1
|
Kabeta T, Tolosa T, Duchateau L, Van Immerseel F, Antonissen G. Prevalence and serotype of poultry salmonellosis in Africa: a systematic review and meta-analysis. Avian Pathol 2024; 53:325-349. [PMID: 38639048 DOI: 10.1080/03079457.2024.2344549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/26/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
Salmonellosis represents a significant economic and public health concern for the poultry industry in Africa, leading to substantial economic losses due to mortality, reduced productivity, and food safety problems. However, comprehensive information on the burden of poultry salmonellosis at the continental level is scarce. To address this gap, a systematic review and meta-analysis were conducted to consolidate information on the prevalence and circulating serotypes of poultry salmonellosis in African countries. This involved the selection and review of 130 articles published between 1984 and 2021. A detailed systematic review protocol was structured according to Cochrane STROBE and PRISMA statement guideline. From the 130 selected articles from 23 different African countries, the overall pooled prevalence estimate (PPE) of poultry salmonellosis in Africa was found to be 14.4% (95% CI = 0.145-0.151). Cameroon reported the highest PPE at 71.9%. The PPE was notably high in meat and meat products at 23%. The number of research papers reporting poultry salmonellosis in Africa has shown a threefold increase from 1984 to 2021. Salmonella Enteritidis and Typhimurium were the two most prevalent serotypes reported in 18 African countries. Besides, Salmonella Kentucky, Virchow, Gallinarum, and Pullorum were also widely reported. Western Africa had the highest diversity of reported Salmonella serotypes (141), in contrast to southern Africa, which reported only 27 different serotypes. In conclusion, poultry salmonellosis is highly prevalent across Africa, with a variety of known serotypes circulating throughout the continent. Consequently, it is crucial to implement strategic plans for the prevention and control of Salmonella in Africa.RESEARCH HIGHLIGHTS The pooled sample prevalence of poultry salmonellosis in Africa is high (14.4%).The highest PPE was recorded in meat and meat products.Salmonella serotypes of zoonotic importance were found in all sample types.Salmonella Enteritidis and Typhimurium are common serotypes spreading in Africa.
Collapse
Affiliation(s)
- Tadele Kabeta
- School of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
- Faculty of Veterinary Medicine, Department of Pathobiology, Pharmacology, and Zoological Medicine, Ghent University, Merelbeke, Belgium
| | - Tadele Tolosa
- School of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - Luc Duchateau
- Faculty of Veterinary Medicine, Biometrics Research Group, Ghent University, Merelbeke, Belgium
| | - Filip Van Immerseel
- Faculty of Veterinary Medicine, Department of Pathobiology, Pharmacology, and Zoological Medicine, Ghent University, Merelbeke, Belgium
| | - Gunther Antonissen
- Faculty of Veterinary Medicine, Department of Pathobiology, Pharmacology, and Zoological Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
2
|
Tadesse B, Ali DA. Prevalence and antimicrobial resistance of salmonellae isolated from eggs of local chicken in selected towns of Ethiopia. Vet Med Sci 2024; 10:e1529. [PMID: 38946179 PMCID: PMC11215156 DOI: 10.1002/vms3.1529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/09/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Salmonellosis is one of the most common food-borne diseases in industrialised and developing countries. In recent year, an increase in antimicrobial resistance among different Salmonella serotypes has been observed. OBJECTIVE A cross-sectional study was conducted to assess the prevalence and antimicrobial susceptibility of Salmonella isolated from local chicken eggs in four selected towns in Ethiopia. METHODS A total of 115 eggs were examined to detect Salmonella by using standard microbiological methods. The susceptibilities of the isolates to nine antimicrobials were tested by the Kirby-Bauer disk diffusion method. RESULT The study revealed that of the 115 eggs examined, 22 (19.1%) were positive for Salmonella of which 14 (12.2%) and 8 (7%) of the isolates were from shells and contents, respectively. The occurrence of Salmonella in egg shells and content and between different altitudes did not differ significantly (p > 0.05). Most isolates were resistant to more than three antimicrobials with a high resistance to kanamycin, ampicillin, nalidixic acid, cotrimoxazole, oxytetracycline and chloramphenicol. CONCLUSION The results indicate the potential importance of local chicken eggs as source of multiple antimicrobial-resistant salmonellae and the need for proper cooking before consumption. Further studies are required to describe the epidemiology of Salmonella in various agroclimatic zones of Ethiopia.
Collapse
Affiliation(s)
- Belege Tadesse
- Department of Veterinary MedicineSchool of Veterinary MedicineWollo UniversityDessieEthiopia
| | - Destaw Asfaw Ali
- Department of pathophysiologyCollege of Veterinary Medicine and Animal SciencesUniversity of GondarGondarEthiopia
| |
Collapse
|
3
|
Mullally CA, Fahriani M, Mowlaboccus S, Coombs GW. Non- faecium non- faecalis enterococci: a review of clinical manifestations, virulence factors, and antimicrobial resistance. Clin Microbiol Rev 2024; 37:e0012123. [PMID: 38466110 PMCID: PMC11237509 DOI: 10.1128/cmr.00121-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
SUMMARYEnterococci are a diverse group of Gram-positive bacteria that are typically found as commensals in humans, animals, and the environment. Occasionally, they may cause clinically relevant diseases such as endocarditis, septicemia, urinary tract infections, and wound infections. The majority of clinical infections in humans are caused by two species: Enterococcus faecium and Enterococcus faecalis. However, there is an increasing number of clinical infections caused by non-faecium non-faecalis (NFF) enterococci. Although NFF enterococcal species are often overlooked, studies have shown that they may harbor antimicrobial resistance (AMR) genes and virulence factors that are found in E. faecium and E. faecalis. In this review, we present an overview of the NFF enterococci with a particular focus on human clinical manifestations, epidemiology, virulence genes, and AMR genes.
Collapse
Affiliation(s)
- Christopher A Mullally
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Marhami Fahriani
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
| | - Shakeel Mowlaboccus
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- PathWest Laboratory Medicine-WA, Department of Microbiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Geoffrey W Coombs
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- PathWest Laboratory Medicine-WA, Department of Microbiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|
4
|
Liu B, Chang Z, Li Z, Liu R, Liu X. Prediction of key amino acids of Salmonella phage endolysin LysST-3 and detection of its mutants' activity. Arch Microbiol 2024; 206:151. [PMID: 38467842 DOI: 10.1007/s00203-024-03915-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Salmonella Typhimurium, a zoonotic pathogen, causes systemic and localized infection. The emergence of drug-resistant S. Typhimurium has increased; treating bacterial infections remains challenging. Phage endolysins derived from phages have a broader spectrum of bacteriolysis and better bacteriolytic activity than phages, and are less likely to induce drug resistance than antibiotics. LysST-3, the endolysin of Salmonella phage ST-3, was chosen in our study for its high lytic activity, broad cleavage spectrum, excellent bioactivity, and moderate safety profile. LysST-3 is a promising antimicrobial agent for inhibiting the development of drug resistance in Salmonella. The aim of this study is to investigate the molecular characteristics of LysST-3 through the prediction of key amino acid sites of LysST-3 and detection of its mutants' activity. We investigated its lytic effect on Salmonella and identified its key amino acid sites of interaction with substrate. LysST-3 may be a Ca2+, Mg2+ - dependent metalloenzyme. Its concave structure of the bottom "gripper" was found to be an important part of its amino acid active site. We identified its key sites (29P, 30T, 86D, 88 L, and 89 V) for substrate binding and activity using amino acid-targeted mutagenesis. Alterations in these sites did not affect protein secondary structure, but led to a significant reduction in the cleavage activity of the mutant proteins. Our study provides a basis for phage endolysin modification to target drug-resistant bacteria. Identifying the key amino acid site of the endolysin LysST-3 provides theoretical support for the functional modification of the endolysin and the development of subsequent effective therapeutic solutions.
