1
|
Sadikiel Mmbando G, Ngongolo K. The recent genetic modification techniques for improve soil conservation, nutrient uptake and utilization. GM CROPS & FOOD 2024; 15:233-247. [PMID: 39008437 PMCID: PMC11253881 DOI: 10.1080/21645698.2024.2377408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Advances in genetic modification (GM) techniques have generated huge interest in improving nutrient utilization, maximizing nutrient uptake, and conserving soil in the pursuit of sustainable agriculture. Unfortunately, little is still known about the recent advancements in the application of GM tactics to enhance each of these areas. This review explores the latest GM strategies intended to support soil conservation, maximize nutrient uptake, and improve nutrient utilization in farming, highlighting the critical roles that soil health and nutrient management play in sustainable farming. GM strategies such as improving the efficiency of nutrient uptake through enhanced root systems and increased nutrient transport mechanisms are well discussed. This study suggests that addressing potential obstacles, such as ethical and regulatory concerns, is a necessity for long-term sustainability applications of GM technologies to raise agricultural yields.
Collapse
Affiliation(s)
- Gideon Sadikiel Mmbando
- Department of Biology, College of Natural and Mathematical Sciences, The University of Dodoma, Dodoma, United Republic of Tanzania
| | - Kelvin Ngongolo
- Department of Biology, College of Natural and Mathematical Sciences, The University of Dodoma, Dodoma, United Republic of Tanzania
| |
Collapse
|
2
|
Deng S, Zhang X, Zhu Y, Zhuo R. Recent advances in phyto-combined remediation of heavy metal pollution in soil. Biotechnol Adv 2024; 72:108337. [PMID: 38460740 DOI: 10.1016/j.biotechadv.2024.108337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/14/2023] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
The global industrialization and modernization have witnessed a rapid progress made in agricultural production, along with the issue of soil heavy metal (HM) pollution, which has posed severe threats to soil quality, crop yield, and human health. Phytoremediation, as an alternative to physical and chemical methods, offers a more cost-effective, eco-friendly, and aesthetically appealing means for in-situ remediation. Despite its advantages, traditional phytoremediation faces challenges, including variable soil physicochemical properties, the bioavailability of HMs, and the slow growth and limited biomass of plants used for remediation. This study presents a critical overview of the predominant plant-based HM remediation strategies. It expounds upon the mechanisms of plant absorption, translocation, accumulation, and detoxification of HMs. Moreover, the advancements and practical applications of phyto-combined remediation strategies, such as the addition of exogenous substances, genetic modification of plants, enhancement by rhizosphere microorganisms, and intensification of agricultural technologies, are synthesized. In addition, this paper also emphasizes the economic and practical feasibility of some strategies, proposing solutions to extant challenges in traditional phytoremediation. It advocates for the development of cost-effective, minimally polluting, and biocompatible exogenous substances, along with the careful selection and application of hyperaccumulating plants. We further delineate specific future research avenues, such as refining genetic engineering techniques to avoid adverse impacts on plant growth and the ecosystem, and tailoring phyto-combined strategies to diverse soil types and HM pollutants. These proposed directions aim to enhance the practical application of phytoremediation and its integration into a broader remediation framework, thereby addressing the urgent need for sustainable soil decontamination and protection of ecological and human health.
Collapse
Affiliation(s)
- Shaoxiong Deng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Xuan Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Rui Zhuo
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China; Hunan Provincial Certified Enterprise Technology Center, Hunan Xiangjiao Liquor Industry Co., Ltd., Shaoyang 422000, PR China.
| |
Collapse
|
3
|
Taguchi C, Shibata N, Soga K, Yoshiba S, Narushima J, Sugino M, Kondo K. Providing appropriate information to consumers boosts the acceptability of genome-edited foods in Japan. GM CROPS & FOOD 2023; 14:1-14. [PMID: 37523332 PMCID: PMC10392745 DOI: 10.1080/21645698.2023.2239539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023]
Abstract
The Japanese Health Ministry recently granted permission for the market distribution of genome-edited (GE) foods, yet there remains a lack of full understanding among consumers regarding this technology. In this study, we conducted a survey to assess the acceptability of GE foods among Japanese consumers and examined the impact of providing information about GE foods on their acceptability. We conducted a web-based survey among 3,408 consumers aged 20-69 years, focusing on three aspects: (1) the commercial availability of GE foods, (2) the consumption of GE foods by others, and (3) your own consumption of GE foods. The survey findings revealed that participants were most accepting of the consumption of GE foods by others, followed by their acceptance of GE foods being commercially available. Notably, participants' acceptance of GE foods increased in all three aspects after they viewed an informative video. The video had a particularly strong impact on participants who fully or partially understood its content, compared to those who did not. Furthermore, regression analyses showed that participants' understanding of two key areas, namely "Why are GE foods important" and "What procedures are in place to ensure the safety of GE foods," played a crucial role in increasing acceptability. Overall, these results indicate that providing information about GE foods to Japanese consumers can effectively enhance their acceptance of such foods. The findings highlight the importance of understanding the benefits and safety measures associated with GE foods in influencing consumer attitudes.
Collapse
Affiliation(s)
- Chie Taguchi
- Biochemistry, National Institute of Health Sciences, Kawasaki City, Kanagawa, Japan
| | - Norihito Shibata
- Biochemistry, National Institute of Health Sciences, Kawasaki City, Kanagawa, Japan
| | - Keisuke Soga
- Biochemistry, National Institute of Health Sciences, Kawasaki City, Kanagawa, Japan
| | - Satoko Yoshiba
- Biochemistry, National Institute of Health Sciences, Kawasaki City, Kanagawa, Japan
| | - Jumpei Narushima
- Biochemistry, National Institute of Health Sciences, Kawasaki City, Kanagawa, Japan
| | - Miyu Sugino
- Biochemistry, National Institute of Health Sciences, Kawasaki City, Kanagawa, Japan
| | - Kazunari Kondo
- Biochemistry, National Institute of Health Sciences, Kawasaki City, Kanagawa, Japan
- Food Safety and Management, Showa Women's University, Tokyo, Japan
| |
Collapse
|
4
|
Macall DM, Madrigal-Pana J, Smyth SJ, Gatica Arias A. Costa Rican consumer perceptions of gene-editing. Heliyon 2023; 9:e19173. [PMID: 37664745 PMCID: PMC10468379 DOI: 10.1016/j.heliyon.2023.e19173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
Costa Rica's rice production, a large determinant of the country's food security, is being negatively impacted by frequently increasing periods of intense drought. Costa Rican scientists have applied CRISPR/Cas9 to develop drought resistant rice varieties they believe the country's rice producers could benefit from. However, would Costa Ricans consume gene edited rice or products derived from this crop? A three-part, 26-question survey administered in-person to 1096 Costa Ricans uncovers their attitudes, knowledge, and perceptions of gene editing technology and crops. Multiple regressions were built where the independent variables were age, gender, education level, and subjective economic situation. No statistically significant relationships were found in the regression coefficients. Moreover, the k-means procedure (cluster analysis) was used to categorize respondents according to their attitudes on the consumption of gene-edited foods: negative, neutral, and positive. Results show that overall, Costa Rican consumers are open to the application of gene editing in agriculture and would consider consuming products derived from the application of the technology. They are also open to gene editing technology being used to address human and animal health issues. However, Costa Rican consumers are not open to gene editing being used to "design" human traits. This study adds evidence to the emerging literature on the acceptance of gene-edited food. It also highlights the importance of informing societies of just how vulnerable agriculture, and therefore food security, is to the increasingly adverse effects of climate change.
