1
|
Guo S, Liu C, Wang Y, Chen F, Zhu J, Li S, Li E. Effect of resveratrol on spermatogenesis in breeding boars and the proteomic analysis for testes. Reprod Biol 2024; 24:100930. [PMID: 39173316 DOI: 10.1016/j.repbio.2024.100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
Effect of resveratrol (RSV) on spermatogenesis and the mechanism of resveratrol in promoting spermatogenesis of breeding boars was explored by feeding sexually mature Duroc boars with normal diet and 20 mg/kg resveratrol diet for 14 days to the control group and experimental group, respectively. Semen volume, sperm density, motility, viability and abnormality rate were analyzed on day 0, 7, and 14. Blood samples were collected, and levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone (T) in serum were analyzed. On day 14, the testis tissue was collected for antioxidant and proteomics analysis etc. The semen volume, sperm density, motility, and viability of the experimental group and the contents of serum FSH, LH, T and plasma SOD activity were significantly higher than those in the control group. However, the serum IL-6, TNF-α and plasma MDA were remarkably lower in experimental group. The above results showed that resveratrol can simulate spermatogenesis in breeding boars. Proteomic results demonstrated that three differentially expressed proteins (DEPs) were up-regulated and 12 DEPs were down-regulated; ODF1, calmodulin, Cabs1, and Hp were involved in spermatogenesis; and the main enriched metabolic pathway is steroid hormone synthesis pathway. Therefore, the improvement in sperm quality by resveratrol may be achieved by regulating the changes in outer dense fiber 1, calmodulin, spermatid specific 1, and haptoglobin expression and steroid synthesis pathway.
Collapse
Affiliation(s)
- Shuang Guo
- School of biological and food processing engineering, Huanghuai University, Zhumadian, Henan province 463000, PR China
| | - Chaoying Liu
- School of biological and food processing engineering, Huanghuai University, Zhumadian, Henan province 463000, PR China; Zhumadian Academy of Industry Innovation and Development, Zhumadian, Henan province 463000, PR China
| | - Ye Wang
- School of biological and food processing engineering, Huanghuai University, Zhumadian, Henan province 463000, PR China
| | - Fujia Chen
- School of biological and food processing engineering, Huanghuai University, Zhumadian, Henan province 463000, PR China
| | - Jinjin Zhu
- School of biological and food processing engineering, Huanghuai University, Zhumadian, Henan province 463000, PR China
| | - Siqiang Li
- School of biological and food processing engineering, Huanghuai University, Zhumadian, Henan province 463000, PR China
| | - Enzhong Li
- School of biological and food processing engineering, Huanghuai University, Zhumadian, Henan province 463000, PR China.
| |
Collapse
|
2
|
Li C, Liu C, Chen Y, Zhao Y, Tan M, He B. Protective Effects of Betaine on Boar Sperm Quality during Liquid Storage and Transport. Animals (Basel) 2024; 14:2711. [PMID: 39335300 PMCID: PMC11429310 DOI: 10.3390/ani14182711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Boar semen is commonly used in artificial insemination (AI) for pig breeding, but its quality can be negatively affected by liquid preservation and transportation, leading to reduced fertility rates. Vibration and temperature fluctuations are critical factors that significantly impact semen quality during storage and transportation, influencing the success rate of AI procedures. Betaine, a naturally occurring compound known for its role in maintaining male fertility, demonstrates potential for improving the preservation and transportation of liquid-preserved boar sperm. The present study demonstrated that betaine supplementation in the semen extenders at 0.5 mg/mL had a significant protective effect on boar sperm motility during storage at 17 °C for 3 to 5 days. During road transportation, 2.5 mg/mL betaine showed significant protective effects on boar sperm progressive motility, while 0.4 mg/mL betaine notably improved boar sperm mitochondrial activity and antioxidant capacity, and reduced lipid peroxidation damage. Simulation models also demonstrated that betaine supplementation increased the proportion of sperm displaying progressive motility and possessing intact acrosomes, regardless of the storage temperature (17 °C or 25 °C), and effectively mitigated the damage caused by vibration at a speed of 200 r/min. Overall, supplementing liquid-preserved boar semen extenders with betaine shows promise in mitigating damage to sperm quality during storage and transportation.