Collapse
Affiliation(s)
- Bingxin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Academy IV, Yanqihu Campus, Beijing, 101314, China.
| | - Zhankun Chang
- College of Resources and Environment, University of Chinese Academy of Sciences, Academy IV, Yanqihu Campus, Beijing, 101314, China
| | - Zong Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Academy IV, Yanqihu Campus, Beijing, 101314, China
| | - Ruyin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Academy IV, Yanqihu Campus, Beijing, 101314, China
| | - Xinchun Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Academy IV, Yanqihu Campus, Beijing, 101314, China.
- Binzhou Institute of Technology, Building 9, Zhonghai Hotel, West of Huanghe 8th Road, Bincheng District, Binzhou, 256600, China.
| |
Collapse
|
5
|
Song HJ, Ali S, Moon BY, Kang HY, Noh EJ, Kim TS, Kim SJ, Kim JI, Lee YJ, Yoon SS, Lim SK. Antimicrobial Resistance Profiles and Molecular Characteristics of Salmonella enterica Serovar Agona Isolated from Food-Producing Animals During 2010-2020 in South Korea. Foodborne Pathog Dis 2024. [PMID: 38442228 DOI: 10.1089/fpd.2023.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Multidrug-resistant (MDR) Salmonella enterica serovar Agona infections affect public health globally. This investigation aimed to ascertain the antimicrobial resistance profiles and molecular characteristics of Salmonella Agona isolates obtained from food-producing animals. A total of 209 Salmonella Agona isolates were recovered from mostly chickens (139 isolates), pigs (56 isolates), cattle (11 isolates), and ducks (3 isolates) between 2010 and 2020 in South Korea. In addition, these Salmonella Agona isolates were obtained from 25 slaughterhouses nationwide. Furthermore, this serotype suddenly increased in chickens in 2020. Salmonella Agona from chickens showed high resistance (69-83%) to ampicillin, streptomycin, tetracycline, trimethoprim/sulfamethoxazole, and chloramphenicol. Moreover, chicken/duck isolates (83.1%) showed significantly higher levels of MDR than cattle/pig isolates (1.5%). For molecular analysis by pulsed-field gel electrophoresis, infrared spectroscopy biotyping, and multilocus sequence typing in combination, a total of 23 types were observed. Especially two major types, P1-III-2-13 and P1-IV-2-13, comprised 59.3% of the total isolates spreading in most farms. Moreover, Salmonella Agona sequence type (ST)13 was predominant (96.7%) among three different STs (ST13, ST11, and ST292) widely detected in chickens (94.3%) in most farms located nationwide. Taken together, MDR Salmonella Agona in chickens might pose a potential risk to public health through direct contact or the food chain.
Collapse
Affiliation(s)
- Hyun-Ju Song
- Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon-si, Korea
| | - Sekendar Ali
- Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon-si, Korea
| | - Bo-Youn Moon
- Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon-si, Korea
| | - Hee Young Kang
- Centre for Infectious Diseases Research, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Eun Jeong Noh
- Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon-si, Korea
| | - Tae-Sun Kim
- Public Health and Environment Institute of Gwangju, Gwangju, Korea
| | - Su-Jeong Kim
- Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon-si, Korea
| | - Ji-In Kim
- Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon-si, Korea
| | - Yun Jin Lee
- Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon-si, Korea
| | - Soon-Seek Yoon
- Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon-si, Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon-si, Korea
| |
Collapse
|
6
|
Desire OE, Larson B, Richard O, Rolande MM, Serge KB. Investigating antibiotic resistance in enterococci in Gabonese livestock. Vet World 2022; 15:714-721. [PMID: 35497974 PMCID: PMC9047121 DOI: 10.14202/vetworld.2022.714-721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/10/2022] [Indexed: 01/14/2023] Open
Abstract
Background and Aim: The emergence of antibiotic resistance is a major problem worldwide. Antibiotics are often used to prevent or treat infections in livestock. This study aimed to investigate antibiotic resistance in enterococci in Gabonese livestock. Materials and Methods: We collected 174 animal samples (46 laying hens, 24 swine, 62 cattle, and 42 sheep) from farms in four provinces of Gabon. Bacterial strains belonging to the genus Enterococcus were obtained using selective media and polymerase chain reaction targeting the tuf gene. Antibiotic susceptibility was determined by the disk diffusion method on Mueller-Hinton agar. Results: Enterococci were present in 160 of the samples (97%), distributed as follows: laying hens (100%, 41/41), swine (100%, 22/22), small ruminants (88%, 37/42), and cattle (100%, 60/60). Resistance to cephalothin/cephalexin, streptomycin, and rifampicin (RIF) was high, and resistance to vancomycin (VAN), erythromycin, and tetracycline was moderate. A high diversity of resistance was found in Haut-Ogooué and Estuaire provinces. Laying hens and swine showed moderate levels of resistance to ciprofloxacin and penicillin, while sheep and cattle had high levels of resistance to RIF. All species showed a high level of resistance to VAN. We found various patterns of multiple resistances in the isolates, and the multiple resistance indexes ranged from 0.2 to 0.8. Conclusion: This study shows that livestock in Gabon can be considered potential reservoirs of resistance.
Collapse
Affiliation(s)
- Otsaghe Ekore Desire
- Centre International de Recherche Médicales de Franceville, BP: 769, Franceville, Gabon; Ecole Doctorale Régional d'Afrique Central, BP: 876, Franceville, Gabon
| | - Boundenga Larson
- Centre International de Recherche Médicales de Franceville, BP: 769, Franceville, Gabon; Department of Anthropology, Durham University, South Road, Durham, DH1 3LE, UK
| | - Onanga Richard
- Centre International de Recherche Médicales de Franceville, BP: 769, Franceville, Gabon
| | - Mabika Mabika Rolande
- Centre International de Recherche Médicales de Franceville, BP: 769, Franceville, Gabon
| | | |
Collapse
|
7
|
Designing of a Recombinant Multi-Epitopes Based Vaccine against Enterococcus mundtii Using Bioinformatics and Immunoinformatics Approaches. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063729. [PMID: 35329417 PMCID: PMC8949936 DOI: 10.3390/ijerph19063729] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022]
Abstract
Enterococcus species are an emerging group of bacterial pathogens that have a significant role in hospital-associated infections and are associated with higher mortality and morbidity rates. Among these pathogens, Enterococcus mundtii is one of the causative agents of multiple hospital associated infections. Currently, no commercially available licensed vaccine is present, and multi-drug resistant strains of the pathogen are prominent. Due to several limitations of experimental vaccinology, computational vaccine designing proved to be helpful in vaccine designing against several bacterial pathogens. Herein, we designed a multi-epitope-based vaccine against E. mundtii using in silico approaches. After an in-depth analysis of the core genome, three probable antigenic proteins (lytic polysaccharide monooxygenase, siderophore ABC transporter substrate-binding protein, and lytic polysaccharide monooxygenase) were shortlisted for epitope prediction. Among predicted epitopes, ten epitopes-GPADGRIAS, TTINHGGAQA, SERTALSVTT, GDGGNGGGEV, GIKEPDLEK, KQADDRIEA, QAIGGDTSN, EPLDEQTASR, AQWEPQSIEA, QPLKFSDFEL-were selected for multi-epitope vaccine construct designing. The screened B- and T-cell epitopes were joined with each other via specific linkers and linked to the cholera toxin B subunit as an adjuvant to enhance vaccine immune protection efficacy. The designed vaccine construct induced cellular and humoral immune responses. Blind docking with immune cell receptors, followed by molecular dynamic simulation results confirms the good binding potency and stability of the vaccine in providing protection against the pathogen.
