1
|
Retno N, Wuryastuty H, Wasito R, Irianingsih SH. First study on genetic variability of bovine viral diarrhea virus isolated from Sapera dairy goats with reproductive disorders in Yogyakarta, Indonesia. Vet World 2022; 15:1015-1021. [PMID: 35698507 PMCID: PMC9178592 DOI: 10.14202/vetworld.2022.1015-1021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/09/2022] [Indexed: 12/03/2022] Open
Abstract
Background and Aim Bovine viral diarrhea (BVD) virus (BVDV) is an important viral pathogen of cattle that can infect diverse artiodactyl species. The clinical manifestations caused by BVDV in heterologous hosts, as they do in cattle, vary, although respiratory and reproductive failures are commonly reported. BVDV infections commonly result in reproductive failure in goats, with abortion being the primary clinical sign. In central Java, Indonesia, BVDV infection has been reported in two clinically healthy local goat species, and the testing indicated infection by BVDV Type 1. However, the genetic diversity of viruses has not been described in healthy or ill goats. The objectives of the present study were as follows: (1) To investigate the genetic variation of BVDV isolated from Sapera dairy goats with naturally occurring reproductive disorders in Yogyakarta, Indonesia, using the 5' untranslated region (5' UTR) and (2) to study the possible correlation between reproductive disorders and the presence of BVDV in the flock. Materials and Methods Blood samples were collected in October 2021 from 39 goats that had been individually reported to have reproductive disorders. The serum samples were subjected to molecular detection and genetic characterization of BVDV based on the 5' UTR of the viral genome, followed by sequencing and phylogenetic analyses. Viral isolation was performed on BVDV-positive samples to analyze the viral biotypes. Results BVDV infection was detected in five out of 39 female goats. The clinical status of the BVDV-infected goats was abortion (n=2), metritis (n=1), and repeated breeding (n=2). All antigen-positive samples were confirmed as BVDV type 1a (BVDV-1a) and noncytopathic (NCP)-BVDV biotype. Conclusion The BVDV-1a and NCP biotypes are the main subtypes and biotypes present in Sapera dairy goats exhibiting reproductive failure. This result is consistent with previous results in dairy cattle in Yogyakarta. The reported results can facilitate the design of methods for the prevention and control of BVD circulating in Indonesia.
Collapse
Affiliation(s)
- N. Retno
- Doctoral Study Program, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - H. Wuryastuty
- Department of Veterinary Internal Medicine, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - R. Wasito
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | | |
Collapse
|
2
|
Hidayat W, Wuryastuty H, Wasito R. Detection of Pestivirus in small ruminants in Central Java, Indonesia. Vet World 2021; 14:996-1001. [PMID: 34083951 PMCID: PMC8167512 DOI: 10.14202/vetworld.2021.996-1001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Globally, pestiviruses are among the most economically important viral pathogens of livestock. The genus Pestivirus comprises four species, including bovine viral diarrhea virus type 1 and 2 (BVDV-1 and BVDV-2), which infect cattle, border disease virus and classical swine fever virus which infect small ruminants and pigs, respectively. Accumulating evidence suggests that pestiviruses are no longer species-specific, creating new challenges for disease control. In Indonesia, investigations related to pestiviruses remain focused on cattle as the primary host and no research has been conducted on small ruminants (sheep and goats). Therefore, the present study aimed to study the possible occurrence of pestivirus (BVDV or BVD) infections in small ruminants in Indonesia, particularly in Central Java. Materials and Methods: We used 46 blood samples consisting of 26 sheep’s blood and 20 goat’s blood. Samples were selected from 247 small ruminant blood collected between July and October 2020 in Central Java, Indonesia, which met the following criteria: Female, local species, approximately 1-2 years old, never been pregnant, raised in the backyard, and had no close contact with cattle in either shelter or grazing area. We tested plasma samples from sheep and goats using competitive antibody enzyme-linked immunosorbent assay to detect specific antibodies against pestivirus followed by reverse transcription-polymerase chain reaction (RT-PCR) analysis for all positive samples to differentiate the species of pestivirus. Results: Two of the 20 samples collected from goats were positive for pestivirus at the serological and molecular levels, whereas 2 of 26 samples collected from sheep were doubtful but tested negative by RT-PCR. The genotyping test results obtained using nested PCR revealed that the positive samples collected from goats had a BVDV-1 genotype. Conclusion: The results of the present study demonstrated that BVDV-1 can infect species other than bovines, in Central Java, Indonesia. Further studies involving a larger number of samples are required to: (1) Determine the actual seroprevalence of pestiviruses in small ruminants and (2) Determine the potency of small ruminants as reservoirs for pestiviruses, both of which are important for the identification of the appropriate control program for pestiviruses in Indonesia.