Collapse
Affiliation(s)
- Chenxuan Li
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.L.); (C.L.); (Y.C.); (Y.Z.); (M.T.)
| | - Chenxi Liu
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.L.); (C.L.); (Y.C.); (Y.Z.); (M.T.)
| | - Yingqi Chen
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.L.); (C.L.); (Y.C.); (Y.Z.); (M.T.)
| | - Yuting Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.L.); (C.L.); (Y.C.); (Y.Z.); (M.T.)
| | - Meiling Tan
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.L.); (C.L.); (Y.C.); (Y.Z.); (M.T.)
| | - Bin He
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.L.); (C.L.); (Y.C.); (Y.Z.); (M.T.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Antioxidants and Oxidants in Boar Spermatozoa and Their Surrounding Environment Are Associated with AMPK Activation during Liquid Storage. Vet Sci 2023; 10:vetsci10030214. [PMID: 36977253 PMCID: PMC10056163 DOI: 10.3390/vetsci10030214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Activation of the AMP-activated protein kinase (AMPK) has been demonstrated to be beneficial for boar sperm quality and functionality, while the underlying mechanism of AMPK activation of boar spermatozoa remains obscure. This study aimed to explore the effect of antioxidants and oxidants in boar spermatozoa and their surrounding fluid (SF) on the activation of AMPK during the liquid storage. Ejaculates from Duroc boars, routinely used for semen production, were collected and diluted to a final concentration of 25 × 106/mL. In experiment 1, twenty-five semen samples from eighteen boars were stored at 17 °C for 7 days. In experiment 2, three pooled semen samples created from nine ejaculates of nine boars were used, and each sample was treated with 0, 0.1, 0.2, and 0.4 μM/L H2O2 and stored at 17 °C for 3 h. Sperm quality and functionality, antioxidants and oxidants in boar spermatozoa and SF, the intracellular AMP/ATP ratio, and the expression levels of the phosphorylated AMPK (Thr172) were determined. Sperm quality significantly decreased with storage time in terms of viability (p < 0.05). Antioxidant and oxidant levels were markedly affected with storage time, with a decline in the SF total antioxidant capacity (TAC) (p < 0.05), SF malondialdehyde (MDA) (p < 0.05), and the sperm’s total oxidant status (TOS), as well as a fluctuation in sperm superoxidase dismutase-like (SOD-like) activity (p < 0.05). The intracellular AMP/ATP ratio increased (p < 0.05) on day 4 and subsequently decreased to its lowest value on days 6 and 7 (p < 0.05). The phosphorylated AMPK levels increased from day 2 to day 7 (p < 0.05). Correlation analyses indicate that sperm quality during liquid storage was correlated to antioxidants and oxidants in spermatozoa and SF (p < 0.05), which were correlated to the phosphorylation of sperm AMPK (p < 0.05). Treatment with H2O2 induced damages in sperm quality (p < 0.05), a decline in antioxidant levels (SF TAC, p < 0.05; sperm SOD-like activity, p < 0.01), an increase in oxidant levels (SF MDA, p < 0.05; intracellular ROS production, p < 0.05), a higher AMP/ATP ratio (p < 0.05), and phosphorylated AMPK levels (p < 0.05) in comparison with the control. The results suggest that antioxidants and oxidants in boar spermatozoa and SF are involved in AMPK activation during liquid storage.