Collapse
|
8
|
Antimicrobial Resistance, Biofilm Formation, and Virulence Genes in Enterococcus Species from Small Backyard Chicken Flocks. Antibiotics (Basel) 2022; 11:antibiotics11030380. [PMID: 35326843 PMCID: PMC8944505 DOI: 10.3390/antibiotics11030380] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023] Open
Abstract
Backyard birds are small flocks that are more common in developing countries. They are used for poultry meat and egg production. However, they are also implicated in the maintenance and transmission of several zoonotic diseases, including multidrug-resistant bacteria. Enterococci are one of the most common zoonotic bacteria. They colonize numerous body sites and cause a wide range of serious nosocomial infections in humans. Therefore, the objective of the present study was to investigate the diversity in Enterococcus spp. in healthy birds and to determine the occurrence of multidrug resistance (MDR), multi-locus sequence types, and virulence genes and biofilm formation. From March 2019 to December 2020, cloacal swabs were collected from 15 healthy backyard broiler flocks. A total of 90 enterococci strains were recovered and classified according to the 16S rRNA sequence into Enterococcus faecalis (50%); Enterococcus faecium (33.33%), Enterococcus hirae (13.33%), and Enterococcus avium (3.33%). The isolates exhibited high resistance to tetracycline (55.6%), erythromycin (31.1%), and ampicillin (30%). However, all of the isolates were susceptible to linezolid. Multidrug resistance (MDR) was identified in 30 (33.3%) isolates. The enterococci AMR-associated genes ermB, ermA, tetM, tetL, vanA, cat, and pbp5 were identified in 24 (26.6%), 11 (12.2%), 39 (43.3%), 34 (37.7%), 1 (1.1%), 4 (4.4%), and 23 (25.5%) isolates, respectively. Of the 90 enterococci, 21 (23.3%), 27 (30%), and 36 (40%) isolates showed the presence of cylA, gelE, and agg virulence-associated genes, respectively. Seventy-three (81.1%) isolates exhibited biofilm formation. A statistically significant correlation was obtained for biofilm formation versus the MAR index and MDR. Multi-locus sequence typing (MLST) identified eleven and eight different STs for E. faecalis and E. faecium, respectively. Seven different rep-family plasmid genes (rep1–2, rep3, rep5–6, rep9, and rep11) were detected in the MDR enterococci. Two-thirds (20/30; 66.6%) of the enterococci were positive for one or two rep-families. In conclusion, the results show that healthy backyard chickens could act as a reservoir for MDR and virulent Enterococcus spp. Thus, an effective antimicrobial stewardship program and further studies using a One Health approach are required to investigate the role of backyard chickens as vectors for AMR transmission to humans.
Collapse
|
9
|
Belachew T, Mulusew E, Tolosa Y, Asefa Z, Negussie H, Sori T. Prevalence and Antimicrobial-Susceptibility Profiles of Salmonella in Smallhold Broiler Supply Chains in Central Ethiopia. Infect Drug Resist 2021; 14:4047-4055. [PMID: 34616162 PMCID: PMC8487853 DOI: 10.2147/idr.s331249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose Salmonellosis is a foodborne zoonoses found worldwide. The main purpose of this study was to isolate and identify Salmonella and assess their antimicrobial susceptibility profiles from smallhold broilers supply chains and slaughterhouses in Bishoftu and Modjo, central Ethiopia. Methods Four smallhold broiler farms under the auspices of Chico Meat were selected randomly. Feed, water, and water- and feed-trough samples were collected from broiler farms, while cecal contents were collected from slaughtered chicken at Chico Meat slaughterhouse. Conventional bacteriological techniques were used to isolate and identify Salmonella from the samples. Kirby–Bauer disk diffusion was employed to assess the antimicrobial susceptibility of the isolates. Results Salmonella was isolated from 131 (24.3%, 95% CI 20.74–28.15) of the 539 samples tested. Salmonella was found in 43 of the 250 samples collected from Bishoftu (22%, 95% CI 17.02%–27.65%) and 76 of the 289 samples collected from Modjo (26.29%, 95% CI 21.32%–31.77%). Salmonella was isolated from 26.46% of the cloacal samples, 21% of the cecal contents, 30.77% of the feed samples, 25% of the water samples, 22.22% of samples from feed troughs, and 20% of samples from water troughs. The highest level of resistance (80.81%) was observed against tetracycline, followed by kanamycin (71.72%), chloramphenicol and amoxicillin (67.68%), sulfamethazole–trimethoprim (61.62%), naldixic acid (63.64%), and streptomycin (59.60%), whereas most of the isolates were susceptible to gentamicin (69.70%). Resistance to more than two drugs was also observed. Conclusion Salmonella was found in high prevalence in broilers, their feed, and their environment. Moreover, a majority of the isolates were resistant to most antimicrobials used in medical and poultry practices. This has significant implications for public health and antimicrobial resistance.
Collapse
Affiliation(s)
- Tesfaye Belachew
- Epidemiology Unit, Asella Regional Veterinary Laboratory, Asella, Oromia State, Ethiopia
| | - Eyuel Mulusew
- Department of Biomedical Sciences, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Oromia State, Ethiopia
| | - Yonas Tolosa
- Department of Biomedical Sciences, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Oromia State, Ethiopia
| | - Zerihun Asefa
- Veterinary Teaching Hospital, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Oromia State, Ethiopia
| | - Haileleul Negussie
- Department of Clinical Studies, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Oromia State, Ethiopia
| | - Teshale Sori
- Department of Clinical Studies, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Oromia State, Ethiopia
| |
Collapse
|
10
|
Mshana SE, Sindato C, Matee MI, Mboera LEG. Antimicrobial Use and Resistance in Agriculture and Food Production Systems in Africa: A Systematic Review. Antibiotics (Basel) 2021; 10:976. [PMID: 34439026 PMCID: PMC8389036 DOI: 10.3390/antibiotics10080976] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/07/2021] [Accepted: 08/08/2021] [Indexed: 01/10/2023] Open
Abstract
In Africa, there is dearth of information on antimicrobial use (AMU) in agriculture and food production systems and its consequential resistance in pathogens that affect animal, human and environmental health. Data published between 1980 and 2021 on the magnitude of AMU and AMR in agriculture and food productions systems in Africa were reviewed. Data from 13-27 countries in Africa indicate that 3558-4279 tonnes of antimicrobials were used in animals from 2015 to 2019. Tetracyclines and polypeptides contributed the largest proportion of antimicrobials used. Cattle and poultry production account for the largest consumption of antimicrobials in Africa. Although limited studies have reported AMR in crops, fish and beekeeping, AMR from a variety of farm animals has been substantially documented in Africa. Some countries in Africa have developed policies/plans to address AMU and AMR in agriculture and food production systems; however, their enforcement is challenged by weak regulations. In conclusion, although there is limited information on the quantities of antimicrobials used in agriculture and food production system, the levels of AMR are high. There is a need to strengthen regulatory authorities with a capacity to monitor AMU in agriculture and food production systems in Africa.
Collapse
Affiliation(s)
- Stephen E. Mshana
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro 65125, Tanzania; (S.E.M.); (C.S.); (M.I.M.)
- Catholic University of Health and Allied Sciences, P.O. Box 1424, Mwanza 33109, Tanzania
| | - Calvin Sindato
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro 65125, Tanzania; (S.E.M.); (C.S.); (M.I.M.)