Collapse
Affiliation(s)
- Diego Maximiliano Macall
- Sostenipra 2021SGR 00734, Institut Ciència i Tecnologia Ambientals (ICTA-UAB), MdM Unit of Excellence (CEX2019-000940-M), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | | | - Stuart J. Smyth
- Department of Agricultural and Resource Economics, University of Saskatchewan, 51 Campus Drive Saskatoon, Saskatchewan S7N 5A8, Canada
| | | |
Collapse
|
5
|
Idris SH, Mat Jalaluddin NS, Chang LW, 曾 立纬. Ethical and legal implications of gene editing in plant breeding: a systematic literature review. J Zhejiang Univ Sci B 2023; 24:1093-1105. [PMID: 38057267 PMCID: PMC10710910 DOI: 10.1631/jzus.b2200601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/30/2023] [Indexed: 07/11/2023]
Abstract
Biotechnology policies and regulations must be revised and updated to reflect the most recent advances in plant-breeding technology. New Plant Breeding Techniques (NPBT) such as gene editing have been applied to address the myriad of challenges in plant breeding, while the use of NPBT as emerging biotechnological tools raises legal and ethical concerns. This study aims to highlight how gene editing is operationalized in the existing literature and examine the critical issues of ethical and legal issues of gene editing for plant breeding. We carried out a systematic literature review (SLR) to provide the current states of ethical and legal discourses surrounding this topic. We also identified critical research priority areas and policy gaps that must be addressed when designing the future governance of gene editing in plant breeding.
Collapse
Affiliation(s)
- Siti Hafsyah Idris
- Faculty of Law, Universiti Teknologi MARA, Jalan Sarjana 1/2, Shah Alam 40450, Selangor, Malaysia
| | - Nurzatil Sharleeza Mat Jalaluddin
- Centre for Research in Biotechnology for Agriculture (CEBAR), Level 3, Research Management and Innovation Complex, Universiti Malaya, Kuala Lumpur 50603, Malaysia.
| | - Lee Wei Chang
- Faculty of Law, Universiti Teknologi MARA, Jalan Sarjana 1/2, Shah Alam 40450, Selangor, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), Level 3, Research Management and Innovation Complex, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Civilisational Dialogue, Level 1, High Impact Research Building, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - 立 纬 曾
- Centre for Civilisational Dialogue, Level 1, High Impact Research Building, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
6
|
Ravikiran KT, Thribhuvan R, Sheoran S, Kumar S, Kushwaha AK, Vineeth TV, Saini M. Tailoring crops with superior product quality through genome editing: an update. PLANTA 2023; 257:86. [PMID: 36949234 DOI: 10.1007/s00425-023-04112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
In this review, using genome editing, the quality trait alterations in important crops have been discussed, along with the challenges encountered to maintain the crop products' quality. The delivery of economic produce with superior quality is as important as high yield since it dictates consumer's acceptance and end use. Improving product quality of various agricultural and horticultural crops is one of the important targets of plant breeders across the globe. Significant achievements have been made in various crops using conventional plant breeding approaches, albeit, at a slower rate. To keep pace with ever-changing consumer tastes and preferences and industry demands, such efforts must be supplemented with biotechnological tools. Fortunately, many of the quality attributes are resultant of well-understood biochemical pathways with characterized genes encoding enzymes at each step. Targeted mutagenesis and transgene transfer have been instrumental in bringing out desired qualitative changes in crops but have suffered from various pitfalls. Genome editing, a technique for methodical and site-specific modification of genes, has revolutionized trait manipulation. With the evolution of versatile and cost effective CRISPR/Cas9 system, genome editing has gained significant traction and is being applied in several crops. The availability of whole genome sequences with the advent of next generation sequencing (NGS) technologies further enhanced the precision of these techniques. CRISPR/Cas9 system has also been utilized for desirable modifications in quality attributes of various crops such as rice, wheat, maize, barley, potato, tomato, etc. The present review summarizes salient findings and achievements of application of genome editing for improving product quality in various crops coupled with pointers for future research endeavors.
Collapse
Affiliation(s)
- K T Ravikiran
- ICAR-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, Uttar Pradesh, India
| | - R Thribhuvan
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, West Bengal, India
| | - Seema Sheoran
- ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, Haryana, India.
| | - Sandeep Kumar
- ICAR-Indian Institute of Natural Resins and Gums, Ranchi, Jharkhand, India
| | - Amar Kant Kushwaha
- ICAR-Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - T V Vineeth
- ICAR-Central Soil Salinity Research Institute, Regional Research Station, Bharuch, Gujarat, India
- Department of Plant Physiology, College of Agriculture, Kerala Agricultural University, Vellanikkara, Thrissur, Kerala, India
| | - Manisha Saini
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
7
|
Hernandes-Lopes J, Yassitepe JEDCT, Koltun A, Pauwels L, da Silva VCH, Dante RA, Gerhardt IR, Arruda P. Genome editing in maize: Toward improving complex traits in a global crop. Genet Mol Biol 2023; 46:e20220217. [PMID: 36880696 PMCID: PMC9990078 DOI: 10.1590/1678-4685-gmb-2022-0217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 12/23/2022] [Indexed: 03/08/2023] Open
Abstract
Recent advances in genome editing have enormously enhanced the effort to develop biotechnology crops for more sustainable food production. CRISPR/Cas, the most versatile genome-editing tool, has shown the potential to create genome modifications that range from gene knockout and gene expression pattern modulations to allele-specific changes in order to design superior genotypes harboring multiple improved agronomic traits. However, a frequent bottleneck is the delivery of CRISPR/Cas to crops that are less amenable to transformation and regeneration. Several technologies have recently been proposed to overcome transformation recalcitrance, including HI-Edit/IMGE and ectopic/transient expression of genes encoding morphogenic regulators. These technologies allow the eroding of the barriers that make crops inaccessible for genome editing. In this review, we discuss the advances in genome editing in crops with a particular focus on the use of technologies to improve complex traits such as water use efficiency, drought stress, and yield in maize.