Collapse
|
4
|
Boar seminal plasma improves sperm quality by enhancing its antioxidant capacity during liquid storage at 17°C. ZYGOTE 2022; 30:695-703. [DOI: 10.1017/s096719942200017x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Summary
The objective of this study was to investigate the effects of different levels of seminal plasma (SP) on boar sperm quality, antioxidant capacity and bacterial concentrations during liquid storage at 17°C. Boar sperm was diluted with Beltsville Thawing Solution (BTS) consisting of 0, 25, 50 and 75% (v/v) of SP. Total motility, progressive motility and dynamic parameters were assessed by the computer assisted sperm analysis (CASA) system. Acrosome and plasma membrane integrity were measured by FITC-PNA/DAPI and SYBR-14/PI staining, respectively. In addition, total antioxidant capacity (T-AOC), malondialdehyde (MDA) content, and reactive oxygen species (ROS) levels were detected using commercial assay kits. Bacterial concentrations were assessed by turbidimetric assay. Our results showed that 25% SP markedly improved total motility, progressive motility, sperm dynamic parameters, acrosome integrity compared with 0, 50 and 75% SP (P < 0.05). In addition, 25% SP significantly increased T-AOC but decreased MDA content and ROS levels compared with 0, and 75% SP (P < 0.05). Moreover, 25% SP significantly decreased the bacterial concentrations in extended semen compared with 50% and 75% SP, however, which was higher than with 0% SP (P < 0.05). These results suggest that 25% SP can promote boar sperm quality through enhancing its antioxidant capacity during liquid storage.
Collapse
|
5
|
Han H, Zhong R, Zhou Y, Xiong B, Chen L, Jiang Y, Liu L, Sun H, Tan J, Tao F, Zhao Y, Zhang H. Hydroxytyrosol Benefits Boar Semen Quality via Improving Gut Microbiota and Blood Metabolome. Front Nutr 2022; 8:815922. [PMID: 35111800 PMCID: PMC8802763 DOI: 10.3389/fnut.2021.815922] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
Semen quality is one of the most important factors for the success of artificial insemination which has been widely applied in swine industry to take the advantages of the superior genetic background and higher fertility capability of boars. Hydroxytyrosol (HT), a polyphenol, has attracted broad interest due to its strong antioxidant, anti-inflammatory, and antibacterial activities. Sperm plasma membrane contains a large proportion of polyunsaturated fatty acids which is easily impaired by oxidative stress and thus to diminish semen quality. In current investigation, we aimed to explore the effects of dietary supplementation of HT on boar semen quality and the underlying mechanisms. Dietary supplementation of HT tended to increase sperm motility and semen volume/ejaculation. And the follow-up 2 months (without HT, just basal diet), the semen volume was significantly more while the abnormal sperm was less in HT group than that in control group. HT increased the “beneficial microbes” Bifidobacterium, Lactobacillus, Eubacterium, Intestinimonas, Coprococcus, and Butyricicoccus, however, decreased the relative abundance of “harmful microbes” Streptococcus, Oscillibacter, Clostridium_sensu_stricto, Escherichia, Phascolarctobacterium, and Barnesiella. Furthermore, HT increased plamsa steroid hormones such as testosterone and its derivatives, and antioxidant molecules while decreased bile acids and the derivatives. All the data suggest that HT improves gut microbiota to benefit plasma metabolites then to enhance spermatogenesis and semen quality. HT may be used as dietary additive to enhance boar semen quality in swine industry.