Collapse
Affiliation(s)
- W Hidayat
- Master Study Program, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - H Wuryastuty
- Department of Veterinary Internal Medicine, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - R Wasito
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| |
Collapse
|
3
|
Walz PH, Chamorro MF, M Falkenberg S, Passler T, van der Meer F, R Woolums A. Bovine viral diarrhea virus: An updated American College of Veterinary Internal Medicine consensus statement with focus on virus biology, hosts, immunosuppression, and vaccination. J Vet Intern Med 2020; 34:1690-1706. [PMID: 32633084 PMCID: PMC7517858 DOI: 10.1111/jvim.15816] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/01/2022] Open
Abstract
Control of bovine viral diarrhea virus (BVDV) in cattle populations across most of the world has remained elusive in spite of advances in knowledge about this viral pathogen. A central feature of virus perseverance in cattle herds is the unique mechanism of persistent infection. Managing BVDV infection in herds involves controlling persistently infected carrier animals using a multidimensional approach of vaccination, biosecurity, and identification of BVDV reservoirs. A decade has passed since the original American College of Veterinary Internal Medicine consensus statement on BVDV. While much has remained the same with respect to clinical signs of disease, pathogenesis of infection including persistent infection, and diagnosis, scientific articles published since 2010 have led to a greater understanding of difficulties associated with control of BVDV. This consensus statement update on BVDV presents greater focus on topics currently relevant to the biology and control of this viral pathogen of cattle, including changes in virus subpopulations, infection in heterologous hosts, immunosuppression, and vaccination.
Collapse
Affiliation(s)
- Paul H Walz
- College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Manuel F Chamorro
- College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Shollie M Falkenberg
- USDA Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| | - Thomas Passler
- College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Frank van der Meer
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Amelia R Woolums
- College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, USA
| |
Collapse
|
4
|
Li W, Mao L, Shu X, Liu R, Hao F, Li J, Liu M, Yang L, Zhang W, Sun M, Zhong C, Jiang J. Transcriptome analysis reveals differential immune related genes expression in bovine viral diarrhea virus-2 infected goat peripheral blood mononuclear cells (PBMCs). BMC Genomics 2019; 20:516. [PMID: 31226933 PMCID: PMC6588900 DOI: 10.1186/s12864-019-5830-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/23/2019] [Indexed: 12/15/2022] Open
Abstract
Background Bovine viral diarrhea virus (BVDV) is an economically important viral pathogen of domestic and wild ruminants. Apart from cattle, small ruminants (goats and sheep) are also the susceptible hosts for BVDV. BVDV infection could interfere both of the innate and adaptive immunity of the host, while the genes and mechanisms responsible for these effects have not yet been fully understood. Peripheral blood mononuclear cells (PBMCs) play a pivotal role in the immune responses to viral infection, and these cells were the target of BVDV infection. In the present study, the transcriptome of goat peripheral blood mononuclear cells (PBMCs) infected with BVDV-2 was explored by using RNA-Seq technology. Results Goat PBMCs were successfully infected by BVDV-2, as determined by RT-PCR and quantitative real-time RT-PCR (qRT-PCR). RNA-Seq analysis results at 12 h post-infection (hpi) revealed 499 differentially expressed genes (DEGs, fold-change ≥ ± 2, p < 0.05) between infected and mock-infected PBMCs. Of these genes, 97 were up-regulated and the remaining 352 genes were down-regulated. The identified DEGs were found to be significantly enriched for locomotion/ localization, immune response, inflammatory response, defense response, regulation of cytokine production, etc., under GO enrichment analysis. Cytokine-cytokine receptor interaction, TNF signaling pathway, chemokine signaling pathway, etc., were found to be significantly enriched in KEGG pathway