- National Institute for Medical Research, P.O. Box 482, Tabora 45026, Tanzania
| | - Mecky I. Matee
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro 65125, Tanzania; (S.E.M.); (C.S.); (M.I.M.)
- Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam 11103, Tanzania
| | - Leonard E. G. Mboera
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro 65125, Tanzania; (S.E.M.); (C.S.); (M.I.M.)
| |
Collapse
|
11
|
Mengistu G, Dejenu G, Tesema C, Arega B, Awoke T, Alemu K, Moges F. Epidemiology of streptomycin resistant Salmonella from humans and animals in Ethiopia: A systematic review and meta-analysis. PLoS One 2020; 15:e0244057. [PMID: 33332438 PMCID: PMC7746177 DOI: 10.1371/journal.pone.0244057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/02/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Streptomycin is used as an epidemiological marker in monitoring programs for antimicrobial resistance in Salmonella serovars and indicates the presence of pentaresistance. However, comprehensive data on streptomycin resistant Salmonella among human, animal, and animal products is lacking in Ethiopia. In this review, we aimed to assess heterogeneity and pooled proportion of Salmonella serovars to streptomycin resistance among human, animal and animal products in Ethiopia. METHODS We conducted a systematic review and meta-analysis of published literature from Ethiopia. We used the MEDLINE/ PubMed, Embase, Cochrane Library, and Google Scholar databases to identify genetic and phenotypic data on Salmonella isolates. To determine the heterogeneity and pooled proportion, we used metaprop commands and the random-effects model. Relative and cumulative frequencies were calculated to describe the overall preponderance of streptomycin resistance isolates after arcsine-transformed data. Metan funnel and meta-bias using a begg test were performed to check for publication bias. RESULTS Overall, we included 1475 Salmonella serovars in this meta-analysis. The pooled proportion of streptomycin resistance was 47% (95% CI: 35-60%). Sub-group analysis by target population showed that the proportion of streptomycin resistance in Salmonella serovars was 54% (95% CI: 35-73%) in animal, 44% (95% Cl: 33-59%) in humans and 39% (95% CI: 24-55%) in animals products. The streptomycin resistant Salmonella serovars were statistically increasing from 0.35(95% CI: 0.12-0.58) in 2003 to 0.77(95% CI: 0.64-0.89) in 2018. The level of multidrug-resistant (MDR) Salmonella serovars was 50.1% in the meta-analysis. CONCLUSION We found a high level of streptomycin resistance, including multidrug, Salmonella serovars among human, animals, and animal products. This resistance was significantly increasing in the last three decades (1985-2018). The resistance to streptomycin among Salmonella serovars isolated from animals was higher than humans. This mandates the continuous monitoring of streptomycin use and practicing one health approach to preventing further development of resistance in Ethiopia. REGISTRATION We conducted a systematic review and meta-analysis after registration of the protocol in PROSPERO (CRD42019135116) following the MOOSE (Meta-Analysis of Observational Studies in Epidemiology).
Collapse
Affiliation(s)
- Getachew Mengistu
- Medical Laboratory Science, College of Health Sciences, DebreMarkos University, Debre Marqos, Ethiopia
- Department of Medical Microbiology, School of Laboratory and Biomedical Science, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Getiye Dejenu
- Department of Public Health, College of Health Sciences, DebreMarkos University, Debre Marqos, Ethiopia
| | - Cheru Tesema
- Department of Public Health, College of Health Sciences, DebreMarkos University, Debre Marqos, Ethiopia
| | - Balew Arega
- Yekatit 12 Hospital Medical College, Addis Ababa, Ethiopia
| | - Tadesse Awoke
- Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Kassahun Alemu
- Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Feleke Moges
- Department of Medical Microbiology, School of Laboratory and Biomedical Science, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
12
|
Kimera ZI, Mshana SE, Rweyemamu MM, Mboera LEG, Matee MIN. Antimicrobial use and resistance in food-producing animals and the environment: an African perspective. Antimicrob Resist Infect Control 2020; 9:37. [PMID: 32122406 PMCID: PMC7053060 DOI: 10.1186/s13756-020-0697-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 02/07/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The overuse of antimicrobials in food animals and the subsequent contamination of the environment have been associated with development and spread of antimicrobial resistance. This review presents information on antimicrobial use, resistance and status of surveillance systems in food animals and the environment in Africa. METHODS Information was searched through PubMed, Google Scholar, Web of Science, and African Journal Online databases. Full-length original research and review articles on antimicrobial use, prevalence of AMR from Africa covering a period from 2005 to 2018 were examined. The articles were scrutinized to extract information on the antimicrobial use, resistance and surveillance systems. RESULTS A total of 200 articles were recovered. Of these, 176 studies were included in the review while 24 articles were excluded because they were not relevant to antimicrobial use and/or resistance in food animals and the environment. The percentage of farms using antimicrobials in animal production ranged from 77.6% in Nigeria to 100% in Tanzania, Cameroon, Zambia, Ghana and Egypt. The most antibiotics used were tetracycline, aminoglycoside and penicillin groups. The percentage of multi drug resistant isolates ranged from 20% in Nigeria to 100% in South Africa, Zimbabwe and Tunisia. In the environment, percentage of multi drug resistant isolates ranged from 33.3% in South Africa to 100% in Algeria. None of the countries documented national antimicrobial use and resistance surveillance system in animals. CONCLUSION There is high level of antimicrobial use, especially tetracycline, aminoglycoside and penicillin in animal production systems in Africa. This is likely to escalate the already high prevalence of antimicrobial resistance and multi drug resistance in the continent. This, coupled with weak antimicrobial resistance surveillance systems in the region is a great concern to the animals, environment and humans as well.
Collapse
Affiliation(s)
- Zuhura I Kimera
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
- Ministry of Livestock and Fisheries, Dodoma, Tanzania.
| | - Stephen E Mshana
- Department of Microbiology and Immunology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Mark M Rweyemamu
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Chuo Kikuu Morogoro, Tanzania
| | - Leonard E G Mboera
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Chuo Kikuu Morogoro, Tanzania
| | - Mecky I N Matee
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Chuo Kikuu Morogoro, Tanzania
| |
Collapse
|
13
|
Thomas KM, de Glanville WA, Barker GC, Benschop J, Buza JJ, Cleaveland S, Davis MA, French NP, Mmbaga BT, Prinsen G, Swai ES, Zadoks RN, Crump JA. Prevalence of Campylobacter and Salmonella in African food animals and meat: A systematic review and meta-analysis. Int J Food Microbiol 2020; 315:108382. [PMID: 31710971 PMCID: PMC6985902 DOI: 10.1016/j.ijfoodmicro.2019.108382] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/20/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Campylobacter and Salmonella, particularly non-typhoidal Salmonella, are important bacterial enteric pathogens of humans which are often carried asymptomatically in animal reservoirs. Bacterial foodborne infections, including those derived from meat, are associated with illness and death globally but the burden is disproportionately high in Africa. Commercial meat production is increasing and intensifying in many African countries, creating opportunities and threats for food safety. METHODS Following Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines, we searched six databases for English language studies published through June 2016, that reported Campylobacter or Salmonella carriage or infection prevalence in food animals and contamination prevalence in food animal products from African countries. A random effects meta-analysis and multivariable logistic regression were used to estimate the species-specific prevalence of Salmonella and Campylobacter and assess relationships between sample type and region and the detection or isolation of either pathogen. RESULTS Seventy-three studies reporting Campylobacter and 187 studies reporting Salmonella across 27 African countries were represented. Adjusted prevalence calculations estimate Campylobacter detection in 37.7% (95% CI 31.6-44.3) of 11,828 poultry samples; 24.6% (95% CI 18.0-32.7) of 1975 pig samples; 17.8% (95% CI 12.6-24.5) of 2907 goat samples; 12.6% (95% CI 8.4-18.5) of 2382 sheep samples; and 12.3% (95% CI 9.5-15.8) of 6545 cattle samples. Salmonella were detected in 13.9% (95% CI 11.7-16.4) of 25,430 poultry samples; 13.1% (95% CI 9.3-18.3) of 5467 pig samples; 9.3% (95% CI 7.2-12.1) of 2988 camel samples; 5.3% (95% CI 4.0-6.8) of 72,292 cattle samples; 4.8% (95% CI 3.6-6.3) of 11,335 sheep samples; and 3.4% (95% CI 2.2-5.2) of 4904 goat samples. 'External' samples (e.g. hide, feathers) were significantly more likely to be contaminated by both pathogens than 'gut' (e.g. faeces, cloaca) while meat and organs were significantly less likely to be contaminated than gut samples. CONCLUSIONS This study demonstrated widespread prevalence of Campylobacter species and Salmonella serovars in African food animals and meat, particularly in samples of poultry and pig origin. Source attribution studies could help ascertain which food animals are contributing to human campylobacteriosis and salmonellosis and direct potential food safety interventions.