Collapse
Affiliation(s)
- José Hernandes-Lopes
- Universidade Estadual de Campinas, Genomics for Climate Change Research Center (GCCRC), Campinas, SP, Brazil
- Universidade Estadual de Campinas, Centro de Biologia Molecular e Engenharia Genética, Campinas, SP, Brazil
| | - Juliana Erika de Carvalho Teixeira Yassitepe
- Universidade Estadual de Campinas, Genomics for Climate Change Research Center (GCCRC), Campinas, SP, Brazil
- Universidade Estadual de Campinas, Centro de Biologia Molecular e Engenharia Genética, Campinas, SP, Brazil
- Embrapa Agricultura Digital, Campinas, SP, Brazil
| | - Alessandra Koltun
- Universidade Estadual de Campinas, Genomics for Climate Change Research Center (GCCRC), Campinas, SP, Brazil
- Universidade Estadual de Campinas, Centro de Biologia Molecular e Engenharia Genética, Campinas, SP, Brazil
| | - Laurens Pauwels
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB, Center for Plant Systems Biology, Ghent, Belgium
| | - Viviane Cristina Heinzen da Silva
- Universidade Estadual de Campinas, Genomics for Climate Change Research Center (GCCRC), Campinas, SP, Brazil
- Universidade Estadual de Campinas, Centro de Biologia Molecular e Engenharia Genética, Campinas, SP, Brazil
| | - Ricardo Augusto Dante
- Universidade Estadual de Campinas, Genomics for Climate Change Research Center (GCCRC), Campinas, SP, Brazil
- Universidade Estadual de Campinas, Centro de Biologia Molecular e Engenharia Genética, Campinas, SP, Brazil
- Embrapa Agricultura Digital, Campinas, SP, Brazil
| | - Isabel Rodrigues Gerhardt
- Universidade Estadual de Campinas, Genomics for Climate Change Research Center (GCCRC), Campinas, SP, Brazil
- Universidade Estadual de Campinas, Centro de Biologia Molecular e Engenharia Genética, Campinas, SP, Brazil
- Embrapa Agricultura Digital, Campinas, SP, Brazil
| | - Paulo Arruda
- Universidade Estadual de Campinas, Genomics for Climate Change Research Center (GCCRC), Campinas, SP, Brazil
- Universidade Estadual de Campinas, Centro de Biologia Molecular e Engenharia Genética, Campinas, SP, Brazil
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Genética, Evolução, Microbiologia e Imunologia e Evolução, Campinas, SP, Brazil
| |
Collapse
|
8
|
Ewa WG, Agata T, Milica P, Anna B, Dennis E, Nick V, Godelieve G, Selim C, Naghmeh A, Tomasz T. Public perception of plant gene technologies worldwide in the light of food security. GM CROPS & FOOD 2022; 13:218-241. [PMID: 35996854 PMCID: PMC9415543 DOI: 10.1080/21645698.2022.2111946] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/22/2022] [Accepted: 08/05/2022] [Indexed: 11/20/2022]
Abstract
Achieving global food security is becoming increasingly challenging and many stakeholders around the world are searching for new ways to reach this demanding goal. Here we demonstrate examples of genetically modified and genome edited plants introduced to the market in different world regions. Transgenic crops are regulated based on the characteristics of the product in many countries including the United States and Canada, while the European Union, India, China and others regulate process-based i.e. on how the product was made. We also present the public perception of state-of-the-art plant gene technologies in different regions of the world in the past 20 years. The results of literature analysis show that the public in Europe and North America is more familiar with the notion of genome editing and genetically modified organisms than the public in other world regions.
Collapse
Affiliation(s)
| | - Tyczewska Agata
- Laboratory of Animal Model Organisms, Institute of Biorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | - Beniermann Anna
- Biology Education, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eriksson Dennis
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Department of Biotechnology, INN University, 2318 Hamar, Norway
| | - Vangheluwe Nick
- Euroseeds, 1000 Brussels, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 71), Ghent, Belgium
| | | | - Cetiner Selim
- The Faculty of Arts and Social Sciences, Sabanci University, Turkey
| | - Abiri Naghmeh
- The Faculty of Arts and Social Sciences, Sabanci University, Turkey
| | | |
Collapse
|
9
|
Hamdan MF, Karlson CKS, Teoh EY, Lau SE, Tan BC. Genome Editing for Sustainable Crop Improvement and Mitigation of Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192625. [PMID: 36235491 PMCID: PMC9573444 DOI: 10.3390/plants11192625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 05/05/2023]
Abstract
Climate change poses a serious threat to global agricultural activity and food production. Plant genome editing technologies have been widely used to develop crop varieties with superior qualities or can tolerate adverse environmental conditions. Unlike conventional breeding techniques (e.g., selective breeding and mutation breeding), modern genome editing tools offer more targeted and specific alterations of the plant genome and could significantly speed up the progress of developing crops with desired traits, such as higher yield and/or stronger resilience to the changing environment. In this review, we discuss the current development and future applications of genome editing technologies in mitigating the impacts of biotic and abiotic stresses on agriculture. We focus specifically on the CRISPR/Cas system, which has been the center of attention in the last few years as a revolutionary genome-editing tool in various species. We also conducted a bibliographic analysis on CRISPR-related papers published from 2012 to 2021 (10 years) to identify trends and potential in the CRISPR/Cas-related plant research. In addition, this review article outlines the current shortcomings and challenges of employing genome editing technologies in agriculture with notes on future prospective. We believe combining conventional and more innovative technologies in agriculture would be the key to optimizing crop improvement beyond the limitations of traditional agricultural practices.
Collapse
Affiliation(s)
- Mohd Fadhli Hamdan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Chou Khai Soong Karlson
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ee Yang Teoh
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Su-Ee Lau
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: ; Tel.: +60-3-7967-7982
| |
Collapse
|
10
|
Hamdan MF, Karlson CKS, Teoh EY, Lau SE, Tan BC. Genome Editing for Sustainable Crop Improvement and Mitigation of Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022. [PMID: 36235491 DOI: 10.1007/s44187-022-00009-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Climate change poses a serious threat to global agricultural activity and food production. Plant genome editing technologies have been widely used to develop crop varieties with superior qualities or can tolerate adverse environmental conditions. Unlike conventional breeding techniques (e.g., selective breeding and mutation breeding), modern genome editing tools offer more targeted and specific alterations of the plant genome and could significantly speed up the progress of developing crops with desired traits, such as higher yield and/or stronger resilience to the changing environment. In this review, we discuss the current development and future applications of genome editing technologies in mitigating the impacts of biotic and abiotic stresses on agriculture. We focus specifically on the CRISPR/Cas system, which has been the center of attention in the last few years as a revolutionary genome-editing tool in various species. We also conducted a bibliographic analysis on CRISPR-related papers published from 2012 to 2021 (10 years) to identify trends and potential in the CRISPR/Cas-related plant research. In addition, this review article outlines the current shortcomings and challenges of employing genome editing technologies in agriculture with notes on future prospective. We believe combining conventional and more innovative technologies in agriculture would be the key to optimizing crop improvement beyond the limitations of traditional agricultural practices.
Collapse
Affiliation(s)
- Mohd Fadhli Hamdan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Chou Khai Soong Karlson
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ee Yang Teoh
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Su-Ee Lau
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
11
|
The socio-economic factors affecting the emergence and impacts of new genomic techniques in agriculture: A scoping review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Parsaeimehr A, Ebirim RI, Ozbay G. CRISPR-Cas technology a new era in genomic engineering. BIOTECHNOLOGY REPORTS 2022; 34:e00731. [PMID: 35686011 PMCID: PMC9171425 DOI: 10.1016/j.btre.2022.e00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/01/2022]
Abstract
CRISPR-Cas systems offer a flexible and easy-to-use molecular platform to precisely modify and control organisms' genomes in a variety of fields, from agricultural biotechnology to therapeutics. With CRISPR technology, crop genomes can be precisely edited in a shorter and more efficient approach compared to traditional breeding or classic mutagenesis. CRISPR-Cas system can be used to manage the fermentation process by addressing phage resistance, antimicrobial activity, and genome editing. CRISPR-Cas technology has opened up a new era in gene therapy and other therapeutic fields and given hope to thousands of patients with genetic diseases. Anti-CRISPR molecules are powerful tools for regulating the CRISPR-Cas systems.
