfer conditions. We initially assessed the in vitro developmental competence of embryos obtained via somatic cell nuclear transfer (SCNT) from three different transgenic donor cells. No difference was observed among the three groups regarding developmental competence. Furthermore, the cloning efficiency remained consistent among the three groups after the transfer of the SCNT embryos to each surrogate mother. Subsequently, to compare the efficiency of the production of cloned transgenic YMPs between the two recipient breeds using varying parameters, including ovulation status (preovulation and postovulation), duration of in vitro culture (IVC) (incubated within 24 h and 24-48 h), and the number of transferred SCNT embryos (less than and more than 300), we assessed the pregnancy rates, delivery rates, mean offspring counts, and cloning efficiency. Regarding the ovulation status, YMPs exhibited higher pregnancy rates, delivery rates, and cloning efficiency compared with DPs in both statuses. Moreover, the pregnancy rates, delivery rates, and cloning efficiency were affected by the ovulation status in DPs, but not in YMPs. The comparison of IVC duration between groups revealed that YMPs had higher pregnancy rates vs. DPs in both conditions. SCNT embryos cultured for 24-48 h in YMPs yielded higher delivery rates and cloning efficiency compared with those cultured for less than 24 h in DPs. Finally, the analysis based on the number of transferred SCNT embryos showed that both the pregnancy and delivery rates were higher in YMPs vs. DPs. However, the highest average number of offspring was obtained when more than 300 SCNT embryos were transferred into DPs, whereas the cloning efficiency was higher in YMPs vs. DPs. Our results suggest that YMPs are more suitable recipients than are DPs under various conditions for the production of cloned transgenic YMPs.
Collapse
Affiliation(s)
- Jun-Hyeong Kim
- Optipharm Inc, 63, Osongsaengmyeong 6-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28158, Republic of Korea
| | - Joohyun Shim
- Optipharm Inc, 63, Osongsaengmyeong 6-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28158, Republic of Korea
| | - Nayoung Ko
- Optipharm Inc, 63, Osongsaengmyeong 6-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28158, Republic of Korea
| | - Hyoung-Joo Kim
- Optipharm Inc, 63, Osongsaengmyeong 6-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28158, Republic of Korea
| | - Yongjin Lee
- Optipharm Inc, 63, Osongsaengmyeong 6-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28158, Republic of Korea
| | - Kimyung Choi
- Optipharm Inc, 63, Osongsaengmyeong 6-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28158, Republic of Korea.
| |
Collapse
|
2
|
Choe YH, Sorensen J, Garry DJ, Garry MG. Blastocyst complementation and interspecies chimeras in gene edited pigs. Front Cell Dev Biol 2022; 10:1065536. [PMID: 36568986 PMCID: PMC9773398 DOI: 10.3389/fcell.2022.1065536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
The only curative therapy for many endstage diseases is allograft organ transplantation. Due to the limited supply of donor organs, relatively few patients are recipients of a transplanted organ. Therefore, new strategies are warranted to address this unmet need. Using gene editing technologies, somatic cell nuclear transfer and human induced pluripotent stem cell technologies, interspecies chimeric organs have been pursued with promising results. In this review, we highlight the overall technical strategy, the successful early results and the hurdles that need to be addressed in order for these approaches to produce a successful organ that could be transplanted in patients with endstage diseases.
Collapse
Affiliation(s)
- Yong-ho Choe
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jacob Sorensen
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Daniel J. Garry
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States
| | - Mary G. Garry
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
3
|
Zhang J, Xu Y, Zhang Y, Bossila EA, Shi M, Zhao Y. Bioinformatic analysis as a first step to predict the compatibility of hematopoiesis and immune system genes between humans and pigs. Xenotransplantation 2022; 29:e12764. [PMID: 35695327 DOI: 10.1111/xen.12764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022]
Abstract
The shortage of allogeneic donor organs leaves its supply far short of clinical need. There are great expectations on xenotransplantation, especially with pigs' organs. With the genetic modification of donor pigs, the rejection and cross-species transmission issues have now been widely addressed. However, research on the compatibility of genes between humans and pigs was limited. We performed a systematic screening analysis of predicted incompatible genes between humans and pigs, judged by low protein sequence similarities or different predicted protein domain compositions. By combining with gene set enrichment analysis, we screened out several key genes of hematopoiesis and the immune system with possible incompatibilities, which might be important for establishing chimera and xenotransplantation between humans and pigs. There were seven chemokine genes, including CCL1, CCL5, CCL24, CCL25, CCL28, CXCL12, and CXCL16, that exhibited limited similarity between humans and pigs (similarity < 0.8). Among hematopoiesis process-related genes, 15 genes of adhesion molecules, Notch ligands, and cytokine receptors exhibited differences between humans and pigs. In complement and coagulation cascades, 19 genes showed low similarity and 77 genes had different domain compositions between humans and pigs. Our study provides a good reference for further genetic modification of pigs, which might be beneficial for xenotransplantation.