Collapse
Affiliation(s)
- Kate M Thomas
- Centre for International Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Kilimanjaro Clinical Research Institute, Good Samaritan Foundation, Moshi, United Republic of Tanzania.
| | - William A de Glanville
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Joram J Buza
- School of Life Sciences and Bio-Engineering, Nelson Mandela African Institution of Science and Technology, Arusha, United Republic of Tanzania
| | - Sarah Cleaveland
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Margaret A Davis
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States of America
| | - Nigel P French
- mEpiLab, Massey University, Palmerston North, New Zealand; New Zealand Food Safety Science and Research Centre, New Zealand
| | - Blandina T Mmbaga
- Kilimanjaro Clinical Research Institute, Good Samaritan Foundation, Moshi, United Republic of Tanzania
| | - Gerard Prinsen
- School of People, Environment and Planning, Massey University, Palmerston North, New Zealand
| | - Emmanuel S Swai
- State Department of Veterinary Services, Ministry of Livestock and Fisheries, Dodoma, United Republic of Tanzania
| | - Ruth N Zadoks
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - John A Crump
- Centre for International Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
14
|
Melese A, Genet C, Andualem T. Prevalence of Vancomycin resistant enterococci (VRE) in Ethiopia: a systematic review and meta-analysis. BMC Infect Dis 2020; 20:124. [PMID: 32046668 PMCID: PMC7014939 DOI: 10.1186/s12879-020-4833-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/28/2020] [Indexed: 12/18/2022] Open
Abstract
Background The emergence of Vancomycin resistant enterococci (VRE) poses a major public health problem since it was first reported. Although the rising rates of VRE infections are being reported elsewhere in the worldwide; there is limited national pooled data in Ethiopia. Therefore, this study was aimed to estimate the pooled prevalence of VRE and antimicrobial resistance profiles of enterococci in Ethiopia. Methods Literature search was done at PubMed, EMBASE, Google scholar, African Journals online (AJOL) and Addis Ababa University repository following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. Both published and unpublished studies reporting the prevalence of VRE until June 30, 2019 were included. Data were extracted using Microsoft Excel and copied to Comprehensive Meta-analysis (CMA 2.0) for analysis. Pooled estimate of VRE was computed using the random effects model and the 95% CIs. The level of heterogeneity was assessed using Cochran’s Q and I2 tests. Publication bias was checked by visual inspection of funnel plots and Begg’s and/or Egger’s test. Results Twenty studies fulfilled the eligibility criteria and found with relevant data. A total of 831 enterococci and 71 VRE isolates were included in the analysis. The pooled prevalence of VRE was 14.8% (95% CI; 8.7–24.3; I2 = 74.05%; P < 0.001). Compared to vancomycin resistance, enterococci had higher rate of resistance to Penicillin (60.7%), Amoxicillin (56.5%), Doxycycline (55.1%) and Tetracycline (53.7%). Relatively low rate of resistance was found for Daptomycin and Linezolid with a pooled estimate of 3.2% (95% CI, 0.5–19.7%) and 9.9% (95% CI, 2.8–29.0%); respectively. The overall pooled multidrug resistance (MDR) rate of enterococci was 60.0% (95% CI, 42.9–75.0%). Conclusion The prevalence of VRE and drug resistant enterococci are on the rise in Ethiopia. Enterococcal isolates showed resistance to one or more of the commonly prescribed drugs in different or the same drug lines. Multidrug resistant (MDR) enterococci were also found. Although the rates were low, the emergence of resistance to Daptomycin and Linezolid is an alarm for searching new ways for the treatment and control of VRE infections. Adherence to antimicrobial stewardship, comprehensive testing and ongoing monitoring of VRE infections in the health care settings are required.
Collapse
Affiliation(s)
- Addisu Melese
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Chalachew Genet
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Tesfaye Andualem
- Department of Medical Laboratory Science, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
15
|
Molechan C, Amoako DG, Abia ALK, Somboro AM, Bester LA, Essack SY. Molecular epidemiology of antibiotic-resistant Enterococcus spp. from the farm-to-fork continuum in intensive poultry production in KwaZulu-Natal, South Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:868-878. [PMID: 31539992 DOI: 10.1016/j.scitotenv.2019.07.324] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
The poultry industry is among the main protein suppliers worldwide. Thus, this study determined the antibiotic resistance and virulence profiles of Enterococcus spp. along the farm-to-fork production chain of an intensive poultry system in the uMgungundlovu District, Kwazulu-Natal, South Africa. Overall, 162 samples along the continuum (growth phase, transport and post-slaughter) were evaluated for the presence of Enterococcus spp. using selective media, biochemical tests and polymerase chain reaction (PCR). Resistance profiles were assessed by Kirby-Bauer disk diffusion method following the WHO-AGISAR recommended antibiotics panel for Enterococcus spp. Antibiotic resistance and virulence genes were detected using real-time PCR. Clonal relatedness was evaluated by REP-PCR. Overall, 131 isolates were recovered across the continuum, (34% E. faecalis, 32% E. faecium, 2% E. gallinarum and 32% other Enterococcus spp.). Resistance to tetracycline (79%), erythromycin (70%), nitrofurantoin (18%), ampicillin (15%), streptomycin (15%), chloramphenicol (10%), ciprofloxacin (4%), tigecycline (4%), gentamicin (4%), teicoplanin (3%) was observed among all Enterococcus spp.; no vancomycin resistance (0%) was recorded. Also, 24% of E. faecium were resistant to quinupristin-dalfopristin. Twenty-four multidrug resistance (MDR) antibiograms were observed across all species; E. faecium (43%) showed the highest frequency of MDR. The most frequently observed antibiotic resistomes were tetM (76%) and ermB (66%) while smaller percentages were noted for aph(3')-IIIa (12%) and vanC1 (1%). Virulence genes efaAFs (100%), cpd (96%) and gelE (80%) were more prevalent in E. faecalis. Clonality revealed that isolates along the continuum were highly diverse with major REP-types consisting of isolates from the same sampling point. This study highlights the diversity of MDR Enterococcus in the food chain with isolates harbouring resistance and virulence genes. These could be reservoirs for the potential transfer of pathogenic enterococci carrying these genes from poultry to humans through the food chain continuum, thus, underscoring the need for routine antibiotic resistance surveillance in food animals.