The CRISPR-Cas systems have offered a flexible, easy-to-use platform to precisely modify and control the genomes of organisms in various fields, ranging from agricultural biotechnology to therapeutics. This system is extensively used in the study of infectious, progressive, and life-threatening genetic diseases for the improvement of quality and quantity of major crops and in the development of sustainable methods for the generation of biofuels. As CRISPR-Cas technology continues to evolve, it is becoming more controllable and precise with the addition of molecular regulators, which will provide benefits for everyone and save many lives. Studies on the constant growth of CRISPR technology are important due to its rapid development. In this paper, we present the current applications and progress of CRISPR-Cas genome editing systems in several fields of research, we further highlight the applications of anti-CRISPR molecules to regulate CRISPR-Cas gene editing systems, and we discuss ethical considerations in CRISPR-Cas applications.
Collapse
|
13
|
Ali Q, Yu C, Hussain A, Ali M, Ahmar S, Sohail MA, Riaz M, Ashraf MF, Abdalmegeed D, Wang X, Imran M, Manghwar H, Zhou L. Genome Engineering Technology for Durable Disease Resistance: Recent Progress and Future Outlooks for Sustainable Agriculture. FRONTIERS IN PLANT SCIENCE 2022; 13:860281. [PMID: 35371164 PMCID: PMC8968944 DOI: 10.3389/fpls.2022.860281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/22/2022] [Indexed: 05/15/2023]
Abstract
Crop production worldwide is under pressure from multiple factors, including reductions in available arable land and sources of water, along with the emergence of new pathogens and development of resistance in pre-existing pathogens. In addition, the ever-growing world population has increased the demand for food, which is predicted to increase by more than 100% by 2050. To meet these needs, different techniques have been deployed to produce new cultivars with novel heritable mutations. Although traditional breeding continues to play a vital role in crop improvement, it typically involves long and laborious artificial planting over multiple generations. Recently, the application of innovative genome engineering techniques, particularly CRISPR-Cas9-based systems, has opened up new avenues that offer the prospects of sustainable farming in the modern agricultural industry. In addition, the emergence of novel editing systems has enabled the development of transgene-free non-genetically modified plants, which represent a suitable option for improving desired traits in a range of crop plants. To date, a number of disease-resistant crops have been produced using gene-editing tools, which can make a significant contribution to overcoming disease-related problems. Not only does this directly minimize yield losses but also reduces the reliance on pesticide application, thereby enhancing crop productivity that can meet the globally increasing demand for food. In this review, we describe recent progress in genome engineering techniques, particularly CRISPR-Cas9 systems, in development of disease-resistant crop plants. In addition, we describe the role of CRISPR-Cas9-mediated genome editing in sustainable agriculture.
Collapse
Affiliation(s)
- Qurban Ali
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Chenjie Yu
- Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Amjad Hussain
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mohsin Ali
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sunny Ahmar
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Muhammad Aamir Sohail
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Riaz
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Muhammad Furqan Ashraf
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Dyaaaldin Abdalmegeed
- Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Xiukang Wang
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Muhammad Imran
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agriculture University, Guangzhou, China
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
14
|
Transforming the German Food System: How to Make Start-Ups Great! SUSTAINABILITY 2022. [DOI: 10.3390/su14042363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The food system represents a key industry for Europe and Germany in particular. However, it is also the single most significant contributor to climate and environmental change. A food system transformation is necessary to overcome the system’s major and constantly increasing challenges in the upcoming decades. One possible facilitator for this transformation are radical and disruptive innovations that start-ups develop. There are many challenges for start-ups in general and food start-ups in particular. Various support opportunities and resources are crucial to ensure the success of food start-ups. One aim of this study is to identify how the success of start-ups in the food system can be supported and further strengthened by actors in the innovation ecosystem in Germany. There is still room for improvement and collaboration toward a thriving innovation ecosystem. A successful innovation ecosystem is characterised by a well-organised, collaborative, and supportive environment with a vivid exchange between the members in the ecosystem. The interviewees confirmed this, and although the different actors are already cooperating, there is still room for improvement. The most common recommendation for improving cooperation is learning from other countries and bringing the best to Germany.
Collapse
|
15
|
Oluwole OO, Aworunse OS, Aina AI, Oyesola OL, Popoola JO, Oyatomi OA, Abberton MT, Obembe OO. A review of biotechnological approaches towards crop improvement in African yam bean ( Sphenostylis stenocarpa Hochst. Ex A. Rich.). Heliyon 2021; 7:e08481. [PMID: 34901510 PMCID: PMC8642607 DOI: 10.1016/j.heliyon.2021.e08481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/11/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022] Open
Abstract
Globally, climate change is a major factor that contributes significantly to food and nutrition insecurity, limiting crop yield and availability. Although efforts are being made to curb food insecurity, millions of people still suffer from malnutrition. For the United Nations (UN) Sustainable Development Goal of Food Security to be achieved, diverse cropping systems must be developed instead of relying mainly on a few staple crops. Many orphan legumes have untapped potential that can be of significance for developing improved cultivars with enhanced tolerance to changing climatic conditions. One typical example of such an orphan crop is Sphenostylis stenocarpa Hochst. Ex A. Rich. Harms, popularly known as African yam bean (AYB). The crop is an underutilised tropical legume that is climate-resilient and has excellent potential for smallholder agriculture in sub-Saharan Africa (SSA). Studies on AYB have featured morphological characterisation, assessment of genetic diversity using various molecular markers, and the development of tissue culture protocols for rapidly multiplying propagules. However, these have not translated into varietal development, and low yields remain a challenge. The application of suitable biotechnologies to improve AYB is imperative for increased yield, sustainable utilisation and conservation. This review discusses biotechnological strategies with prospective applications for AYB improvement. The potential risks of these strategies are also highlighted.