Collapse
Affiliation(s)
- Jiayu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yingzi Zhang
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Elhusseny A Bossila
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Biotechnology Department, Faculty of Agriculture Al-Azhar University, Cairo, Egypt
| | - Mingpu Shi
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Ko N, Shim J, Kim HJ, Lee Y, Park JK, Kwak K, Lee JW, Jin DI, Kim H, Choi K. A desirable transgenic strategy using GGTA1 endogenous promoter-mediated knock-in for xenotransplantation model. Sci Rep 2022; 12:9611. [PMID: 35688851 PMCID: PMC9187654 DOI: 10.1038/s41598-022-13536-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Pig-to-human organ transplantation is a feasible solution to resolve the shortage of organ donors for patients that wait for transplantation. To overcome immunological rejection, which is the main hurdle in pig-to-human xenotransplantation, various engineered transgenic pigs have been developed. Ablation of xeno-reactive antigens, especially the 1,3-Gal epitope (GalT), which causes hyperacute rejection, and insertion of complement regulatory protein genes, such as hCD46, hCD55, and hCD59, and genes to regulate the coagulation pathway or immune cell-mediated rejection may be required for an ideal xenotransplantation model. However, the technique for stable and efficient expression of multi-transgenes has not yet been settled to develop a suitable xenotransplantation model. To develop a stable and efficient transgenic system, we knocked-in internal ribosome entry sites (IRES)-mediated transgenes into the α 1,3-galactosyltransferase (GGTA1) locus so that expression of these transgenes would be controlled by the GGTA1 endogenous promoter. We constructed an IRES-based polycistronic hCD55/hCD39 knock-in vector to target exon4 of the GGTA1 gene. The hCD55/hCD39 knock-in vector and CRISPR/Cas9 to target exon4 of the GGTA1 gene were co-transfected into white yucatan miniature pig fibroblasts. After transfection, hCD39 expressed cells were sorted by FACS. Targeted colonies were verified using targeting PCR and FACS analysis, and used as donors for somatic cell nuclear transfer. Expression of GalT, hCD55, and hCD39 was analyzed by FACS and western blotting. Human complement-mediated cytotoxicity and human antibody binding assays were conducted on peripheral blood mononuclear cells (PBMCs) and red blood cells (RBCs), and deposition of C3 by incubation with human complement serum and platelet aggregation were analyzed in GGTA1 knock-out (GTKO)/CD55/CD39 pig cells. We obtained six targeted colonies with high efficiency of targeting (42.8% of efficiency). Selected colony and transgenic pigs showed abundant expression of targeted genes (hCD55 and hCD39). Knocked-in transgenes were expressed in various cell types under the control of the GGTA1 endogenous promoter in GTKO/CD55/CD39 pig and IRES was sufficient to express downstream expression of the transgene. Human IgG and IgM binding decreased in GTKO/CD55/CD39 pig and GTKO compared to wild-type pig PBMCs and RBCs. The human complement-mediated cytotoxicity of RBCs and PBMCs decreased in GTKO/CD55/CD39 pig compared to cells from GTKO pig. C3 was also deposited less in GTKO/CD55/CD39 pig cells than wild-type pig cells. The platelet aggregation was delayed by hCD39 expression in GTKO/CD55/CD39 pig. In the current study, knock-in into the GGTA1 locus and GGTA1 endogenous promoter-mediated expression of transgenes are an appropriable strategy for effective and stable expression of multi-transgenes. The IRES-based polycistronic transgene vector system also caused sufficient expression of both hCD55 and hCD39. Furthermore, co-transfection of CRISPR/Cas9 and the knock-in vector not only increased the knock-in efficiency but also induced null for GalT by CRISPR/Cas9-mediated double-stranded break of the target site. As shown in human complement-mediated lysis and human antibody binding to GTKO/CD55/CD39 transgenic pig cells, expression of hCD55 and hCD39 with ablation of GalT prevents an effective immunological reaction in vitro. As a consequence, our technique to produce multi-transgenic pigs could improve the development of a suitable xenotransplantation model, and the GTKO/CD55/CD39 pig developed could prolong the survival of pig-to-primate xenotransplant recipients.