Collapse
Affiliation(s)
- Chantal Molechan
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Daniel G Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Anou M Somboro
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Linda A Bester
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sabiha Y Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
16
|
Taddese D, Tolosa T, Deresa B, Lakow M, Olani A, Shumi E. Antibiograms and risk factors of Salmonella isolates from laying hens and eggs in Jimma Town, South Western Ethiopia. BMC Res Notes 2019; 12:472. [PMID: 31370868 PMCID: PMC6670156 DOI: 10.1186/s13104-019-4516-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/24/2019] [Indexed: 11/30/2022] Open
Abstract
Objectives Salmonella is the most important causes of foodborne illness especially from poultry and poultry products. So the aim of this study was to carryout phenotypic characterization, antimicrobials susceptibility pattern and risk factors of Salmonella isolates from farms and markets eggs, cloacae swabs of chickens and stool of egg collectors. A cross-sectional study was conducted from January 2018 to September 2018. Samples were, processed; Salmonella was isolated, phenotypically identified by OmniLog and antimicrobials susceptibility were carried out. Result Over all; 11 (2.65%) of Salmonella enterica were phenotypically characterized out of 415 samples from farms egg content (n = 83), farms eggshell (n = 83), cloacae (n = 83), market eggshell (n = 83) and market egg contents (n = 83) with 2.4%, 0%, 2.4%, 4.8% and 3.6% prevalence, respectively. Out of isolates, 8 (72.72%) displayed multidrug resistance. All isolates showed susceptibility to Gentamicin, Kanamycin and Streptomycin. Lack of separating cracked eggs, washing hand, eggs stay longer unsold, and mixing excreta with feed were associated risk factors for Salmonella presence (P-value < 0.05). The presence of drug resistant Salmonella enterica within egg/and chicken can pose serious health problem. Good hygienic practices are important to reduce risk factors of Salmonella contamination.
Collapse
Affiliation(s)
- Diriba Taddese
- Jimma University College of Agriculture and Veterinary Medicine, Jimma, Ethiopia.
| | - Tadele Tolosa
- Jimma University College of Agriculture and Veterinary Medicine, Jimma, Ethiopia
| | - Benti Deresa
- Jimma University College of Agriculture and Veterinary Medicine, Jimma, Ethiopia
| | - Matios Lakow
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Abebe Olani
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Eshetu Shumi
- Jimma University College of Agriculture and Veterinary Medicine, Jimma, Ethiopia
| |
Collapse
|
17
|
Detection of Virulence Genes in Multidrug Resistant Enterococci Isolated from Feedlots Dairy and Beef Cattle: Implications for Human Health and Food Safety. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5921840. [PMID: 31317033 PMCID: PMC6601486 DOI: 10.1155/2019/5921840] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/27/2019] [Indexed: 12/20/2022]
Abstract
The misuse/abuse of antibiotics in intensive animal rearing and communities led to the emergence of resistant isolates such as vancomycin-resistant enterococci (VREs) worldwide. This has become a major source of concern for the public health sector. The aim of this study was to report the antibiotic resistance profiles and to highlight the presence of virulence genes in VREs isolated from feedlots cattle of the North-West Province of South Africa. 384 faecal samples, 24 drinking troughs water, and 24 soil samples were collected aseptically from 6 registered feedlots. Biochemical and molecular methods were used to identify and categorise the enterococci isolates. Their antibiotic resistance profiles were assessed and genotypic methods were used to determine their antibiotic resistance and their virulence profiles. 527 presumptive isolates were recovered, out of which 289 isolates were confirmed as Enterococcus sp. Specifically, E. faecalis (9%), E. faecium (10%), E. durans (69%), E. gallinarum (6%), E. casseliflavus (2%), E. mundtii (2%), and E. avium (2%) were screened after molecular assays. VanA (62%), vanB (17%), and vanC (21%) resistance genes were detected in 176 Enterococcus sp., respectively. Moreover, tetK (26), tetL (57), msrA/B (111), and mefA (9) efflux pump genes were detected in 138 VRE isolates. Multiple antibiotic resistances were confirmed in all the VRE isolates of this study; the most common antibiotic resistance phenotype was TETR-AMPR-AMXR-VANR-PENR-LINR-ERYR. CylA, hyl, esp, gelE, and asa1 virulence genes were detected in 86 VREs with the exception of vancomycin-resistant E. mundtii isolates that did not display any virulence factor. Most VRE isolates had more than one virulence genes but the most encountered virulence profile was gelE-hyl. Potentially pathogenic multidrug resistant VREs were detected in this study; this highlights the impact of extensive usage of antimicrobials in intensive animal rearing and its implications on public health cannot be undermined.
Collapse
|
18
|
Prisilla A, Deena Remin M, Roja B, Chellapandi P. A human-food web-animal interface on the prevalence of food-borne pathogens (Clostridia and Enterococcus) in mixed veterinary farms. Food Sci Biotechnol 2019; 28:1583-1591. [PMID: 31695959 DOI: 10.1007/s10068-019-00595-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/25/2019] [Accepted: 02/25/2019] [Indexed: 10/27/2022] Open
Abstract
In the present work, we addressed the impact of a human-food web-animal interface on the prevalence of food-borne pathogens in mixed farms of Tamil Nadu, India. We have isolated and identified six strains of Clostridium sp. and five strains of Enterococcus sp. from food and animal sources disposed near to the veterinary and poultry farms. Phylogenetic relationships of these strains were inferred from their homologies in 16S rDNA sequences and rRNA secondary structures. The strain PCP07 was taxonomically equivalent to C. botulinum confirmed by neurotoxin-specific PCR primers, followed by mouse bioassay. Other Clostridial and Enterococcal isolates have shown a phylogenetic similarity to the C. bifermentans and E. durans isolated from veterinary farms, respectively. Results of our study revealed that a human-food web-animal interface has influenced the disease incidence and prevalence of these isolates in the poultry to veterinary farms, where human food acted as a likely transmittance vehicle for their infections.
Collapse
Affiliation(s)
- A Prisilla
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024 India
| | - M Deena Remin
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024 India
| | - B Roja
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024 India
| | - P Chellapandi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024 India
| |
Collapse
|
19
|
Abstract
Enterococci are natural inhabitants of the intestinal tract in humans and many animals, including food-producing and companion animals. They can easily contaminate the food and the environment, entering the food chain. Moreover, Enterococcus is an important opportunistic pathogen, especially the species E. faecalis and E. faecium, causing a wide variety of infections. This microorganism not only contains intrinsic resistance mechanisms to several antimicrobial agents, but also has the capacity to acquire new mechanisms of antimicrobial resistance. In this review we analyze the diversity of enterococcal species and their distribution in the intestinal tract of animals. Moreover, resistance mechanisms for different classes of antimicrobials of clinical relevance are reviewed, as well as the epidemiology of multidrug-resistant enterococci of animal origin, with special attention given to beta-lactams, glycopeptides, and linezolid. The emergence of new antimicrobial resistance genes in enterococci of animal origin, such as optrA and cfr, is highlighted. The molecular epidemiology and the population structure of E. faecalis and E. faecium isolates in farm and companion animals is presented. Moreover, the types of plasmids that carry the antimicrobial resistance genes in enterococci of animal origin are reviewed.