Collapse
Affiliation(s)
- Olubusayo O. Oluwole
- Department of Biological Sciences, Covenant University, Canaan Land, Ota, Nigeria
- Genetic Resources Centre, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Oluwadurotimi S. Aworunse
- Department of Biological Sciences, Covenant University, Canaan Land, Ota, Nigeria
- UNESCO Chair on Plant Biotechnology, Plant Science Research Cluster, Covenant University, Canaan Land, Ota, Nigeria
| | - Ademola I. Aina
- Department of Crop Protection and Environmental Biology, University of Ibadan, Oyo State, Nigeria
- Genetic Resources Centre, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Olusola L. Oyesola
- Department of Biological Sciences, Covenant University, Canaan Land, Ota, Nigeria
- UNESCO Chair on Plant Biotechnology, Plant Science Research Cluster, Covenant University, Canaan Land, Ota, Nigeria
| | - Jacob O. Popoola
- Department of Biological Sciences, Covenant University, Canaan Land, Ota, Nigeria
- UNESCO Chair on Plant Biotechnology, Plant Science Research Cluster, Covenant University, Canaan Land, Ota, Nigeria
| | - Olaniyi A. Oyatomi
- Genetic Resources Centre, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Michael T. Abberton
- Genetic Resources Centre, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Olawole O. Obembe
- Department of Biological Sciences, Covenant University, Canaan Land, Ota, Nigeria
- UNESCO Chair on Plant Biotechnology, Plant Science Research Cluster, Covenant University, Canaan Land, Ota, Nigeria
| |
Collapse
|
16
|
Borrello M, Cembalo L, Vecchio R. Role of information in consumers' preferences for eco-sustainable genetic improvements in plant breeding. PLoS One 2021; 16:e0255130. [PMID: 34324542 PMCID: PMC8321114 DOI: 10.1371/journal.pone.0255130] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/09/2021] [Indexed: 12/03/2022] Open
Abstract
Consumers' preferences for products derived from genetic improvements and innovations in plant breeding are often conditioned by technophobia and negative public imaginaries. The current study addresses this issue by analyzing consumers' monetary preferences for a win-win innovation (generating gains for both private actors and the community) in the viticulture sector, namely fungus resistant grapes (FRG). The use of these grapes reduces the quantity of chemical inputs applied to vineyards, simultaneously improving firms' economic performance. This study aimed to assess whether consumers prefer wines originating from FRG varieties to conventional wines. In particular, through an experimental online survey involving 627 Italian regular wine drinkers, the study compares individuals' willingness to pay (WTP) for conventional wines with the WTP for two FRG wines produced with two different techniques: horticultural hybridization and genome editing. The study also assesses the potential effect of polarized media coverage on preferences by testing, in a between-subjects experimental design, two diverging (positive/negative) information scenarios, and the core drivers of these preferences. The findings suggest that respondents express a premium price for horticultural FRG wines compared to conventional wines (+9.14%) and a strong discount for genome edited FRG wines (-21.13%). The results also reveal that negative information reduces consumers' WTP for horticultural FRG wines, while positive information increases their WTP for genome edited FRG wines. Last, the study highlights that individuals concerned with food sustainability issues and knowledgeable about wine are more likely to accept both FRG typologies. Overall, the study confirms the crucial role of appropriate information for market acceptance of innovations based on plant genetics to foster the adoption of sustainable pest-reducing practices in wine production.
Collapse
Affiliation(s)
- Massimiliano Borrello
- Department of Agricultural Sciences, University of Naples Federico II, Napoli, Italy
| | - Luigi Cembalo
- Department of Agricultural Sciences, University of Naples Federico II, Napoli, Italy
| | - Riccardo Vecchio
- Department of Agricultural Sciences, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
17
|
Data challenges for future plant gene editing: expert opinion. Transgenic Res 2021; 30:765-780. [PMID: 34106390 PMCID: PMC8580900 DOI: 10.1007/s11248-021-00264-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/31/2021] [Indexed: 12/04/2022]
Abstract
Agricultural data in its multiple forms are ubiquitous. With progress in crop and input monitoring systems and price reductions over the past decade, data are now being captured at an unprecedented rate. Once compiled, organized and analyzed, these data are capable of providing valuable insights into much of the agri-food supply chain. While much of the focus is on precision farming, agricultural data applications coupled with gene editing tools hold the potential to enhance crop performance and global food security. Yet, digitization of agriculture is a double-edged sword as it comes with inherent security and privacy quandaries. Infrastructure, policies, and practices to better harness the value of data are still lacking. This article reports expert opinions about the potential challenges regarding the use of data relevant to the development and approval of new crop traits as well as mechanisms employed to manage and protect data. While data could be of great value, issues of intellectual property and accessibility surround many of its forms. The key finding of this research is that surveyed experts optimistically report that by 2030, the synergy of computing power and genome editing could have profound effects on the global agri-food system, but that the European Union may not participate fully in this transformation.
Collapse
|
18
|
Lassoued R, Phillips PW, Macall DM, Hesseln H, Smyth SJ. Expert opinions on the regulation of plant genome editing. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1104-1109. [PMID: 33834596 PMCID: PMC8196660 DOI: 10.1111/pbi.13597] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/09/2021] [Accepted: 04/03/2021] [Indexed: 05/06/2023]
Abstract
Global food security is largely affected by factors such as environmental (e.g. drought, flooding), social (e.g. gender inequality), socio-economic (e.g. overpopulation, poverty) and health (e.g. diseases). In response, extensive public and private investment in agricultural research has focused on increasing yields of staple food crops and developing new traits for crop improvement. New breeding techniques pioneered by genome editing have gained substantial traction within the last decade, revolutionizing the plant breeding field. Both industry and academia have been investing and working to optimize the potentials of gene editing and to bring derived crops to market. The spectrum of cutting-edge genome editing tools along with their technical differences has led to a growing international regulatory, ethical and societal divide. This article is a summary of a multi-year survey project exploring how experts view the risks of new breeding techniques, including genome editing and their related regulatory requirements. Surveyed experts opine that emerging biotechnologies offer great promise to address social and climate challenges, yet they admit that the market growth of genome-edited crops will be limited by an ambiguous regulatory environment shaped by societal uncertainty.
Collapse
Affiliation(s)
- Rim Lassoued
- Department of Agricultural and Resource EconomicsUniversity of SaskatchewanSaskatoonSKCanada
| | - Peter W.B. Phillips
- The Johnson Shoyama Graduate School of Public PolicyUniversity of SaskatchewanSaskatoonSKCanada
| | | | - Hayley Hesseln
- Department of Agricultural and Resource EconomicsUniversity of SaskatchewanSaskatoonSKCanada
| | - Stuart J. Smyth
- Department of Agricultural and Resource EconomicsUniversity of SaskatchewanSaskatoonSKCanada
| |
Collapse
|
19
|
Miladinovic D, Antunes D, Yildirim K, Bakhsh A, Cvejić S, Kondić-Špika A, Marjanovic Jeromela A, Opsahl-Sorteberg HG, Zambounis A, Hilioti Z. Targeted plant improvement through genome editing: from laboratory to field. PLANT CELL REPORTS 2021; 40:935-951. [PMID: 33475781 PMCID: PMC8184711 DOI: 10.1007/s00299-020-02655-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/20/2020] [Indexed: 05/19/2023]
Abstract
This review illustrates how far we have come since the emergence of GE technologies and how they could be applied to obtain superior and sustainable crop production. The main challenges of today's agriculture are maintaining and raising productivity, reducing its negative impact on the environment, and adapting to climate change. Efficient plant breeding can generate elite varieties that will rapidly replace obsolete ones and address ongoing challenges in an efficient and sustainable manner. Site-specific genome editing in plants is a rapidly evolving field with tangible results. The technology is equipped with a powerful toolbox of molecular scissors to cut DNA at a pre-determined site with different efficiencies for designing an approach that best suits the objectives of each plant breeding strategy. Genome editing (GE) not only revolutionizes plant biology, but provides the means to solve challenges related to plant architecture, food security, nutrient content, adaptation to the environment, resistance to diseases and production of plant-based materials. This review illustrates how far we have come since the emergence of these technologies and how these technologies could be applied to obtain superior, safe and sustainable crop production. Synergies of genome editing with other technological platforms that are gaining significance in plants lead to an exciting new, post-genomic era for plant research and production. In previous months, we have seen what global changes might arise from one new virus, reminding us of what drastic effects such events could have on food production. This demonstrates how important science, technology, and tools are to meet the current time and the future. Plant GE can make a real difference to future sustainable food production to the benefit of both mankind and our environment.