Collapse
Affiliation(s)
- Nayoung Ko
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Joohyun Shim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyoung-Joo Kim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Yongjin Lee
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Jae-Kyung Park
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Kyungmin Kwak
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Jeong-Woong Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Dajeon, Republic of Korea
| | - Dong-Il Jin
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyunil Kim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Kimyung Choi
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea.
| |
Collapse
|
5
|
Jiang Z, Fu M, Zhu D, Wang X, Li N, Ren L, He J, Yang G. Genetically modified immunomodulatory cell-based biomaterials in tissue regeneration and engineering. Cytokine Growth Factor Rev 2022; 66:53-73. [PMID: 35690567 DOI: 10.1016/j.cytogfr.2022.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
To date, the wide application of cell-based biomaterials in tissue engineering and regeneration is remarkably hampered by immune rejection. Reducing the immunogenicity of cell-based biomaterials has become the latest direction in biomaterial research. Recently, genetically modified cell-based biomaterials with immunomodulatory genes have become a feasible solution to the immunogenicity problem. In this review, recent advances and future challenges of genetically modified immunomodulatory cell-based biomaterials are elaborated, including fabrication approaches, mechanisms of common immunomodulatory genes, application and, more importantly, current preclinical and clinical advances. The fabrication approaches can be categorized into commonly used (e.g., virus transfection) and newly developed approaches. The immunomodulatory mechanisms of representative genes involve complicated cell signaling pathways and metabolic activities. Wide application in curing multiple end-term diseases and replacing lifelong immunosuppressive therapy in multiple cell and organ transplantation models is demonstrated. Most significantly, practices of genetically modified organ transplantation have been conducted on brain-dead human decedent and even on living patients after a series of experiments on nonhuman primates. Nevertheless, uncertain biosecurity, nonspecific effects and overlooked personalization of current genetically modified immunomodulatory cell-based biomaterials are shortcomings that remain to be overcome.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Mengdie Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Xueting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Lingfei Ren
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jin He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
6
|
Mou L, Shi G, Cooper DK, Lu Y, Chen J, Zhu S, Deng J, Huang Y, Ni Y, Zhan Y, Cai Z, Pu Z. Current Topics of Relevance to the Xenotransplantation of Free Pig Islets. Front Immunol 2022; 13:854883. [PMID: 35432379 PMCID: PMC9010617 DOI: 10.3389/fimmu.2022.854883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Pig islet xenotransplantation is a potential treatment for patients with type 1 diabetes. Current efforts are focused on identifying the optimal pig islet source and overcoming the immunological barrier. The optimal age of the pig donors remains controversial since both adult and neonatal pig islets have advantages. Isolation of adult islets using GMP grade collagenase has significantly improved the quantity and quality of adult islets, but neonatal islets can be isolated at a much lower cost. Certain culture media and coculture with mesenchymal stromal cells facilitate neonatal islet maturation and function. Genetic modification in pigs affords a promising strategy to prevent rejection. Deletion of expression of the three known carbohydrate xenoantigens (Gal, Neu5Gc, Sda) will certainly be beneficial in pig organ transplantation in humans, but this is not yet proven in islet transplantation, though the challenge of the '4th xenoantigen' may prove problematic in nonhuman primate models. Blockade of the CD40/CD154 costimulation pathway leads to long-term islet graft survival (of up to 965 days). Anti-CD40mAbs have already been applied in phase II clinical trials of islet allotransplantation. Fc region-modified anti-CD154mAbs successfully prevent the thrombotic complications reported previously. In this review, we discuss (I) the optimal age of the islet-source pig, (ii) progress in genetic modification of pigs, (iii) the immunosuppressive regimen for pig islet xenotransplantation, and (iv) the reduction in the instant blood-mediated inflammatory reaction.