database. Protein-protein interaction (PPI) network analysis indicated most of the DEGs related to innate or adaptive immune responses, inflammatory response, and cytokine/chemokine-mediated signaling pathway. TNF, IL-6, IL-10, IL-12B, GM-CSF, ICAM1, EDN1, CCL5, CCL20, CXCL10, CCL2, MAPK11, MAPK13, CSF1R and LRRK1 were located in the core of the network and highly connected with other DGEs. Conclusions BVDV-2 infection of goat PBMCs causes the transcription changes of a series of DEGs related to host immune responses, including inflammation, defense response, cell locomotion, cytokine/chemokine-mediated signaling, etc. The results will be useful for exploring and further understanding the host responses to BVDV-2 infection in goats. Electronic supplementary material The online version of this article (10.1186/s12864-019-5830-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenliang Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China. .,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Li Mao
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Xin Shu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Runxia Liu
- South Dakota State University, Brookings, SD, 57007, USA
| | - Fei Hao
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Jizong Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Maojun Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Leilei Yang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Wenwen Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Min Sun
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Chunyan Zhong
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.,College of Animal Science, Guizhou University, Guiyang, 550000, People's Republic of China
| | - Jieyuan Jiang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| |
Collapse
|
5
|
Oem JK, Han DG, Choi KS. Experimental infection of Korean native goats (Capra aegagrus hircus) with bovine viral diarrhea virus 1b. BMC Vet Res 2019; 15:202. [PMID: 31200717 PMCID: PMC6570889 DOI: 10.1186/s12917-019-1955-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 06/09/2019] [Indexed: 12/05/2022] Open
Abstract
Background Bovine viral diarrhea virus (BVDV) infects various ungulates and causes reproductive failure in infected goats. BVDV has been detected among goats in the Republic of Korea, but the route of transmission remains unclear. Here, we aimed to investigate whether BVDV-1b circulating among Korean cattle can be transmitted to Korean native goats (Capra aegagrus hircus) and characterize the outcomes of BVDV infection in these goats. Results Four goats were inoculated intranasally with the Korean noncytopathic (ncp) BVDV-1b strain. Two goats exhibited clinical signs of illness, including coughing and nasal discharge. Nasal swabs and blood were collected to screen for viral RNA and BVDV antibodies. Using the 5′-untranslated region (UTR), viral RNA was detected in the nasal swabs of two goats (Goat 1 and 3) on 12 day post-inoculation (dpi) and in the blood sample of one goat (Goat 1) on 7 and 19 dpi. Using the N-terminal protease (Npro) region, viral RNA was detected in the blood sample of Goat 1 on 7 and 12 dpi. Antibodies to BVDV were detected in Goats 1 and 3 on 16–21 dpi using enzyme-linked immunosorbent assay. Sequence analysis of the virus from nasal swabs and blood samples, which was detected via RT-PCR, using the 5′-UTR and Npro regions led to the identification of the strain as ncp BVDV-1b and revealed changes in the nucleotide sequence of these goats. Conclusions Our results indicate that changes in the nucleotide sequence are associated with the establishment of BVDV infection in Korean native goats; these changes may be owing to a process required for the establishment of infection in a new host reservoir. Broadly, these findings highlight the importance of BVDV surveillance in ungulates other than cattle. Electronic supplementary material The online version of this article (10.1186/s12917-019-1955-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jae-Ku Oem
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Du-Gyeong Han
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Osong, 28159, Republic of Korea
| | - Kyoung-Seong Choi
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, 37224, Republic of Korea.