Collapse
Affiliation(s)
| | | | - Kubilay Yildirim
- Department of Molecular Biology and Genetics, Faculty of Sciences, Ondokuzmayıs University, Samsun, Turkey
| | - Allah Bakhsh
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Sandra Cvejić
- Institute of Field and Vegetable Crops, Novi Sad, Serbia
| | | | | | | | - Antonios Zambounis
- Department of Deciduous Fruit Trees, Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER, Naoussa, Greece
| | - Zoe Hilioti
- Institute of Applied Biosciences, CERTH, Thessaloniki, Greece.
| |
Collapse
|
20
|
Yu K, Liu Z, Gui H, Geng L, Wei J, Liang D, Lv J, Xu J, Chen X. Highly efficient generation of bacterial leaf blight-resistant and transgene-free rice using a genome editing and multiplexed selection system. BMC PLANT BIOLOGY 2021; 21:197. [PMID: 33894749 PMCID: PMC8066475 DOI: 10.1186/s12870-021-02979-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/12/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Rice leaf blight, which is a devastating disease worldwide, is caused by the bacterium Xanthomonas oryzae pv. oryzae (Xoo). The upregulated by transcription activator-like 1 (UPT) effector box in the promoter region of the rice Xa13 gene plays a key role in Xoo pathogenicity. Mutation of a key bacterial protein-binding site in the UPT box of Xa13 to abolish PXO99-induced Xa13 expression is a way to improve rice resistance to bacteria. Highly efficient generation and selection of transgene-free edited plants are helpful to shorten and simplify the gene editing-based breeding process. Selective elimination of transgenic pollen of T0 plants can enrich the proportion of T1 transgene-free offspring, and expression of a color marker gene in seeds makes the selection of T2 plants very convenient and efficient. In this study, a genome editing and multiplexed selection system was used to generate bacterial leaf blight-resistant and transgene-free rice plants. RESULTS We introduced site-specific mutations into the UPT box using CRISPR/Cas12a technology to hamper with transcription-activator-like effector (TAL) protein binding and gene activation and generated genome-edited rice with improved bacterial blight resistance. Transgenic pollen of T0 plants was eliminated by pollen-specific expression of the α-amylase gene Zmaa1, and the proportion of transgene-free plants increased from 25 to 50% among single T-DNA insertion events in the T1 generation. Transgenic seeds were visually identified and discarded by specific aleuronic expression of DsRed, which reduced the cost by 50% and led to up to 98.64% accuracy for the selection of transgene-free edited plants. CONCLUSION We demonstrated that core nucleotide deletion in the UPT box of the Xa13 promoter conferred resistance to rice blight, and selection of transgene-free plants was boosted by introducing multiplexed selection. The combination of genome editing and transgene-free selection is an efficient strategy to accelerate functional genomic research and plant breeding.
Collapse
Affiliation(s)
- Kun Yu
- Syngenta Biotechnology (China) Co., Ltd, No.25, Life Science Park Road, Beijing, 102206, China
| | - Zhiqiang Liu
- Syngenta Biotechnology (China) Co., Ltd, No.25, Life Science Park Road, Beijing, 102206, China
| | - Huaping Gui
- Syngenta Biotechnology (China) Co., Ltd, No.25, Life Science Park Road, Beijing, 102206, China
| | - Lizhao Geng
- Syngenta Biotechnology (China) Co., Ltd, No.25, Life Science Park Road, Beijing, 102206, China
| | - Juan Wei
- Syngenta Biotechnology (China) Co., Ltd, No.25, Life Science Park Road, Beijing, 102206, China
| | - Dawei Liang
- Syngenta Biotechnology (China) Co., Ltd, No.25, Life Science Park Road, Beijing, 102206, China
| | - Jian Lv
- Syngenta Biotechnology (China) Co., Ltd, No.25, Life Science Park Road, Beijing, 102206, China
| | - Jianping Xu
- Syngenta Biotechnology (China) Co., Ltd, No.25, Life Science Park Road, Beijing, 102206, China
| | - Xi Chen
- Syngenta Biotechnology (China) Co., Ltd, No.25, Life Science Park Road, Beijing, 102206, China.
| |
Collapse
|
21
|
Ben-Amar A, Mliki A. Timely gene detection assay and reliable screening of genetically engineered plants using an improved direct PCR-based technology. Transgenic Res 2021; 30:263-274. [PMID: 33880718 DOI: 10.1007/s11248-021-00250-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/28/2021] [Indexed: 10/21/2022]
Abstract
Engineered plants have been widely produced for fundamental and practical use. Several methods have been developed for genetically modified crop detection and quantification; however; they still laborious and expensive. Efforts are needed to set-up diagnosis-oriented techniques as alternatives to overcome DNA extraction which remains a tedious and time-consuming procedure. Here, we established a standard direct PCR workflow using a regular Taq polymerase without prior DNA purification over a wide range of plant species. Only a small amount of fresh tissue allowed direct amplification of target gene sequences. Evaluation of accuracy, sensitivity, and reproducibility of direct PCR assay was investigated for proof-of-concept, and subsequently applied to gene detection assays and rapid transgenic revealing. The newly established method achieved full success and has amplified constitutive housekeeping genes from several plant specimens in a reproducible manner with high-quality sequencing profiles. In our case, the screening of transgenic plants confirmed that both the gfp-ER reporter gene and the npt II selectable marker were integrated into the plant genome. This direct PCR approach provides a powerful tool for large-scale PCR-based gene detection making DNA purification irrelevant. It could be easily implemented for downstream applications in the field of genetic fingerprinting, plant biotechnology, and functional genomics.
Collapse
Affiliation(s)
- Anis Ben-Amar
- Department of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, Science and Technology Park, P.O. Box. 901, 2050, Hammam-Lif, Tunisia.
| | - Ahmed Mliki
- Department of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, Science and Technology Park, P.O. Box. 901, 2050, Hammam-Lif, Tunisia
| |
Collapse
|
22
|
|
23
|
Hussain A, Ding X, Alariqi M, Manghwar H, Hui F, Li Y, Cheng J, Wu C, Cao J, Jin S. Herbicide Resistance: Another Hot Agronomic Trait for Plant Genome Editing. PLANTS (BASEL, SWITZERLAND) 2021; 10:621. [PMID: 33805182 PMCID: PMC8064318 DOI: 10.3390/plants10040621] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
Weeds have continually interrupted crop plants since their domestication, leading to a greater yield loss compared to diseases and pests that necessitated the practice of weed control measures. The control of weeds is crucial to ensuring the availability of sufficient food for a rapidly increasing human population. Chemical weed control (herbicides) along with integrated weed management (IWM) practices can be the most effective and reliable method of weed management programs. The application of herbicides for weed control practices calls for the urgency to develop herbicide-resistant (HR) crops. Recently, genome editing tools, especially CRISPR-Cas9, have brought innovation in genome editing technology that opens up new possibilities to provide sustainable farming in modern agricultural industry. To date, several non-genetically modified (GM) HR crops have been developed through genome editing that can present a leading role to combat weed problems along with increasing crop productivity to meet increasing food demand around the world. Here, we present the chemical method of weed control, approaches for herbicide resistance development, and possible advantages and limitations of genome editing in herbicide resistance. We also discuss how genome editing would be effective in combating intensive weed problems and what would be the impact of genome-edited HR crops in agriculture.