Collapse
Affiliation(s)
- Lisha Mou
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Guanghan Shi
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - David K.C. Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Ying Lu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jiao Chen
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Shufang Zhu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jing Deng
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Yuanyuan Huang
- Department of Life Science, Bellevue College, Bellevue, WA, United States
| | - Yong Ni
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Yongqiang Zhan
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Zuhui Pu
- Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
7
|
Shim J, Ko N, Kim HJ, Lee Y, Lee JW, Jin DI, Kim H, Choi K. Human immune reactivity of GGTA1/CMAH/A3GALT2 triple knockout Yucatan miniature pigs. Transgenic Res 2021; 30:619-634. [PMID: 34232440 PMCID: PMC8478729 DOI: 10.1007/s11248-021-00271-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/11/2021] [Indexed: 11/25/2022]
Abstract
In this study, we investigated the effect of a triple knockout of the genes alpha-1,3-galactosyltransferase (GGTA1), cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH), and alpha 1,3-galactosyltransferase 2 (A3GALT2) in Yucatan miniature pigs on human immune reactivity. We used the CRISPR/Cas9 system to create pigs lacking GGTA1 (GTKO) and GGTA1/CMAH/A3GALT2 triple gene knockout (TKO). The expression of all three xenoantigens was absent in TKO pigs, but there was no additional reduction in the level of Galα1,3Gal (αGal) epitopes expression in the A3GALT2 gene KO. Peripheral blood mononuclear cells (PBMCs), aorta endothelial cells (AECs), and cornea endothelial cells (CECs) were isolated from these pigs, and their ability to bind human IgM/IgG and their cytotoxicity in human sera were evaluated. Compared to wild type (WT) pigs, the level of human antibody binding of the PBMCs, AECs, and CECs of the transgenic pigs (GTKO and TKO) was significantly reduced. However, there were significant differences in human antibody binding between GTKO and TKO depending on the cell type. Human antibody binding of TKO pigs was less than that of GTKO on PBMCs but was similar between GTKO and TKO pigs for AECs and CECs. Cytotoxicity of transgenic pig (GTKO and TKO) PBMCs and AECs was significantly reduced compared to that of WT pigs. However, TKO pigs showed a reduction in cytotoxicity compared to GTKO pigs on PBMCs, whereas in AECs from both TKO and GTKO pigs, there was no difference. The cytotoxicity of transgenic pig CECs was significantly decreased from that of WT at 300 min, but there was no significant reduction in TKO pigs from GTKO. Our results indicate that genetic modification of donor pigs for xenotransplantation should be tailored to the target organ and silencing of additional genes such as CMAH or A3GALT2 based on GTKO might not be essential in Yucatan miniature pigs.
Collapse
Affiliation(s)
- Joohyun Shim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea.,Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Nayoung Ko
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea.,Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyoung-Joo Kim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Yongjin Lee
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Jeong-Woong Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Dong-Il Jin
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyunil Kim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Kimyung Choi
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea.
| |
Collapse
|
8
|
Glucose in a maturation medium with reduced NaCl improves oocyte maturation and embryonic development after somatic cell nuclear transfer and in vitro fertilization in pigs. ZYGOTE 2021; 29:293-300. [PMID: 33653431 DOI: 10.1017/s0967199420000891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study was conducted to examine whether glucose in maturation medium containing reduced NaCl could improve oocyte maturation and embryonic development in pigs. The base medium was bovine serum albumin-free porcine zygote medium (PZM)-3 containing 10% (v/v) pig follicular fluid (FPZM) or 0.1% (w/v) polyvinyl alcohol (PPZM). Using each medium, the effects of NaCl concentrations (108 and 61.6 mM) and 5.56 mM glucose supplementation (designated as PZM108N, PZM108G, PZM61N, and PZM61G, respectively) were examined using a 2 × 2 factorial arrangement. When oocytes were matured in FPZM, glucose supplementation improved nuclear maturation compared with no supplementation, regardless of the NaCl concentrations. FPZM61G showed a higher blastocyst formation compared with FPZM108N and FPZM108G after parthenogenesis (PA). Blastocyst formations of somatic cell nuclear transfer (SCNT) embryos derived from FPZM61N and FPZM61G were higher compared with those of oocytes from FPZM108N. When oocytes were matured in PPZM, glucose added to PPZM108 and PPZM61 increased nuclear maturation compared with no supplementation. However, glucose added to PPZM108 did not alter embryonic development after PA. Additionally, oocytes matured in PPZM61G showed a higher blastocyst formation compared with those from PPZM61N. In SCNT, blastocyst formation was not influenced by glucose supplementation of PPZM108, but was increased by maturation in glucose-supplemented PPZM61. In embryonic development of in vitro fertilization (IVF), oocytes matured in medium with reduced NaCl and glucose showed significantly higher blastocyst formation compared with those matured in PPZM108G. Our results demonstrated that glucose in maturation medium containing 61.6 mM NaCl increased oocyte maturation and embryonic development after PA, SCNT, and IVF.
Collapse
|
9
|
Development of PCR based approach to detect potential mosaicism in porcine embryos. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2020. [DOI: 10.12750/jarb.35.4.323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
10
|
Kemter E, Schnieke A, Fischer K, Cowan PJ, Wolf E. Xeno-organ donor pigs with multiple genetic modifications - the more the better? Curr Opin Genet Dev 2020; 64:60-65. [PMID: 32619817 DOI: 10.1016/j.gde.2020.05.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/25/2020] [Indexed: 01/05/2023]
Abstract
The number of donated human organs and tissues for patients with terminal organ failure falls far short of the need. Alternative sources, such as organs and tissues from animals, are therefore urgently required. During the past few years, major progress has been made in the development of genetically multi-modified donor pigs, and their organs have been shown to be safe and efficacious in life-supporting transplantation models into non-human primates, paving the way to clinical xenotransplantation studies. Here, we summarize recent developments in pig genome engineering and discuss efforts to develop the optimum donor pig for xenotransplantation. In addition, we speculate on how many genetic modifications may be required for initial xenotransplantation clinical trials.