| |
Collapse
|
6
|
Silveira S, Baumbach LF, Weber MN, Mósena ACS, da Silva MS, Cibulski SP, Borba MR, Maia RD, Coimbra VCS, de Moraes GM, Ridpath JF, Canal CW. HoBi-like is the most prevalent ruminant pestivirus in Northeastern Brazil. Transbound Emerg Dis 2017; 65:e113-e120. [DOI: 10.1111/tbed.12689] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Indexed: 12/25/2022]
Affiliation(s)
- S. Silveira
- Laboratório de Virologia; Faculdade de Veterinária; Universidade Federal do Rio Grande do Sul (UFRGS); Porto Alegre Rio Grande do Sul Brazil
| | - L. F. Baumbach
- Laboratório de Virologia; Faculdade de Veterinária; Universidade Federal do Rio Grande do Sul (UFRGS); Porto Alegre Rio Grande do Sul Brazil
| | - M. N. Weber
- Laboratório de Virologia; Faculdade de Veterinária; Universidade Federal do Rio Grande do Sul (UFRGS); Porto Alegre Rio Grande do Sul Brazil
| | - A. C. S. Mósena
- Laboratório de Virologia; Faculdade de Veterinária; Universidade Federal do Rio Grande do Sul (UFRGS); Porto Alegre Rio Grande do Sul Brazil
| | - M. S. da Silva
- Laboratório de Virologia; Faculdade de Veterinária; Universidade Federal do Rio Grande do Sul (UFRGS); Porto Alegre Rio Grande do Sul Brazil
| | - S. P. Cibulski
- Laboratório de Virologia; Faculdade de Veterinária; Universidade Federal do Rio Grande do Sul (UFRGS); Porto Alegre Rio Grande do Sul Brazil
| | - M. R. Borba
- Laboratório de Epidemiologia Veterinária (EPILAB); Faculdade de Veterinária; Universidade Federal do Rio Grande do Sul (UFRGS); Porto Alegre Rio Grande do Sul Brazil
| | - R. D. Maia
- Instituto de Defesa e Inspeção Agropecuária do Rio Grande do Norte (IDIARN); Natal Rio Grande do Norte Brazil
| | - V. C. S. Coimbra
- Agência Estadual de Defesa Agropecuária do Maranhão (AGED-MA); São Luís Maranhão Brazil
| | - G. M. de Moraes
- Ministério da Agricultura; Pecuária e Abastecimento; Brasília Distrito Federal Brazil
| | - J. F. Ridpath
- Ruminant Diseases and Immunology Unit; National Animal Disease Center/ARS/USDA; Ames IA USA
| | - C. W. Canal
- Laboratório de Virologia; Faculdade de Veterinária; Universidade Federal do Rio Grande do Sul (UFRGS); Porto Alegre Rio Grande do Sul Brazil
| |
Collapse
|
7
|
Yeşilbağ K, Alpay G, Becher P. Variability and Global Distribution of Subgenotypes of Bovine Viral Diarrhea Virus. Viruses 2017; 9:v9060128. [PMID: 28587150 PMCID: PMC5490805 DOI: 10.3390/v9060128] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/03/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is a globally-distributed agent responsible for numerous clinical syndromes that lead to major economic losses. Two species, BVDV-1 and BVDV-2, discriminated on the basis of genetic and antigenic differences, are classified in the genus Pestivirus within the Flaviviridae family and distributed on all of the continents. BVDV-1 can be segregated into at least twenty-one subgenotypes (1a–1u), while four subgenotypes have been described for BVDV-2 (2a–2d). With respect to published sequences, the number of virus isolates described for BVDV-1 (88.2%) is considerably higher than for BVDV-2 (11.8%). The most frequently-reported BVDV-1 subgenotype are 1b, followed by 1a and 1c. The highest number of various BVDV subgenotypes has been documented in European countries, indicating greater genetic diversity of the virus on this continent. Current segregation of BVDV field isolates and the designation of subgenotypes are not harmonized. While the species BVDV-1 and BVDV-2 can be clearly differentiated independently from the portion of the genome being compared, analysis of different genomic regions can result in inconsistent assignment of some BVDV isolates to defined subgenotypes. To avoid non-conformities the authors recommend the development of a harmonized system for subdivision of BVDV isolates into defined subgenotypes.
Collapse
Affiliation(s)
- Kadir Yeşilbağ
- Department of Virology, Faculty of Veterinary Medicine, Uludag University, TR-16059 Bursa, Turkey.
| | - Gizem Alpay
- Department of Virology, Faculty of Veterinary Medicine, Uludag University, TR-16059 Bursa, Turkey.
| | - Paul Becher
- Institute for Virology, Department of Infectious Diseases, University of Veterinary Medicine, D-30559 Hannover, Germany.
| |
Collapse
|