Collapse
Affiliation(s)
- Amjad Hussain
- Tobacco Research Institute of Hubei Province, Wuhan 430030, China; (A.H.); (Y.L.); (J.C.); (C.W.)
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (M.A.); (F.H.)
| | - Xiao Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (M.A.); (F.H.)
| | - Muna Alariqi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (M.A.); (F.H.)
| | - Hakim Manghwar
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
| | - Fengjiao Hui
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (M.A.); (F.H.)
| | - Yapei Li
- Tobacco Research Institute of Hubei Province, Wuhan 430030, China; (A.H.); (Y.L.); (J.C.); (C.W.)
| | - Junqi Cheng
- Tobacco Research Institute of Hubei Province, Wuhan 430030, China; (A.H.); (Y.L.); (J.C.); (C.W.)
| | - Chenglin Wu
- Tobacco Research Institute of Hubei Province, Wuhan 430030, China; (A.H.); (Y.L.); (J.C.); (C.W.)
| | - Jinlin Cao
- Tobacco Research Institute of Hubei Province, Wuhan 430030, China; (A.H.); (Y.L.); (J.C.); (C.W.)
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (M.A.); (F.H.)
| |
Collapse
|
24
|
Genome engineering for crop improvement and future agriculture. Cell 2021; 184:1621-1635. [PMID: 33581057 DOI: 10.1016/j.cell.2021.01.005] [Citation(s) in RCA: 334] [Impact Index Per Article: 111.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
Feeding the ever-growing population is a major challenge, especially in light of rapidly changing climate conditions. Genome editing is set to revolutionize plant breeding and could help secure the global food supply. Here, I review the development and application of genome editing tools in plants while highlighting newly developed techniques. I describe new plant breeding strategies based on genome editing and discuss their impact on crop production, with an emphasis on recent advancements in genome editing-based plant improvements that could not be achieved by conventional breeding. I also discuss challenges facing genome editing that must be overcome before realizing the full potential of this technology toward future crops and food production.
Collapse
|
25
|
Abd-Elsalam KA, Lim KT. Can CRISPRized crops save the global food supply? CRISPR AND RNAI SYSTEMS 2021:1-14. [DOI: 10.1016/b978-0-12-821910-2.00006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
26
|
Bhattacharya A, Parkhi V, Char B. Genome editing for crop improvement: A perspective from India. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY. PLANT : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 2021; 57:565-573. [PMID: 34075289 PMCID: PMC8152710 DOI: 10.1007/s11627-021-10184-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/12/2021] [Indexed: 05/11/2023]
Abstract
Human population is expected to reach to about 10 billion by 2050. Climate change affects crop production, thus posing food security challenges. Conventional breeding alone will not bridge the gap between current level of crop production and expected levels in the decades to come in the food production systems. Rate of genetic gain with time has remained narrow considerably. Biotechnology-enabled crops developed through genome editing will have a part to play in improving crop productivity, meeting food, nutrition security besides catering to regional preferences and fetching valuable foreign exchange. Political, social, economical proposition, scientific will, retailer and consumer acceptance are a must for genome editing (GE) to succeed and add value in the food value chain. This will also help to make agriculture a lucrative profession and attract youth. Therefore, the present review looks into existing regulations governing crops developed using biotechnology in India, institutes involved in genome editing, prospects of new tools developed in this sphere such as DNA-free editing systems, nanotechnology, their applicability in crop improvement efforts, social and future prospects taking cue from recent global developments. This will make GE more appealing to stakeholders and defray any safety concerns.
Collapse
Affiliation(s)
- Anjanabha Bhattacharya
- Mahyco Research Centre, Mahyco Private Limited, Jalna-Aurangabad Road, Dawalwadi, Jalna, Maharashtra 431203 India
| | - Vilas Parkhi
- Mahyco Research Centre, Mahyco Private Limited, Jalna-Aurangabad Road, Dawalwadi, Jalna, Maharashtra 431203 India
| | - Bharat Char
- Mahyco Research Centre, Mahyco Private Limited, Jalna-Aurangabad Road, Dawalwadi, Jalna, Maharashtra 431203 India
| |
Collapse
|
27
|
Macall DM, Trabanino CR, Soto AH, Smyth SJ. Genetically modified maize impacts in Honduras: production and social issues. Transgenic Res 2020; 29:575-586. [PMID: 33175304 DOI: 10.1007/s11248-020-00221-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/27/2020] [Indexed: 11/29/2022]
Abstract
Maize production is one of the most important activities for the Honduran economy, both in terms of area cultivated and food security provided. This article reports the results of a survey undertaken to gauge knowledge, perceptions, opinions, and attitudes of Honduran farmers towards genetically modified (GM) maize. Data were collected from 32 maize producers in 2018-19, of both conventional and GM, in five different departments (regions) of Honduras. Results show that over 75% of interviewed farmers have significant knowledge of basic biotechnology concepts and GM maize. Overall, producers have a positive opinion about GM maize because yields are higher than conventional maize, and adopting farmers have higher incomes. A significant finding was the reduction in the number of necessary pesticide applications, 84% of interviewees who used GM maize did not apply any pesticides. Farmers indicate the two main reasons for using GM maize are higher incomes (48%) and ease of use of the crop (33%). Overall, GM maize impacts in Honduras could be greater if the federal government took on a more proactive role in knowledge dissemination and facilitation of credit access.
Collapse
Affiliation(s)
- Diego Maximiliano Macall
- Department of Agricultural and Resource Economics, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada.
| | | | | | - Stuart J Smyth
- Department of Agricultural and Resource Economics, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| |
Collapse
|
28
|
Shin J, Oh JW. Development of CRISPR/Cas9 system for targeted DNA modifications and recent improvements in modification efficiency and specificity. BMB Rep 2020. [PMID: 32580834 PMCID: PMC7396914 DOI: 10.5483/bmbrep.2020.53.7.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The targeted nuclease clustered, regularly interspaced short palindromic repeats/CRISPR-associated proteins (CRISPR/Cas) system has recently emerged as a prominent gene manipulation method. Because of its ease in programming targeted DNA/protein binding through RNA in a vast range of organisms, this prokaryotic defense system is a versatile tool with many applications in the research field as well as high potential in agricultural and clinical improvements. This review will present a brief history that led to its discovery and adaptation. We also present some of its restrictions, and modifications that have been performed to overcome such restrictions, focusing specifically on the most common CRISPR/Cas9 mediated non-homologous end joint repair.