Collapse
Affiliation(s)
- Elisabeth Kemter
- Chair of Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany
| | - Angelika Schnieke
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technische Universität München, 85350 Freising, Germany
| | - Konrad Fischer
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technische Universität München, 85350 Freising, Germany
| | - Peter J Cowan
- Immunology Research Centre, St. Vincent's Hospital Melbourne, and Department of Medicine, University of Melbourne, Victoria, Australia
| | - Eckhard Wolf
- Chair of Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany.
| |
Collapse
|
11
|
Shu S, Ren J, Song J. Cardiac xenotransplantation: a promising way to treat advanced heart failure. Heart Fail Rev 2020; 27:71-91. [DOI: 10.1007/s10741-020-09989-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Ullah I, Lee R, Oh KB, Kim Y, Woo JS, Hwang S, Im GS, Ock SA. Stable Regulation of Senescence-Related Genes in Galactose-alpha1,3-galactose Epitope Knockout and Human Membrane Cofactor Protein hCD46 Pig. Transplant Proc 2019; 51:2043-2050. [PMID: 31399182 DOI: 10.1016/j.transproceed.2019.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/19/2019] [Accepted: 03/13/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Pigs are considered suitable animal donor models for xenotransplantation. For successful organ transplantation, immune rejection must be overcome. Xenotransplantation has recently been successfully performed using galactose-alpha1,3-galactose epitopes knockout (GalTKO) and a human membrane cofactor protein (hCD46) in a pig model. However, the growth and lifespan of the grafted organ have not been evaluated. Therefore, in the present study we evaluated aging and 84 senescence-related genes using the RT2 Profiler PCR array and whole blood samples from GalTKO/hCD46 Massachusetts General Hospital (MGH) pigs. METHODS Experimental groups were double GalTKO/hCD46 (5-month-old), single GalTKO/hCD46 (2-year-old), and non-genetically modified (>3.5-year-old; control group within the same strain). Age-matched white hairless Yucatan (WHY) miniature pig groups were used as controls. RESULTS Among the 19 senescence-related genes selected from the 84 genes for further evaluation, 13 were upregulated in the double GalTKO/hCD46 MGH pigs compared to control MGH pigs; however, in WHY pigs, only 4 genes were up- or down-regulated among the 19 genes. Moreover, in double GalTKO/hCD46 MGH and WHY pigs, the expression of the 19 genes changed only 1- to 2-fold, suggesting that there were no significant differences in senescence signals between the 2 pig lines. CONCLUSIONS The present results indicate that the double GalTKO/hCD46 MGH pig might be a suitable model for human xenotransplantation studies. However, we used a limited number of experimental individuals, so further studies using larger experimental groups should be conducted to verify the present results.
Collapse
Affiliation(s)
- Imran Ullah
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Ran Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Youngim Kim
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Jae-Seok Woo
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Gi-Sun Im
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Sun A Ock
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
13
|
Yoon CH, Choi SH, Choi HJ, Lee HJ, Kang HJ, Kim JM, Park CG, Choi K, Kim H, Ahn C, Kim MK. Long-term survival of full-thickness corneal xenografts from α1,3-galactosyltransferase gene-knockout miniature pigs in non-human primates. Xenotransplantation 2019; 27:e12559. [PMID: 31566261 DOI: 10.1111/xen.12559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/22/2019] [Accepted: 09/13/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND We aimed to investigate (a) the long-term survival of corneal grafts from α1,3-galactosyltransferase gene-knockout miniature (GTKOm) pigs in non-human primates as a primary outcome and (b) the effect of anti-CD20 antibody on the survival of corneal grafts from GTKOm pigs as a secondary outcome. METHODS Nine rhesus macaques undergoing full-thickness corneal xenotransplantation using GTKOm pigs were systemically administered steroid, basiliximab, intravenous immunoglobulin, and tacrolimus with (CD20 group) or without (control group) anti-CD20 antibody. RESULTS Graft survival was significantly longer (P = .008) in the CD20 group (>375, >187, >187, >83 days) than control group (165, 91, 72, 55, 37 days). When we compared the graft survival time between older (>7- month-old) and younger (≤7-month-old) aged donor recipients, there was no significant difference. Activated B cells were lower in the CD20 group than control group (P = .026). Aqueous humor complement C3a was increased in the control group at last examination (P = .043) and was higher than that in the CD20 group (P = .014). Anti-αGal IgG/M levels were unchanged in both groups. At last examination, anti-non-Gal IgG was increased in the control group alone (P = .013). CONCLUSIONS The GTKOm pig corneal graft achieved long-term survival when combined with anti-CD20 antibody treatment. Inhibition of activated B cells and complement is imperative even when using GTKO pig corneas.