Collapse
Affiliation(s)
- Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yexun Zhou
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Bohui Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yue Jiang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haiqing Sun
- YangXiang Joint Stock Company, Guigang, China
| | - Jiajian Tan
- YangXiang Joint Stock Company, Guigang, China
| | - Fuping Tao
- Hangzhou Viablife Biotech Co., Ltd., Hangzhou, China
| | - Yong Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Yong Zhao ;
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Hongfu Zhang
| |
Collapse
|
6
|
Li D, Zhang W, Tian X, He Y, Xiao Z, Zhao X, Fan L, Du R, Yang G, Yu T. Hydroxytyrosol effectively improves the quality of pig sperm at 17 °C. Theriogenology 2022; 177:172-182. [PMID: 34715542 DOI: 10.1016/j.theriogenology.2021.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/25/2022]
Abstract
Artificial insemination (AI) is a proven breeding technology which has been widely used in pig reproduction. Low temperature can cause very serious damage to pig sperm below 15 °C and the situation is even more serious at lower temperature. Besides, the preservation of pig sperm is mainly carried out at 17 °C because of its outstanding performance in pig reproduction. However, the accumulation of a large amount of reactive oxygen species (ROS) during the preservation process is the main reason for the deterioration of sperm quality. In our research, by adding different concentrations of hydroxytyrosol to the diluent during the storage of pig sperm at 17 °C, we compared them with the traditional diluent to study the sperm motility, the cumulative amount of ROS, the extent of sperm membrane damage, the sperm acrosome integrity, the sperm DNA damage and the activity of antioxidant enzymes (CAT, T-AOC, SOD, GSH-PX, MDA) to evaluate the effect of hydroxytyrosol on the sperm quality during storage. We used proteomics sequencing technology to monitor difference in sperm protein between the control samples and the addition of 120 μmol/L hydroxytyrosol samples (optimum concentration) after three days storage. Ultimately, we selected the control samples and the addition of 120 μmol/L hydroxytyrosol samples to test the effect of AI. The results of our research showed that during storage of pig sperm at 17 °C, the sperm quality and antioxidant capacity of the hydroxytyrosol-treated samples significantly improved (HT 120 μmol/L) (P < 0.05). Proteomics sequencing analysis proved that the addition of 120 μmol/L hydroxytyrosol treatment samples had potential value in improving sperm quality. The significant increase in sow pregnancy rate and piglet birth weight proved that hydroxytyrosol had important practical value in pig reproduction. Based on our results, we demonstrated that the addition of hydroxytyrosol to the diluent could improve the quality of pig sperm and the efficiency of AI.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Animal Gennetics, Breeding and Reproducation of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Wenyu Zhang
- Key Laboratory of Animal Gennetics, Breeding and Reproducation of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Xuekai Tian
- Key Laboratory of Animal Gennetics, Breeding and Reproducation of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Yulin He
- Key Laboratory of Animal Gennetics, Breeding and Reproducation of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Zitong Xiao
- Key Laboratory of Animal Gennetics, Breeding and Reproducation of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Xin Zhao
- Key Laboratory of Animal Gennetics, Breeding and Reproducation of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Lin Fan
- Key Laboratory of Animal Gennetics, Breeding and Reproducation of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Renrang Du
- Key Laboratory of Animal Gennetics, Breeding and Reproducation of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Gongshe Yang
- Key Laboratory of Animal Gennetics, Breeding and Reproducation of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Taiyong Yu
- Key Laboratory of Animal Gennetics, Breeding and Reproducation of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, China.
| |
Collapse
|
7
|
Ribas-Maynou J, Mateo-Otero Y, Delgado-Bermúdez A, Bucci D, Tamanini C, Yeste M, Barranco I. Role of exogenous antioxidants on the performance and function of pig sperm after preservation in liquid and frozen states: A systematic review. Theriogenology 2021; 173:279-294. [PMID: 34411905 DOI: 10.1016/j.theriogenology.2021.07.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/26/2022]
Abstract
In situations where an excessive generation of reactive oxygen species overwhelms antioxidant capacity, a harmful effect on sperm function is exerted. Antioxidants are molecules capable of minimizing this detrimental effect, which is important in pig sperm due to the high content of polyunsaturated fatty acids in their plasma membrane. The present systematic review aims at evaluating whether supplementing semen extenders (for liquid storage at 17 °C) or freezing and/or thawing media (for cryopreservation) with antioxidants influences sperm quality and functionality parameters, and in vitro/in vivo fertility outcomes. We defined inclusion and exclusion criteria in a PICOS table according to PRISMA guidelines, and conducted a literature search through MEDLINE-PubMed in November 2020. After systematic selection, 75 studies were included: 47 focused on cryopreservation and 28 on liquid storage at 17 °C. More than 70% of the studies included in this review showed that adding semen extenders for liquid storage and/or freezing/thawing media for cryopreservation with antioxidants enhances sperm quality and functionality parameters. In addition, this supplementation improves in vivo/in vitro fertility outcomes, supporting the hypothesis that the beneficial effect observed upon sperm quality has a positive impact on reproduction outcomes.
Collapse
Affiliation(s)
- Jordi Ribas-Maynou
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain.
| | - Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Diego Bucci
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Carlo Tamanini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Isabel Barranco
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|