Collapse
|
20
|
Emmanuel DC, Amaka AE, Okezie ES, Sunday UP, Ethelbert OC. Epididymal Sperm Characteristics, Testicular Morphometric Traits and Growth Parameters of Rabbit Bucks Fed Dietary Saccharomyces cerevisiae and/or Zinc Oxide. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2019. [DOI: 10.1590/1806-9061-2018-0803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - AE Amaka
- University of Nigeria, Nigeria; University of Fort Hare, South Africa
| | | | | | | |
Collapse
|
21
|
Magnitude of Vancomycin-Resistant Enterococci (VRE) Colonization among HIV-Infected Patients Attending ART Clinic in West Amhara Government Hospitals. Int J Microbiol 2018; 2018:7510157. [PMID: 30693035 PMCID: PMC6332940 DOI: 10.1155/2018/7510157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/16/2018] [Indexed: 12/28/2022] Open
Abstract
Background Enterococci that colonize the intestinal tract of immunocompromised patients are an important cause of nosocomial infections. Data on the prevalence of vancomycin-resistant Enterococci (VRE) and its antimicrobial susceptibility patterns and associated factors are scarce in the present study area. Therefore, this study was conducted aimed at determining the prevalence of VRE colonization among HIV-infected patients attending ART clinic at West Amhara Government Hospitals. Methods A cross-sectional study was conducted from 1 February 2017 to 31 May 2017. A total of 349 HIV patients were included in the study. A pretested structured questionnaire was used to collect sociodemographic data and possible associated factors for VRE colonization. Identification and confirmation of Enterococci from stool sample was performed based on the standard procedures. Antimicrobial susceptibility testing was done using the Kirby–Bauer disk diffusion method on the Muller–Hinton agar plate as per the standard protocol, and resistance profile of the isolates was determined according to Clinical and Laboratory Standards Institute (CLIS). Data were analyzed using SPSS v23. Descriptive analysis was used to visualize differences within data. Moreover, the stepwise logistic regression model was done to assess factors associated with VRE colonization. P value was set at 0.05 to indicate statistical significance difference. Results The overall colonization status of Enterococci was at 63% (220/349). The VRE colonization was at 17 (7.7% (95% CI: 4.9–12.0)). Among Enterococcal isolates tested for antimicrobial susceptibility, 142 (64.5%) were found resistant to two or more antibiotics. Antibiotic treatment (for >2 weeks) and history of hospital admission in the last six month were found statistically associated for VRE colonization (AOR = 10.18, (95% CI: 1.9–53.20)) and (AOR = 20.17; (95% CI: 5.22–77.93)), respectively. Conclusions The observed VRE with multidrug resistance colonization need a periodic surveillance of antimicrobial testing to detect emerging resistance and prevent the spread of further drug resistance.
Collapse
|
22
|
Vancomycin-Resistant Enterococci and Its Associated Risk Factors among HIV-Positive and -Negative Clients Attending Dessie Referral Hospital, Northeast Ethiopia. Int J Microbiol 2018; 2018:4753460. [PMID: 30123274 PMCID: PMC6079580 DOI: 10.1155/2018/4753460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/05/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022] Open
Abstract
Background Enterococci are becoming the most important public health concern and emerging as multidrug-resistant organisms around the world including Africa particularly in Ethiopia where there is a lack of availability of effective antimicrobial drugs. However, there is a paucity of data on the prevalence and associated risk factors of vancomycin-resistant enterococci in Ethiopia. Objective This study was aimed to assess the prevalence of vancomycin-resistant enterococci and its associated risk factors among HIV-positive and -negative clients. Methods A comparative cross-sectional study was conducted from February to May, 2017, on 300 participants at Dessie Referral Hospital. Data were gathered using a pretested structured questionnaire, stool samples were collected and inoculated on to bile esculin agar, and presumptive colonies were inoculated in brain-heart infusion broth containing 6.5% NaCl for selective identification of enterococci. Antibiotic susceptibility tests were done using the Kirby-Bauer disk diffusion method. Data were analyzed using SPSS version 22 software package. Results A total of 300 study participants were enrolled in this study, of which 57.7% were females with a mean age of 34.4, a range of 19-73 years. The overall prevalence of enterococci was 37.3%. The prevalence of VRE was 6.3%. From all isolates, the prevalence of VRE among HIV-positive and -negative clients was 5.9% and 7.4%, respectively. Resistance gentamicin, ampicillin, penicillin, and erythromycin was 37.5%, 34.8%, 34.8%, and 22.3%, respectively. Prevalence of multidrug resistance was (29.5%). Being low in hemoglobin content was significantly associated with VRE. Conclusion The high prevalence of VRE and multidrug-resistant enterococci in this study signals the emergence of VRE. Detection of VRE in this study indicates decreased antibiotic treatment options of multidrug-resistant enterococci. Therefore, there should be a need to perform continuous surveillance, rational use of antibiotics, and more detailed study using phenotypic and genotypic methods.
Collapse
|
23
|
Abdi RD, Mengstie F, Beyi AF, Beyene T, Waktole H, Mammo B, Ayana D, Abunna F. Determination of the sources and antimicrobial resistance patterns of Salmonella isolated from the poultry industry in Southern Ethiopia. BMC Infect Dis 2017; 17:352. [PMID: 28521744 PMCID: PMC5437651 DOI: 10.1186/s12879-017-2437-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 05/02/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ethiopia set an ambitious masterplan to increase chicken meat and egg production from 2015 to 2020. Poultry breeding, multiplication and distribution centers in the country have received executive order to import, amplify and distribute commercial chickens to end users. The biosecurity and the pathogen fauna of the centers have not been evaluated as to whether the centers could implement the mission effectively without any risk. Thus, the aim of this study was to evaluate the biosecurity practices and the pathogen prevalence, risk factors and their antimicrobial resistance (AMR) using Salmonella as case study. METHODS Routine farm workers of the centers were interviewed about the different management (biosecurity) practices using a checklist. Samples (n = 270) from different sources consisting of chicken's cloacal swab (n = 244), personnel hand swab (n = 9) and bedding (n = 17) were collected from three chicken multiplication centers. Standard bacteriological methods were used for the isolation of Salmonella. Disk diffusion method was used for drug sensitivity testing. RESULTS Antimicrobials were often over prescribed without confirming the cause of ill health and without susceptibility testing. The general biosecurity and flock management practices were substandard. Salmonella was isolated from 45 (16.7%) of the 270 samples. Its prevalence was significantly (p<0.05) associated with location of the multiplication center, 27% at Bonga and 10.6% at Hawassa. Sample type was also significantly (p<0.05) affected in that it was higher in the bedding (35.3%) and personnel hand swabs (33.3%) than in the chicken cloaca (14.8%), which demonstrates the poor biosecurity and personnel hygienic practices in the centers. All of the 45 isolates (100%) exhibited resistance to kanamycin and sulfamethoxazole-trimethoprim, nalidixic acid (97.8%), ampicillin (97.8%), cefoxitin (97.8%), streptomycin (97.8%) tetracycline (97.8%), chloramphenicol (91.3%), ciprofloxacin (31.1%), and gentamicin (0%). Alarmingly, 42 isolates (93.4%) exhibited multidrug resistance (MDR) to ≥ 8 drugs and all 45 isolates had resistance to ≥ 3 drugs. The high rate of Salmonella isolation from (i) bedding, (ii) personnel hand swabs (iii) chickens, (iv) presence of more MDR isolates, (v) coupled with poor biosecurity practices in the centers could pose a risk for spreading of pathogens and drug resistant genes to the smallholder chicken producers and the public. CONCLUSIONS We conclude that the poultry breeding, multiplication and distribution centers in Ethiopia, as they stand currently, seem to be a source of pathogens and AMR isolates at least for Salmonella. Therefore, strict biosecurity, personnel safety, prudent drug use, regular monitoring and traceability of Salmonella serotypes or genotypes and AMR are recommended.
Collapse
Affiliation(s)
- Reta Duguma Abdi
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Oromia, Ethiopia.