Collapse
Affiliation(s)
- Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Se Hyun Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Hyuk Jin Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Ju Lee
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| | - Hee Jung Kang
- Department of Laboratory Medicine, Hallym University College of Medicine, Seoul, Korea
| | - Jong Min Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Chung-Gyu Park
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | - Curie Ahn
- Department of Internal medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Detection of Pig Cells Harboring Porcine Endogenous Retroviruses in Non-Human Primate Bladder After Renal Xenotransplantation. Viruses 2019; 11:v11090801. [PMID: 31470671 PMCID: PMC6784250 DOI: 10.3390/v11090801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/19/2019] [Accepted: 08/27/2019] [Indexed: 11/17/2022] Open
Abstract
Pigs are used as potential donor animals for xenotransplantation. However, porcine endogenous retrovirus (PERV), shown to infect both human and non-human primate (NHP) cells in vitro, presents a risk of transmission to humans in xenotransplantation. In this study, we analyzed PERV transmission in various organs after pig-to-NHP xenotransplantation. We utilized pig-to-NHP xenotransplant tissue samples obtained using two types of transgenic pigs from the National Institute of Animal Science (NIAS, Republic of Korea), and examined them for the existence of PERV genes in different organs via PCR and RT-PCR with specific primers. To determine PERV insertion into chromosomes, inverse PCR using PERV long terminal repeat (LTR) region-specific primers was conducted. The PERV gene was not detected in NHP organs in cardiac xenotransplantation but detected in NHP bladders in renal xenotransplantation. The insertion experiment confirmed that PERVs originate from porcine donor cells rather than integrated provirus in the NHP chromosome. We also demonstrate the presence of pig cells in the NHP bladder after renal xenotransplantation using specific-porcine mitochondrial DNA gene PCR. The PERV sequence was detected in the bladder of NHPs after renal xenotransplantation by porcine cell-microchimerism but did not integrate into the NHP chromosome.
Collapse
|
15
|
Choi K, Shim J, Ko N, Park J. No excessive mutations in transcription activator-like effector nuclease-mediated α-1,3-galactosyltransferase knockout Yucatan miniature pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:360-372. [PMID: 31480150 PMCID: PMC6946973 DOI: 10.5713/ajas.19.0480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/29/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Specific genomic sites can be recognized and permanently modified by genome editing. The discovery of endonucleases has advanced genome editing in pigs, attenuating xenograft rejection and cross-species disease transmission. However, off-target mutagenesis caused by these nucleases is a major barrier to putative clinical applications. Furthermore, off-target mutagenesis by genome editing has not yet been addressed in pigs. METHODS Here, we generated genetically inheritable α-1,3-galactosyltransferase (GGTA1) knockout Yucatan miniature pigs by combining transcription activator-like effector nuclease (TALEN) and nuclear transfer. For precise estimation of genomic mutations induced by TALEN in GGTA1 knockout pigs, we obtained the whole-genome sequence of the donor cells for use as an internal control genome. RESULTS In-depth whole-genome sequencing analysis demonstrated that TALEN-mediated GGTA1 knockout pigs had a comparable mutation rate to homologous recombination-treated pigs and wild-type strain controls. RNA sequencing analysis associated with genomic mutations revealed that TALEN-induced off-target mutations had no discernable effect on RNA transcript abundance. CONCLUSION Therefore, TALEN appears to be a precise and safe tool for generating genome-edited pigs, and the TALEN-mediated GGTA1 knockout Yucatan miniature pigs produced in this study can serve as a safe and effective organ and tissue resource for clinical applications.