Collapse
Affiliation(s)
- Juhyun Shin
- Department of Surgery, Chungnam National University College of Medicine, Daejeon, Korea
| | - Jae-Wook Oh
- Department of Surgery, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
29
|
Lassoued R, Macall DM, Smyth SJ, Phillips PW, Hesseln H. How should we regulate products of new breeding techniques? Opinion of surveyed experts in plant biotechnology. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 26:e00460. [PMID: 32617264 PMCID: PMC7322807 DOI: 10.1016/j.btre.2020.e00460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 01/15/2023]
Abstract
The adoption of genome editing depends among others, on a clear and navigable regulatory framework that renders consistent decisions. Some countries like the United States decided to deregulate specific transgene-free genome edited products that could be created through traditional breeding and are not considered to be plant pests, while others are still challenged to fit emerging technologies in their regulatory system. Here we poll international experts in plant biotechnology on what approach should nations agree upon to accommodate current and future new breeding technologies and derived products. A key finding is product-based models or dual-product/process systems are viewed as potential appropriate frameworks to regulate outcomes of genome editing. As regulation of novel products of biotechnology is expected to impact research and trade, we test the impact of experts' worldviews on these issues. Results show that region influences worldviews of trade but not of agricultural innovation. In contrast, there was no effect of experts' worldviews on how products of novel biotechnologies should be regulated.
Collapse
Affiliation(s)
- Rim Lassoued
- Department of Agricultural and Resource Economics, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Diego Maximiliano Macall
- Department of Agricultural and Resource Economics, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Stuart J. Smyth
- Department of Agricultural and Resource Economics, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Peter W.B. Phillips
- Johnson Shoyama Graduate School of Public Policy, University of Saskatchewan, 101 Diefenbaker Place, Saskatoon, SK, S7N 5B8, Canada
| | - Hayley Hesseln
- Department of Agricultural and Resource Economics, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| |
Collapse
|
30
|
Menary J, Hobbs M, Mesquita de Albuquerque S, Pacho A, Drake PMW, Prendiville A, Ma JKC, Fuller SS. Shotguns vs Lasers: Identifying barriers and facilitators to scaling-up plant molecular farming for high-value health products. PLoS One 2020; 15:e0229952. [PMID: 32196508 PMCID: PMC7083274 DOI: 10.1371/journal.pone.0229952] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/18/2020] [Indexed: 01/03/2023] Open
Abstract
Plant molecular farming (PMF) is a convenient and cost-effective way to produce high-value recombinant proteins that can be used in the production of a range of health products, from pharmaceutical therapeutics to cosmetic products. New plant breeding techniques (NPBTs) provide a means to enhance PMF systems more quickly and with greater precision than ever before. However, the feasibility, regulatory standing and social acceptability of both PMF and NPBTs are in question. This paper explores the perceptions of key stakeholders on two European Union (EU) Horizon 2020 programmes-Pharma-Factory and Newcotiana-towards the barriers and facilitators of PMF and NPBTs in Europe. One-on-one qualitative interviews were undertaken with N = 20 individuals involved in one or both of the two projects at 16 institutions in seven countries (Belgium, France, Germany, Italy, Israel, Spain and the UK). The findings indicate that the current EU regulatory environment and the perception of the public towards biotechnology are seen as the main barriers to scaling-up PMF and NPBTs. Competition from existing systems and the lack of plant-specific regulations likewise present challenges for PMF developing beyond its current niche. However, respondents felt that the communication of the benefits and purpose of NPBT PMF could provide a platform for improving the social acceptance of genetic modification. The importance of the media in this process was highlighted. This article also uses the multi-level perspective to explore the ways in which NPBTs are being legitimated by interested parties and the systemic factors that have shaped and are continuing to shape the development of PMF in Europe.
Collapse
Affiliation(s)
- Jonathan Menary
- Institute for Infection and Immunity, St George’s University of London, Tooting, London, United Kingdom
| | - Matthew Hobbs
- Institute for Infection and Immunity, St George’s University of London, Tooting, London, United Kingdom
| | | | - Agata Pacho
- Institute for Infection and Immunity, St George’s University of London, Tooting, London, United Kingdom
| | - Pascal M. W. Drake
- Institute for Infection and Immunity, St George’s University of London, Tooting, London, United Kingdom
| | - Alison Prendiville
- London College of Communication, University of the Arts, London, United Kingdom
| | - Julian K-C. Ma
- Institute for Infection and Immunity, St George’s University of London, Tooting, London, United Kingdom
| | - Sebastian S. Fuller
- Institute for Infection and Immunity, St George’s University of London, Tooting, London, United Kingdom
| |
Collapse
|
31
|
Socioeconomic Impact of Genome Editing on Agricultural Value Chains: The Case of Fungal-Resistant and Coeliac-Safe Wheat. SUSTAINABILITY 2019. [DOI: 10.3390/su11226421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genome editing (GE) is gaining increasing importance in plant breeding, since it provides opportunities to develop improved crops with high precision and speed. However, little is known about the socioeconomic impact of genome editing on agricultural value chains. This qualitative study analyzes how genome-edited crops could affect agriculture value chains. Based on the hypothetical case of producing and processing fungal-resistant and coeliac-safe wheat in Germany, we conducted semi-structured, in-depth interviews with associations and companies operating in the value chains of wheat. A value chain analysis and qualitative content analysis were combined to assess the costs and benefits of the crops studied along the value chains of wheat. The results show that the use of fungal-resistant and coeliac-safe wheat can provide benefits at each step of the value chains. Fungal-resistant wheat benefits actors by reducing the problems and costs resulting from fungal-diseases and mycotoxins. Coeliac-safe wheat benefits actors by producing high value-added products, which can be safely consumed by patients suffering from coeliac disease. However, the results also show that low acceptance of GE by society and food retailers poses a significant barrier for the use of genome-edited crops in agricultural value chains.
Collapse
|
32
|
Risk and safety considerations of genome edited crops: Expert opinion. CURRENT RESEARCH IN BIOTECHNOLOGY 2019. [DOI: 10.1016/j.crbiot.2019.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
33
|
Lassoued R, Phillips PWB, Smyth SJ, Hesseln H. Estimating the cost of regulating genome edited crops: expert judgment and overconfidence. GM CROPS & FOOD 2019; 10:44-62. [PMID: 31070105 DOI: 10.1080/21645698.2019.1612689] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Experts are often called on to inform decision makers with subjective estimates of uncertain events. Their judgment serves as the basis for policy-related decision-making. This paper analyzes survey results used to collect experts' opinions of the likely cost to bring genome edited crops to market. We also examine the effect of expertise (scientific experts versus social scientists in plant biotechnology) and possible knowledge mis-calibration, both in terms of overconfidence (i.e., when subjective knowledge is inflated) and under-confidence (i.e., when subjective knowledge is deflated), on the estimation of cost involved in the development and commercial release of genome edited crops. We found that the expected costs of genome edited crops are case specific and depend on whether crops will likely be regulated as genetically modified or accepted as conventional varieties and not subject to any regulatory oversight by federal regulators. While cost evaluation of genome edited crops did not vary among scientific and social experts, it did vary among domains of knowledge. Hence, expert's performance can be described as task-specific in the context of this study.
Collapse
Affiliation(s)
- Rim Lassoued
- a Department of Agricultural and Resource Economics , University of Saskatchewan , Saskatoon , Canada
| | - Peter W B Phillips
- b The Johnson Shoyama Graduate School of Public Policy , University of Saskatchewan , Saskatoon , Canada
| | - Stuart J Smyth
- a Department of Agricultural and Resource Economics , University of Saskatchewan , Saskatoon , Canada
| | - Hayley Hesseln
- a Department of Agricultural and Resource Economics , University of Saskatchewan , Saskatoon , Canada
| |
Collapse
|