- Department of Animal Science, Institute of Agriculture, University of Tennessee Knoxville, Knoxville, TN, USA.
| | - Fisseha Mengstie
- Southern Agricultural Research Institute, Bonga Agricultural Research Center, P.O.Box 101, Bonga, Ethiopia
| | - Ashenafi Feyisa Beyi
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Oromia, Ethiopia
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - Takele Beyene
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Oromia, Ethiopia
| | - Hika Waktole
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Oromia, Ethiopia
| | - Bedasso Mammo
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Oromia, Ethiopia
| | - Dinka Ayana
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Oromia, Ethiopia
| | - Fufa Abunna
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Oromia, Ethiopia
| |
Collapse
|
24
|
Gebrerufael G, Mahendra P, Tadelle D, Tesfaye S, Alehegn W. Evaluating the relative resistance of different poultry breeds to Salmonella Typhimurium. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajar2014.9425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
25
|
Martins E, Novais C, Freitas AR, Dias AR, Ribeiro TG, Antunes P, Peixe L. Filling the map for antimicrobial resistance in sub-Saharan Africa: ampicillin-resistant Enterococcus from non-clinical sources in Angola. J Antimicrob Chemother 2015; 70:2914-6. [PMID: 26124214 DOI: 10.1093/jac/dkv172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Elsa Martins
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Carla Novais
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Ana R Freitas
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Ana Rita Dias
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Teresa G Ribeiro
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Patrícia Antunes
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Porto, Portugal
| | - Luísa Peixe
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
26
|
A review of 40 years of enteric antimicrobial resistance research in Eastern Africa: what can be done better? Antimicrob Resist Infect Control 2015; 4:1. [PMID: 25717374 PMCID: PMC4339253 DOI: 10.1186/s13756-014-0041-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/16/2014] [Indexed: 01/08/2023] Open
Abstract
The emergence and persistence of antimicrobial resistance is driven by varied factors including the indiscriminate use of antibiotics and variable drug efficacy and presents a major threat to the control of infectious diseases. Despite the high burden of disease in sub-Saharan Africa and the potential health and economic consequences, the level of research on antimicrobial resistance in the region remains unknown. Little data exists to quantify the contribution of different factors to the current levels of antimicrobial resistance. To identify the factors that contribute most to the emergence, amplification, persistence and dissemination of antimicrobial resistance in humans and animals, we used the PRISMA 2009 guidelines to conduct a systematic review of studies on antibiotic-resistant enteric bacteria in Eastern Africa. We searched PubMed and Google Scholar databases and identified 2,155 probable articles, of which 89 studies on humans and 28 on animals remained after full-text review. These were articles from Kenya, Tanzania, Uganda, Ethiopia, Rwanda and Burundi, published between 1974 and 2013, that reported resistance in Salmonella, Shigella, Escherichia coli and Vibrio sp. The majority (98%) of human studies were based on hospital- (rather than community-wide) sampling and although they report high levels of antimicrobial resistance in the region, study design and methodological differences preclude conclusions about the magnitude and trends of antimicrobial resistance. To remedy this, we discuss and propose minimum reporting guidelines for the level of detail that should be explicitly provided for antimicrobial resistance study designs, testing of samples and reporting of results that would permit comparative inferences and enable meta-analyses. Further, we advocate for increased focus on community- rather than hospital-based sampling to provide a better indication of population-wide trends in antimicrobial resistance. This approach, together with the establishment of a robust regional surveillance network, should over time build a pool of evidence-based data useful for policy decisions and interventions aimed at controlling antimicrobial resistance.
Collapse
|
27
|
Abebe W, Endris M, Tiruneh M, Moges F. Prevalence of vancomycin resistant Enterococci and associated risk factors among clients with and without HIV in Northwest Ethiopia: a cross-sectional study. BMC Public Health 2014; 14:185. [PMID: 24555580 PMCID: PMC3943508 DOI: 10.1186/1471-2458-14-185] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/18/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Enterococci are the most important multidrug resistant organisms associated with immunocompromised patients. Data are lacking about the epidemiology of vancomycin resistant Enterococci (VRE) in Ethiopia. This study aimed to assess the prevalence of VRE, their susceptibility patterns to different antibiotics and associated risk factors in fecal samples of Human Immunodeficiency Virus (HIV) positive and HIV negative clients. METHODS A cross sectional study was carried out in a total of 226 (113 HIV positive and 113 HIV negative) clients, from July 1/2013 to September 30/2013 at the University of Gondar Teaching Hospital. Data on socio-demographic characteristics and risk factors were collected with a short interview guided by pre-tested structured questionnaire. The enterococci were isolated and identified from stool sample using standard bacteriological procedures. Kary Bauer disk diffusion method was used to determine the susceptibility patterns of Enterococci isolates. Data were entered and analyzed using SPSS version 20 statistical package. RESULTS The overall colonization of Enterococci was 88.9% (201/226) of which 11 (5.5%) were VRE. The prevalence of VRE among clients with and without HIV infections were 8(7.8%) and 3(3.1%), respectively. Ninety percent of the Enterococci isolates (181/201) were resistant to two or more antibiotics tested. Isolates of Enterococci recovered from stool samples of HIV infected patients were more resistant to amoxicillin and amoxicillin-calvulinic acid than HIV negative clients (P < 0.05). Antibiotic treatment for the last 2 weeks was found to be the risk factor that showed statistically significant association with the presence of high VRE colonization. However, the socio-demographic variables and factors such as malnutrition, leucopenia, thromobocytopenia, anaemia, duration of Highly Active Antiretroviral Therapy, CD4 cell count, stage of WHO and drinking alcohol were not associated with VRE (P > 0.05). CONCLUSION The high prevalence of VRE in this study signals the emergence of VRE in the study area. Prior antibiotic treatment was associated with VRE colonization. Therefore, rational use of antibiotics and more detailed study using phenotypic and genotypic methods are needed.
Collapse
Affiliation(s)
- Wondwossen Abebe
- Department of Medical Microbiology, University of Gondar, Gondar, Ethiopia
| | - Mengistu Endris
- Department of Medical Microbiology, University of Gondar, Gondar, Ethiopia
| | - Moges Tiruneh
- Department of Medical Microbiology, University of Gondar, Gondar, Ethiopia
| | - Feleke Moges
- Department of Medical Microbiology, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
28
|
Thumu SCR, Halami PM. Acquired resistance to macrolide-lincosamide-streptogramin antibiotics in lactic Acid bacteria of food origin. Indian J Microbiol 2012; 52:530-7. [PMID: 24293706 PMCID: PMC3516663 DOI: 10.1007/s12088-012-0296-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/24/2012] [Indexed: 11/29/2022] Open
Abstract
Antibiotic resistance is a growing problem in clinical settings as well as in food industry. Lactic acid bacteria (LAB) commercially used as starter cultures and probiotic supplements are considered as reservoirs of several antibiotic resistance genes. Macrolide-lincosamide-streptogramin (MLS) antibiotics have a proven record of excellence in clinical settings. However, the intensive use of tylosin, lincomysin and virginamycin antibiotics of this group as growth promoters in animal husbandry and poultry has resulted in development of resistance in LAB of animal origin. Among the three different mechanisms of MLS resistance, the most commonly observed in LAB are the methylase and efflux mediated resistance. This review summarizes the updated information on MLS resistance genes detected and how resistance to these antibiotics poses a threat when present in food grade LAB.
Collapse
Affiliation(s)
- Surya Chandra Rao Thumu
- Food Microbiology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020 India
| | - Prakash M. Halami
- Food Microbiology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020 India
| |
Collapse
|
29
|
Suriya R, Zulkifli I, Alimon A. The Effect of Dietary Inclusion of Herbs as Growth Promoter in Broiler Chickens. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/javaa.2012.346.350] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|