Collapse
Affiliation(s)
| | - Joohyun Shim
- Optipharm Inc., Cheongju 28158, Korea.,Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Nayoung Ko
- Optipharm Inc., Cheongju 28158, Korea.,Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Joonghoon Park
- Department of International Agricultural Technology, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|
16
|
Zhou ZP, Yang LL, Cao H, Chen ZR, Zhang Y, Wen XY, Hu J. In Vitro Validation of a CRISPR-Mediated CFTR Correction Strategy for Preclinical Translation in Pigs. Hum Gene Ther 2019; 30:1101-1116. [PMID: 31099266 DOI: 10.1089/hum.2019.074] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Early efforts in cystic fibrosis (CF) gene therapy faced major challenges in delivery efficiency and sustained therapeutic gene expression. Recent advancements in engineered site-specific endonucleases such as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 make permanent CF transmembrane conductance regulator (CFTR) gene correction possible. However, because of safety concerns of the CRISPR/Cas9 system and challenges in in vivo delivery to inflamed CF airway, CRISPR-based gene correction strategies need to be tested in proper animal models. In this study, we aimed at creating vectors for testing CFTR gene correction in pig models. We constructed helper-dependent adenoviral (HD-Ad) vectors to deliver CRISPR/Cas9 and a donor template (a 6 kb LacZ or 8.7 kb human CFTR expression cassette) into cultured pig cells. We demonstrated precise integration of each donor into the GGTA1 safe harbor through Cas9-induced homology directed repair with 3 kb homology arms. In addition, we showed that both LacZ and hCFTR were persistently expressed in transduced cells. Furthermore, we created a CFTR-deficient cell line for testing CFTR correction. We detected hCFTR mRNA and protein expression in cells transduced with the hCFTR vector. We also demonstrated CFTR function in the CF cells transduced with the HD-Ad delivering the CRISPR-Cas9 system and hCFTR donor at late cellular passages using the membrane potential sensitive dye-based assay (FLIPR®). Combined with our previous report on gene delivery to pig airway basal cells, these data provide the feasibility of testing CRISPR/Cas9-mediated permanent human CFTR correction through HD-Ad vector delivery in pigs.
Collapse
Affiliation(s)
- Zhichang Peter Zhou
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Program of Translational Medicine, The Hospital for Sick Children, Toronto, Canada.,Zebrafish Centre for Advanced Drug Discovery and Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Liang Leo Yang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Program of Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Huibi Cao
- Program of Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Ziyan Rachel Chen
- Program of Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Yiqian Zhang
- Program of Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Xiao-Yan Wen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Zebrafish Centre for Advanced Drug Discovery and Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada.,Department of Medicine, Physiology and Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Jim Hu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Program of Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
17
|
Lee Y, Shim J, Ko N, Kim HJ, Park JK, Kwak K, Kim H, Choi K. Effect of alanine supplementation during in vitro maturation on oocyte maturation and embryonic development after parthenogenesis and somatic cell nuclear transfer in pigs. Theriogenology 2019; 127:80-87. [DOI: 10.1016/j.theriogenology.2019.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/07/2018] [Accepted: 01/03/2019] [Indexed: 01/07/2023]
|
18
|
Song YW, Pan ZQ. Reducing porcine corneal graft rejection, with an emphasis on porcine endogenous retrovirus transmission safety: a review. Int J Ophthalmol 2019; 12:324-332. [PMID: 30809491 DOI: 10.18240/ijo.2019.02.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/28/2018] [Indexed: 01/08/2023] Open
Abstract
Donor cornea shortage is a primary hurdle in the development of corneal transplantation. Of all species, porcine corneas are the ideal transplantation material for humans. However, the xenoimmune rejection induced by porcine corneal xenotransplantation compromises surgical efficacy. Although the binding of IgM/IgG in human serum to a genetically modified porcine cornea is significantly weaker than that of the wild type (WT), genetically modified porcine corneas do not display a prolonged graft survival time in vivo. Conversely, costimulatory blockade drugs, such as anti-CD40 antibodies, can reduce the xenoimmune response and prolong graft survival time in animal experiments. Moreover, porcine endothelial grafts can survive for more than 6mo with only the subconjunctival injection of a steroid-based immunosuppressants regime; therefore, they show great value for treating corneal endothelial disease. In addition, zoonotic transmission is a primary concern of xenotransplantation. Porcine endogenous retrovirus (PERV) is the most significant virus assessed by ophthalmologists. PERV integrates into the porcine genome and infects human cells in vitro. Fortunately, no evidence from in vivo studies has yet shown that PERV can be transmitted to hosts.
