1
|
Uchino K, Waizumi R, Sumitani M, Sakai H, Yamada N, Kojima K, Yonemura N, Tatematsu KI, Iizuka T, Sezutsu H, Tamura T. Egg Cooling After Oviposition Extends the Permissive Period for Microinjection-Mediated Genome Modification in Bombyx mori. Int J Mol Sci 2024; 25:12642. [PMID: 39684354 DOI: 10.3390/ijms252312642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
In general, transgenesis efficiency is largely dependent on the developmental status of eggs for microinjection. We investigated whether the relationship between transgenesis efficiency and cooling eggs in silkworms, Bombyx mori, affects the transgenesis frequencies. First, we performed a microinjection using eggs of different developmental statuses at 25 °C. As a result, the use of eggs at 4 h after egg-laying (hAEL) demonstrated nearly five times greater efficiency in frequency compared to 8 hAEL but no transgenesis was found at 12 hAEL. Second, we examined the use of eggs stored for 5 or 24 h at 10 °C. We found that transgenic silkworms were produced not only 5 hAEL but also 24 hAEL. Finally, in the BmBLOS2 gene knock-out experiment, eggs stored at 10 °C demonstrated knock-out phenotypes even 48 hAEL at the time of injection (G0). These results demonstrate that an egg cooling treatment enables drastically enhanced rates of efficiency for insect genome modification. Our results could be useful in other insects, especially species with an extremely short syncytial preblastodermal stage.
Collapse
Affiliation(s)
- Keiro Uchino
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Ibaraki, Japan
| | - Ryusei Waizumi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Ibaraki, Japan
| | - Megumi Sumitani
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Ibaraki, Japan
| | - Hiroki Sakai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Ibaraki, Japan
| | - Nobuto Yamada
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Ibaraki, Japan
| | - Katsura Kojima
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Ibaraki, Japan
| | - Naoyuki Yonemura
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Ibaraki, Japan
| | - Ken-Ichiro Tatematsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Ibaraki, Japan
| | - Tetsuya Iizuka
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Ibaraki, Japan
| | - Hideki Sezutsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Ibaraki, Japan
| | - Toshiki Tamura
- Independent Researcher, Tsukuba 300-1207, Ibaraki, Japan
| |
Collapse
|
2
|
Kocsisova Z, Coneva V. Strategies for delivery of CRISPR/Cas-mediated genome editing to obtain edited plants directly without transgene integration. Front Genome Ed 2023; 5:1209586. [PMID: 37545761 PMCID: PMC10398581 DOI: 10.3389/fgeed.2023.1209586] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
Increased understanding of plant genetics and the development of powerful and easier-to-use gene editing tools over the past century have revolutionized humankind's ability to deliver precise genotypes in crops. Plant transformation techniques are well developed for making transgenic varieties in certain crops and model organisms, yet reagent delivery and plant regeneration remain key bottlenecks to applying the technology of gene editing to most crops. Typical plant transformation protocols to produce transgenic, genetically modified (GM) varieties rely on transgenes, chemical selection, and tissue culture. Typical protocols to make gene edited (GE) varieties also use transgenes, even though these may be undesirable in the final crop product. In some crops, the transgenes are routinely segregated away during meiosis by performing crosses, and thus only a minor concern. In other crops, particularly those propagated vegetatively, complex hybrids, or crops with long generation times, such crosses are impractical or impossible. This review highlights diverse strategies to deliver CRISPR/Cas gene editing reagents to regenerable plant cells and to recover edited plants without unwanted integration of transgenes. Some examples include delivering DNA-free gene editing reagents such as ribonucleoproteins or mRNA, relying on reagent expression from non-integrated DNA, using novel delivery mechanisms such as viruses or nanoparticles, using unconventional selection methods to avoid integration of transgenes, and/or avoiding tissue culture altogether. These methods are advancing rapidly and already enabling crop scientists to make use of the precision of CRISPR gene editing tools.
Collapse
|
3
|
Brower-Toland B, Shyu C, Vega-Sanchez ME, Slewinski TL. Pedigree or identity? How genome editing can fundamentally change the path for crop development. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2794-2798. [PMID: 36738269 PMCID: PMC10134896 DOI: 10.1093/jxb/erad033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/24/2023] [Indexed: 06/06/2023]
|
4
|
The Jujube TCP Transcription Factor ZjTCP16 Regulates Plant Growth and Cell Size by Affecting the Expression of Genes Involved in Plant Morphogenesis. FORESTS 2022. [DOI: 10.3390/f13050723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Jujube production is threatened by jujube witches’ broom (JWB) disease, which is caused by JWB phytoplasma. The jujube TCP transcription factor (TF) ZjTCP16 may be involved in the interaction of jujube plants with JWB phytoplasma. In this study, qRT-PCR proved that the expression pattern of ZjTCP16 was altered by JWB phytoplasma. The gene functions of ZjTCP16 were analyzed by its overexpression in Arabidopsis and jujube, as well as knock-down in. The overexpression of ZjTCP16 in Arabidopsis and jujube resulted in dwarfism and small leaves, while the zjtcp16 CRISPR mutants were higher than the WT. Microscopic observation of paraffin sections of jujube stems showed that ZjTCP16 affected the size of cells. The interactions of ZjTCP16 with ZjAS2 and ZjLOB in both the cytoplasm and nucleus were demonstrated by yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays. Yeast one-hybrid (Y1H) assays and qRT-PCR further confirmed that ZjTCP16 affected the expression of genes involved in leaf morphogenesis and cell proliferation (ZjAS1, ZjKNAT1, ZjKNAT2 and ZjKNAT6) at the mRNA level through the ZjAS2 and ZjLOB pathways. In conclusion, ZjTCP16 regulates plant growth and cell size by altering the expression pattern of morphogenesis-related genes in jujube.
Collapse
|
5
|
Preface: Genome editing in plants. Transgenic Res 2021; 30:317-320. [PMID: 34313953 DOI: 10.1007/s11248-021-00268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 10/20/2022]
|
6
|
Genome editing for resistance against plant pests and pathogens. Transgenic Res 2021; 30:427-459. [PMID: 34143358 DOI: 10.1007/s11248-021-00262-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
The conventional breeding of crops struggles to keep up with increasing food needs and ever-adapting pests and pathogens. Global climate changes have imposed another layer of complexity to biological systems, increasing the challenge to obtain improved crop cultivars. These dictate the development and application of novel technologies, like genome editing (GE), that assist targeted and fast breeding programs in crops, with enhanced resistance to pests and pathogens. GE does not require crossings, hence avoiding the introduction of undesirable traits through linkage in elite varieties, speeding up the whole breeding process. Additionally, GE technologies can improve plant protection by directly targeting plant susceptibility (S) genes or virulence factors of pests and pathogens, either through the direct edition of the pest genome or by adding the GE machinery to the plant genome or to microorganisms functioning as biocontrol agents (BCAs). Over the years, GE technology has been continuously evolving and more so with the development of CRISPR/Cas. Here we review the latest advancements of GE to improve plant protection, focusing on CRISPR/Cas-based genome edition of crops and pests and pathogens. We discuss how other technologies, such as host-induced gene silencing (HIGS) and the use of BCAs could benefit from CRISPR/Cas to accelerate the development of green strategies to promote a sustainable agriculture in the future.
Collapse
|