Collapse
Affiliation(s)
- Yao-Wen Song
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing 100730, China
| | - Zhi-Qiang Pan
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing 100730, China
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Porcine islets represent a potentially attractive beta-cell source for xenotransplantation into patients with type 1 diabetes, who are not eligible to islet allo-transplantation due to a lack of suitable human donor organs. Recent progress in genetic engineering/gene editing of donor pigs provides new opportunities to overcome rejection of xeno-islets, to improve their engraftment and insulin secretion capacity, and to reduce the risk for transmission of porcine endogenous retroviruses. This review summarizes the current issues and progress in islet xenotransplantation with special emphasis on genetically modified/gene edited donor pigs. RECENT FINDINGS Attempts to overcome acute rejection of xeno-islets, especially after intraportal transplantation into the liver, include the genetic elimination of specific carbohydrate antigens such as αGal, Neu5Gc, and Sd(a) for which humans and-in part-non-human primates have natural antibodies that bind to these targets leading to activation of complement and coagulation. A complementary approach is the expression of one or more human complement regulatory proteins (hCD46, hCD55, hCD59). Transgenic attempts to overcome cellular rejection of islet xenotransplants include the expression of proteins that inhibit co-stimulation of T cells. Expression of glucagon-like peptide-1 and M3 muscarinic receptors has been shown to increase the insulin secretion of virally transduced porcine islets in vitro and it will be interesting to see the effects of these modifications in transgenic pigs and islet products derived from them. Genome-wide inactivation of porcine endogenous retrovirus (PERV) integrants by mutating their pol genes using CRISPR/Cas9 is a recent approach to reduce the risk for PERV transmission by xeno-islets. Genetic engineering/gene editing of xeno-islet donor pigs facilitated major progress towards clinical islet xenotransplantation. The required set of genetic modifications will depend on the source of islets (fetal/neonatal vs. adult), the mode of delivery (encapsulated vs. free), and the transplantation site.
Collapse
Affiliation(s)
- Elisabeth Kemter
- Gene Center, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany
| | - Joachim Denner
- Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany
| | - Eckhard Wolf
- Gene Center, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
20
|
The Rapidly Evolving Concept of Whole Heart Engineering. Stem Cells Int 2017; 2017:8920940. [PMID: 29250121 PMCID: PMC5700515 DOI: 10.1155/2017/8920940] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/12/2017] [Indexed: 01/10/2023] Open
Abstract
Whole heart engineering represents an incredible journey with as final destination the challenging aim to solve end-stage cardiac failure with a biocompatible and living organ equivalent. Its evolution started in 2008 with rodent organs and is nowadays moving closer to clinical application thanks to scaling-up strategies to human hearts. This review will offer a comprehensive examination on the important stages to be reached for the bioengineering of the whole heart, by describing the approaches of organ decellularization, repopulation, and maturation so far applied and the novel technologies of potential interest. In addition, it will carefully address important demands that still need to be satisfied in order to move to a real clinical translation of the whole bioengineering heart concept.
Collapse
|
21
|
Lee SC, Lee H, Oh KB, Hwang IS, Yang H, Park MR, Ock SA, Woo JS, Im GS, Hwang S. Production and Breeding of Transgenic Cloned Pigs Expressing Human CD73. Dev Reprod 2017; 21:157-165. [PMID: 28785737 PMCID: PMC5532308 DOI: 10.12717/dr.2017.21.2.157] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 11/17/2022]
Abstract
One of the reasons to causing blood coagulation in the tissue of xenografted
organs was known to incompatibility of the blood coagulation and
anti-coagulation regulatory system between TG pigs and primates. Thus,
overexpression of human CD73 (hCD73) in the pig endothelial cells is considered
as a method to reduce coagulopathy after pig-to-non-human-primate
xenotransplantation. This study was performed to produce and breed transgenic
pigs expressing hCD73 for the studies immune rejection responses and could
provide a successful application of xenotransplantation. The transgenic cells
were constructed an hCD73 expression vector under control porcine Icam2 promoter
(pIcam2-hCD73) and established donor cell lines expressing hCD73. The numbers of
transferred reconstructed embryos were 127 ± 18.9. The pregnancy and delivery
rate of surrogates were 8/18 (44%) and 3/18 (16%). The total number of delivered
cloned pigs were 10 (2 alive, 7 mummy, and 1 died after birth). Among them,
three live hCD73-pigs were successfully delivered by Caesarean section, but one
was dead after birth. The two hCD73 TG cloned pigs had normal reproductive
ability. They mated with wild type (WT) MGH (Massachusetts General Hospital)
female sows and produced totally 16 piglets. Among them, 5 piglets were
identified as hCD73 TG pigs. In conclusion, we successfully generated the hCD73
transgenic cloned pigs and produced their litters by natural mating. It can be
possible to use a mate for the production of multiple transgenic pigs such as
α-1,3-galactosyltransferase knock-out /hCD46 for xenotransplantation.
Collapse
Affiliation(s)
- Seung-Chan Lee
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Haesun Lee
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - In-Sul Hwang
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Hyeon Yang
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Mi-Ryung Park
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Sun-A Ock
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Jae-Seok Woo
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Gi-Sun Im
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| |
Collapse
|